You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sgges3.c 39 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c_n1 = -1;
  487. static integer c__1 = 1;
  488. static integer c__0 = 0;
  489. static real c_b36 = 0.f;
  490. static real c_b37 = 1.f;
  491. /* > \brief <b> SGGES3 computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors
  492. for GE matrices (blocked algorithm)</b> */
  493. /* =========== DOCUMENTATION =========== */
  494. /* Online html documentation available at */
  495. /* http://www.netlib.org/lapack/explore-html/ */
  496. /* > \htmlonly */
  497. /* > Download SGGES3 + dependencies */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgges3.
  499. f"> */
  500. /* > [TGZ]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgges3.
  502. f"> */
  503. /* > [ZIP]</a> */
  504. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgges3.
  505. f"> */
  506. /* > [TXT]</a> */
  507. /* > \endhtmlonly */
  508. /* Definition: */
  509. /* =========== */
  510. /* SUBROUTINE SGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, */
  511. /* $ LDB, SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, */
  512. /* $ VSR, LDVSR, WORK, LWORK, BWORK, INFO ) */
  513. /* CHARACTER JOBVSL, JOBVSR, SORT */
  514. /* INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM */
  515. /* LOGICAL BWORK( * ) */
  516. /* REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ), */
  517. /* $ B( LDB, * ), BETA( * ), VSL( LDVSL, * ), */
  518. /* $ VSR( LDVSR, * ), WORK( * ) */
  519. /* LOGICAL SELCTG */
  520. /* EXTERNAL SELCTG */
  521. /* > \par Purpose: */
  522. /* ============= */
  523. /* > */
  524. /* > \verbatim */
  525. /* > */
  526. /* > SGGES3 computes for a pair of N-by-N real nonsymmetric matrices (A,B), */
  527. /* > the generalized eigenvalues, the generalized real Schur form (S,T), */
  528. /* > optionally, the left and/or right matrices of Schur vectors (VSL and */
  529. /* > VSR). This gives the generalized Schur factorization */
  530. /* > */
  531. /* > (A,B) = ( (VSL)*S*(VSR)**T, (VSL)*T*(VSR)**T ) */
  532. /* > */
  533. /* > Optionally, it also orders the eigenvalues so that a selected cluster */
  534. /* > of eigenvalues appears in the leading diagonal blocks of the upper */
  535. /* > quasi-triangular matrix S and the upper triangular matrix T.The */
  536. /* > leading columns of VSL and VSR then form an orthonormal basis for the */
  537. /* > corresponding left and right eigenspaces (deflating subspaces). */
  538. /* > */
  539. /* > (If only the generalized eigenvalues are needed, use the driver */
  540. /* > SGGEV instead, which is faster.) */
  541. /* > */
  542. /* > A generalized eigenvalue for a pair of matrices (A,B) is a scalar w */
  543. /* > or a ratio alpha/beta = w, such that A - w*B is singular. It is */
  544. /* > usually represented as the pair (alpha,beta), as there is a */
  545. /* > reasonable interpretation for beta=0 or both being zero. */
  546. /* > */
  547. /* > A pair of matrices (S,T) is in generalized real Schur form if T is */
  548. /* > upper triangular with non-negative diagonal and S is block upper */
  549. /* > triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond */
  550. /* > to real generalized eigenvalues, while 2-by-2 blocks of S will be */
  551. /* > "standardized" by making the corresponding elements of T have the */
  552. /* > form: */
  553. /* > [ a 0 ] */
  554. /* > [ 0 b ] */
  555. /* > */
  556. /* > and the pair of corresponding 2-by-2 blocks in S and T will have a */
  557. /* > complex conjugate pair of generalized eigenvalues. */
  558. /* > */
  559. /* > \endverbatim */
  560. /* Arguments: */
  561. /* ========== */
  562. /* > \param[in] JOBVSL */
  563. /* > \verbatim */
  564. /* > JOBVSL is CHARACTER*1 */
  565. /* > = 'N': do not compute the left Schur vectors; */
  566. /* > = 'V': compute the left Schur vectors. */
  567. /* > \endverbatim */
  568. /* > */
  569. /* > \param[in] JOBVSR */
  570. /* > \verbatim */
  571. /* > JOBVSR is CHARACTER*1 */
  572. /* > = 'N': do not compute the right Schur vectors; */
  573. /* > = 'V': compute the right Schur vectors. */
  574. /* > \endverbatim */
  575. /* > */
  576. /* > \param[in] SORT */
  577. /* > \verbatim */
  578. /* > SORT is CHARACTER*1 */
  579. /* > Specifies whether or not to order the eigenvalues on the */
  580. /* > diagonal of the generalized Schur form. */
  581. /* > = 'N': Eigenvalues are not ordered; */
  582. /* > = 'S': Eigenvalues are ordered (see SELCTG); */
  583. /* > \endverbatim */
  584. /* > */
  585. /* > \param[in] SELCTG */
  586. /* > \verbatim */
  587. /* > SELCTG is a LOGICAL FUNCTION of three REAL arguments */
  588. /* > SELCTG must be declared EXTERNAL in the calling subroutine. */
  589. /* > If SORT = 'N', SELCTG is not referenced. */
  590. /* > If SORT = 'S', SELCTG is used to select eigenvalues to sort */
  591. /* > to the top left of the Schur form. */
  592. /* > An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if */
  593. /* > SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either */
  594. /* > one of a complex conjugate pair of eigenvalues is selected, */
  595. /* > then both complex eigenvalues are selected. */
  596. /* > */
  597. /* > Note that in the ill-conditioned case, a selected complex */
  598. /* > eigenvalue may no longer satisfy SELCTG(ALPHAR(j),ALPHAI(j), */
  599. /* > BETA(j)) = .TRUE. after ordering. INFO is to be set to N+2 */
  600. /* > in this case. */
  601. /* > \endverbatim */
  602. /* > */
  603. /* > \param[in] N */
  604. /* > \verbatim */
  605. /* > N is INTEGER */
  606. /* > The order of the matrices A, B, VSL, and VSR. N >= 0. */
  607. /* > \endverbatim */
  608. /* > */
  609. /* > \param[in,out] A */
  610. /* > \verbatim */
  611. /* > A is REAL array, dimension (LDA, N) */
  612. /* > On entry, the first of the pair of matrices. */
  613. /* > On exit, A has been overwritten by its generalized Schur */
  614. /* > form S. */
  615. /* > \endverbatim */
  616. /* > */
  617. /* > \param[in] LDA */
  618. /* > \verbatim */
  619. /* > LDA is INTEGER */
  620. /* > The leading dimension of A. LDA >= f2cmax(1,N). */
  621. /* > \endverbatim */
  622. /* > */
  623. /* > \param[in,out] B */
  624. /* > \verbatim */
  625. /* > B is REAL array, dimension (LDB, N) */
  626. /* > On entry, the second of the pair of matrices. */
  627. /* > On exit, B has been overwritten by its generalized Schur */
  628. /* > form T. */
  629. /* > \endverbatim */
  630. /* > */
  631. /* > \param[in] LDB */
  632. /* > \verbatim */
  633. /* > LDB is INTEGER */
  634. /* > The leading dimension of B. LDB >= f2cmax(1,N). */
  635. /* > \endverbatim */
  636. /* > */
  637. /* > \param[out] SDIM */
  638. /* > \verbatim */
  639. /* > SDIM is INTEGER */
  640. /* > If SORT = 'N', SDIM = 0. */
  641. /* > If SORT = 'S', SDIM = number of eigenvalues (after sorting) */
  642. /* > for which SELCTG is true. (Complex conjugate pairs for which */
  643. /* > SELCTG is true for either eigenvalue count as 2.) */
  644. /* > \endverbatim */
  645. /* > */
  646. /* > \param[out] ALPHAR */
  647. /* > \verbatim */
  648. /* > ALPHAR is REAL array, dimension (N) */
  649. /* > \endverbatim */
  650. /* > */
  651. /* > \param[out] ALPHAI */
  652. /* > \verbatim */
  653. /* > ALPHAI is REAL array, dimension (N) */
  654. /* > \endverbatim */
  655. /* > */
  656. /* > \param[out] BETA */
  657. /* > \verbatim */
  658. /* > BETA is REAL array, dimension (N) */
  659. /* > On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will */
  660. /* > be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i, */
  661. /* > and BETA(j),j=1,...,N are the diagonals of the complex Schur */
  662. /* > form (S,T) that would result if the 2-by-2 diagonal blocks of */
  663. /* > the real Schur form of (A,B) were further reduced to */
  664. /* > triangular form using 2-by-2 complex unitary transformations. */
  665. /* > If ALPHAI(j) is zero, then the j-th eigenvalue is real; if */
  666. /* > positive, then the j-th and (j+1)-st eigenvalues are a */
  667. /* > complex conjugate pair, with ALPHAI(j+1) negative. */
  668. /* > */
  669. /* > Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) */
  670. /* > may easily over- or underflow, and BETA(j) may even be zero. */
  671. /* > Thus, the user should avoid naively computing the ratio. */
  672. /* > However, ALPHAR and ALPHAI will be always less than and */
  673. /* > usually comparable with norm(A) in magnitude, and BETA always */
  674. /* > less than and usually comparable with norm(B). */
  675. /* > \endverbatim */
  676. /* > */
  677. /* > \param[out] VSL */
  678. /* > \verbatim */
  679. /* > VSL is REAL array, dimension (LDVSL,N) */
  680. /* > If JOBVSL = 'V', VSL will contain the left Schur vectors. */
  681. /* > Not referenced if JOBVSL = 'N'. */
  682. /* > \endverbatim */
  683. /* > */
  684. /* > \param[in] LDVSL */
  685. /* > \verbatim */
  686. /* > LDVSL is INTEGER */
  687. /* > The leading dimension of the matrix VSL. LDVSL >=1, and */
  688. /* > if JOBVSL = 'V', LDVSL >= N. */
  689. /* > \endverbatim */
  690. /* > */
  691. /* > \param[out] VSR */
  692. /* > \verbatim */
  693. /* > VSR is REAL array, dimension (LDVSR,N) */
  694. /* > If JOBVSR = 'V', VSR will contain the right Schur vectors. */
  695. /* > Not referenced if JOBVSR = 'N'. */
  696. /* > \endverbatim */
  697. /* > */
  698. /* > \param[in] LDVSR */
  699. /* > \verbatim */
  700. /* > LDVSR is INTEGER */
  701. /* > The leading dimension of the matrix VSR. LDVSR >= 1, and */
  702. /* > if JOBVSR = 'V', LDVSR >= N. */
  703. /* > \endverbatim */
  704. /* > */
  705. /* > \param[out] WORK */
  706. /* > \verbatim */
  707. /* > WORK is REAL array, dimension (MAX(1,LWORK)) */
  708. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  709. /* > \endverbatim */
  710. /* > */
  711. /* > \param[in] LWORK */
  712. /* > \verbatim */
  713. /* > LWORK is INTEGER */
  714. /* > The dimension of the array WORK. */
  715. /* > */
  716. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  717. /* > only calculates the optimal size of the WORK array, returns */
  718. /* > this value as the first entry of the WORK array, and no error */
  719. /* > message related to LWORK is issued by XERBLA. */
  720. /* > \endverbatim */
  721. /* > */
  722. /* > \param[out] BWORK */
  723. /* > \verbatim */
  724. /* > BWORK is LOGICAL array, dimension (N) */
  725. /* > Not referenced if SORT = 'N'. */
  726. /* > \endverbatim */
  727. /* > */
  728. /* > \param[out] INFO */
  729. /* > \verbatim */
  730. /* > INFO is INTEGER */
  731. /* > = 0: successful exit */
  732. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  733. /* > = 1,...,N: */
  734. /* > The QZ iteration failed. (A,B) are not in Schur */
  735. /* > form, but ALPHAR(j), ALPHAI(j), and BETA(j) should */
  736. /* > be correct for j=INFO+1,...,N. */
  737. /* > > N: =N+1: other than QZ iteration failed in SHGEQZ. */
  738. /* > =N+2: after reordering, roundoff changed values of */
  739. /* > some complex eigenvalues so that leading */
  740. /* > eigenvalues in the Generalized Schur form no */
  741. /* > longer satisfy SELCTG=.TRUE. This could also */
  742. /* > be caused due to scaling. */
  743. /* > =N+3: reordering failed in STGSEN. */
  744. /* > \endverbatim */
  745. /* Authors: */
  746. /* ======== */
  747. /* > \author Univ. of Tennessee */
  748. /* > \author Univ. of California Berkeley */
  749. /* > \author Univ. of Colorado Denver */
  750. /* > \author NAG Ltd. */
  751. /* > \date January 2015 */
  752. /* > \ingroup realGEeigen */
  753. /* ===================================================================== */
  754. /* Subroutine */ void sgges3_(char *jobvsl, char *jobvsr, char *sort, L_fp
  755. selctg, integer *n, real *a, integer *lda, real *b, integer *ldb,
  756. integer *sdim, real *alphar, real *alphai, real *beta, real *vsl,
  757. integer *ldvsl, real *vsr, integer *ldvsr, real *work, integer *lwork,
  758. logical *bwork, integer *info)
  759. {
  760. /* System generated locals */
  761. integer a_dim1, a_offset, b_dim1, b_offset, vsl_dim1, vsl_offset,
  762. vsr_dim1, vsr_offset, i__1, i__2;
  763. real r__1;
  764. /* Local variables */
  765. real anrm, bnrm;
  766. integer idum[1], ierr, itau, iwrk;
  767. real pvsl, pvsr;
  768. integer i__;
  769. extern logical lsame_(char *, char *);
  770. integer ileft, icols;
  771. logical cursl, ilvsl, ilvsr;
  772. integer irows;
  773. extern /* Subroutine */ void sgghd3_(char *, char *, integer *, integer *,
  774. integer *, real *, integer *, real *, integer *, real *, integer *
  775. , real *, integer *, real *, integer *, integer *)
  776. ;
  777. logical lst2sl;
  778. extern /* Subroutine */ void slabad_(real *, real *);
  779. integer ip;
  780. extern /* Subroutine */ void sggbak_(char *, char *, integer *, integer *,
  781. integer *, real *, real *, integer *, real *, integer *, integer *
  782. ), sggbal_(char *, integer *, real *, integer *,
  783. real *, integer *, integer *, integer *, real *, real *, real *,
  784. integer *);
  785. logical ilascl, ilbscl;
  786. extern real slamch_(char *), slange_(char *, integer *, integer *,
  787. real *, integer *, real *);
  788. real safmin;
  789. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  790. real safmax, bignum;
  791. extern /* Subroutine */ void slascl_(char *, integer *, integer *, real *,
  792. real *, integer *, integer *, real *, integer *, integer *);
  793. integer ijobvl, iright;
  794. extern /* Subroutine */ void sgeqrf_(integer *, integer *, real *, integer
  795. *, real *, real *, integer *, integer *);
  796. integer ijobvr;
  797. extern /* Subroutine */ void slacpy_(char *, integer *, integer *, real *,
  798. integer *, real *, integer *), slaset_(char *, integer *,
  799. integer *, real *, real *, real *, integer *);
  800. real anrmto, bnrmto;
  801. logical lastsl;
  802. extern /* Subroutine */ void shgeqz_(char *, char *, char *, integer *,
  803. integer *, integer *, real *, integer *, real *, integer *, real *
  804. , real *, real *, real *, integer *, real *, integer *, real *,
  805. integer *, integer *), stgsen_(integer *,
  806. logical *, logical *, logical *, integer *, real *, integer *,
  807. real *, integer *, real *, real *, real *, real *, integer *,
  808. real *, integer *, integer *, real *, real *, real *, real *,
  809. integer *, integer *, integer *, integer *);
  810. real smlnum;
  811. extern /* Subroutine */ void sorgqr_(integer *, integer *, integer *, real
  812. *, integer *, real *, real *, integer *, integer *);
  813. logical wantst, lquery;
  814. integer lwkopt;
  815. extern /* Subroutine */ void sormqr_(char *, char *, integer *, integer *,
  816. integer *, real *, integer *, real *, real *, integer *, real *,
  817. integer *, integer *);
  818. real dif[2];
  819. integer ihi, ilo;
  820. real eps;
  821. /* -- LAPACK driver routine (version 3.6.0) -- */
  822. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  823. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  824. /* January 2015 */
  825. /* ===================================================================== */
  826. /* Decode the input arguments */
  827. /* Parameter adjustments */
  828. a_dim1 = *lda;
  829. a_offset = 1 + a_dim1 * 1;
  830. a -= a_offset;
  831. b_dim1 = *ldb;
  832. b_offset = 1 + b_dim1 * 1;
  833. b -= b_offset;
  834. --alphar;
  835. --alphai;
  836. --beta;
  837. vsl_dim1 = *ldvsl;
  838. vsl_offset = 1 + vsl_dim1 * 1;
  839. vsl -= vsl_offset;
  840. vsr_dim1 = *ldvsr;
  841. vsr_offset = 1 + vsr_dim1 * 1;
  842. vsr -= vsr_offset;
  843. --work;
  844. --bwork;
  845. /* Function Body */
  846. if (lsame_(jobvsl, "N")) {
  847. ijobvl = 1;
  848. ilvsl = FALSE_;
  849. } else if (lsame_(jobvsl, "V")) {
  850. ijobvl = 2;
  851. ilvsl = TRUE_;
  852. } else {
  853. ijobvl = -1;
  854. ilvsl = FALSE_;
  855. }
  856. if (lsame_(jobvsr, "N")) {
  857. ijobvr = 1;
  858. ilvsr = FALSE_;
  859. } else if (lsame_(jobvsr, "V")) {
  860. ijobvr = 2;
  861. ilvsr = TRUE_;
  862. } else {
  863. ijobvr = -1;
  864. ilvsr = FALSE_;
  865. }
  866. wantst = lsame_(sort, "S");
  867. /* Test the input arguments */
  868. *info = 0;
  869. lquery = *lwork == -1;
  870. if (ijobvl <= 0) {
  871. *info = -1;
  872. } else if (ijobvr <= 0) {
  873. *info = -2;
  874. } else if (! wantst && ! lsame_(sort, "N")) {
  875. *info = -3;
  876. } else if (*n < 0) {
  877. *info = -5;
  878. } else if (*lda < f2cmax(1,*n)) {
  879. *info = -7;
  880. } else if (*ldb < f2cmax(1,*n)) {
  881. *info = -9;
  882. } else if (*ldvsl < 1 || ilvsl && *ldvsl < *n) {
  883. *info = -15;
  884. } else if (*ldvsr < 1 || ilvsr && *ldvsr < *n) {
  885. *info = -17;
  886. } else if (*lwork < *n * 6 + 16 && ! lquery) {
  887. *info = -19;
  888. }
  889. /* Compute workspace */
  890. if (*info == 0) {
  891. sgeqrf_(n, n, &b[b_offset], ldb, &work[1], &work[1], &c_n1, &ierr);
  892. /* Computing MAX */
  893. i__1 = *n * 6 + 16, i__2 = *n * 3 + (integer) work[1];
  894. lwkopt = f2cmax(i__1,i__2);
  895. sormqr_("L", "T", n, n, n, &b[b_offset], ldb, &work[1], &a[a_offset],
  896. lda, &work[1], &c_n1, &ierr);
  897. /* Computing MAX */
  898. i__1 = lwkopt, i__2 = *n * 3 + (integer) work[1];
  899. lwkopt = f2cmax(i__1,i__2);
  900. if (ilvsl) {
  901. sorgqr_(n, n, n, &vsl[vsl_offset], ldvsl, &work[1], &work[1], &
  902. c_n1, &ierr);
  903. /* Computing MAX */
  904. i__1 = lwkopt, i__2 = *n * 3 + (integer) work[1];
  905. lwkopt = f2cmax(i__1,i__2);
  906. }
  907. sgghd3_(jobvsl, jobvsr, n, &c__1, n, &a[a_offset], lda, &b[b_offset],
  908. ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &work[
  909. 1], &c_n1, &ierr);
  910. /* Computing MAX */
  911. i__1 = lwkopt, i__2 = *n * 3 + (integer) work[1];
  912. lwkopt = f2cmax(i__1,i__2);
  913. shgeqz_("S", jobvsl, jobvsr, n, &c__1, n, &a[a_offset], lda, &b[
  914. b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[
  915. vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &work[1], &c_n1,
  916. &ierr);
  917. /* Computing MAX */
  918. i__1 = lwkopt, i__2 = (*n << 1) + (integer) work[1];
  919. lwkopt = f2cmax(i__1,i__2);
  920. if (wantst) {
  921. stgsen_(&c__0, &ilvsl, &ilvsr, &bwork[1], n, &a[a_offset], lda, &
  922. b[b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[
  923. vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, sdim, &pvsl,
  924. &pvsr, dif, &work[1], &c_n1, idum, &c__1, &ierr);
  925. /* Computing MAX */
  926. i__1 = lwkopt, i__2 = (*n << 1) + (integer) work[1];
  927. lwkopt = f2cmax(i__1,i__2);
  928. }
  929. work[1] = (real) lwkopt;
  930. }
  931. if (*info != 0) {
  932. i__1 = -(*info);
  933. xerbla_("SGGES3 ", &i__1, (ftnlen)6);
  934. return;
  935. } else if (lquery) {
  936. return;
  937. }
  938. /* Quick return if possible */
  939. if (*n == 0) {
  940. *sdim = 0;
  941. return;
  942. }
  943. /* Get machine constants */
  944. eps = slamch_("P");
  945. safmin = slamch_("S");
  946. safmax = 1.f / safmin;
  947. slabad_(&safmin, &safmax);
  948. smlnum = sqrt(safmin) / eps;
  949. bignum = 1.f / smlnum;
  950. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  951. anrm = slange_("M", n, n, &a[a_offset], lda, &work[1]);
  952. ilascl = FALSE_;
  953. if (anrm > 0.f && anrm < smlnum) {
  954. anrmto = smlnum;
  955. ilascl = TRUE_;
  956. } else if (anrm > bignum) {
  957. anrmto = bignum;
  958. ilascl = TRUE_;
  959. }
  960. if (ilascl) {
  961. slascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &
  962. ierr);
  963. }
  964. /* Scale B if f2cmax element outside range [SMLNUM,BIGNUM] */
  965. bnrm = slange_("M", n, n, &b[b_offset], ldb, &work[1]);
  966. ilbscl = FALSE_;
  967. if (bnrm > 0.f && bnrm < smlnum) {
  968. bnrmto = smlnum;
  969. ilbscl = TRUE_;
  970. } else if (bnrm > bignum) {
  971. bnrmto = bignum;
  972. ilbscl = TRUE_;
  973. }
  974. if (ilbscl) {
  975. slascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
  976. ierr);
  977. }
  978. /* Permute the matrix to make it more nearly triangular */
  979. ileft = 1;
  980. iright = *n + 1;
  981. iwrk = iright + *n;
  982. sggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[
  983. ileft], &work[iright], &work[iwrk], &ierr);
  984. /* Reduce B to triangular form (QR decomposition of B) */
  985. irows = ihi + 1 - ilo;
  986. icols = *n + 1 - ilo;
  987. itau = iwrk;
  988. iwrk = itau + irows;
  989. i__1 = *lwork + 1 - iwrk;
  990. sgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
  991. iwrk], &i__1, &ierr);
  992. /* Apply the orthogonal transformation to matrix A */
  993. i__1 = *lwork + 1 - iwrk;
  994. sormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
  995. work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwrk], &i__1, &
  996. ierr);
  997. /* Initialize VSL */
  998. if (ilvsl) {
  999. slaset_("Full", n, n, &c_b36, &c_b37, &vsl[vsl_offset], ldvsl);
  1000. if (irows > 1) {
  1001. i__1 = irows - 1;
  1002. i__2 = irows - 1;
  1003. slacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vsl[
  1004. ilo + 1 + ilo * vsl_dim1], ldvsl);
  1005. }
  1006. i__1 = *lwork + 1 - iwrk;
  1007. sorgqr_(&irows, &irows, &irows, &vsl[ilo + ilo * vsl_dim1], ldvsl, &
  1008. work[itau], &work[iwrk], &i__1, &ierr);
  1009. }
  1010. /* Initialize VSR */
  1011. if (ilvsr) {
  1012. slaset_("Full", n, n, &c_b36, &c_b37, &vsr[vsr_offset], ldvsr);
  1013. }
  1014. /* Reduce to generalized Hessenberg form */
  1015. i__1 = *lwork + 1 - iwrk;
  1016. sgghd3_(jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset],
  1017. ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &work[iwrk]
  1018. , &i__1, &ierr);
  1019. /* Perform QZ algorithm, computing Schur vectors if desired */
  1020. iwrk = itau;
  1021. i__1 = *lwork + 1 - iwrk;
  1022. shgeqz_("S", jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[
  1023. b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[vsl_offset]
  1024. , ldvsl, &vsr[vsr_offset], ldvsr, &work[iwrk], &i__1, &ierr);
  1025. if (ierr != 0) {
  1026. if (ierr > 0 && ierr <= *n) {
  1027. *info = ierr;
  1028. } else if (ierr > *n && ierr <= *n << 1) {
  1029. *info = ierr - *n;
  1030. } else {
  1031. *info = *n + 1;
  1032. }
  1033. goto L40;
  1034. }
  1035. /* Sort eigenvalues ALPHA/BETA if desired */
  1036. *sdim = 0;
  1037. if (wantst) {
  1038. /* Undo scaling on eigenvalues before SELCTGing */
  1039. if (ilascl) {
  1040. slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1],
  1041. n, &ierr);
  1042. slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1],
  1043. n, &ierr);
  1044. }
  1045. if (ilbscl) {
  1046. slascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n,
  1047. &ierr);
  1048. }
  1049. /* Select eigenvalues */
  1050. i__1 = *n;
  1051. for (i__ = 1; i__ <= i__1; ++i__) {
  1052. bwork[i__] = (*selctg)(&alphar[i__], &alphai[i__], &beta[i__]);
  1053. /* L10: */
  1054. }
  1055. i__1 = *lwork - iwrk + 1;
  1056. stgsen_(&c__0, &ilvsl, &ilvsr, &bwork[1], n, &a[a_offset], lda, &b[
  1057. b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[
  1058. vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, sdim, &pvsl, &
  1059. pvsr, dif, &work[iwrk], &i__1, idum, &c__1, &ierr);
  1060. if (ierr == 1) {
  1061. *info = *n + 3;
  1062. }
  1063. }
  1064. /* Apply back-permutation to VSL and VSR */
  1065. if (ilvsl) {
  1066. sggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsl[
  1067. vsl_offset], ldvsl, &ierr);
  1068. }
  1069. if (ilvsr) {
  1070. sggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsr[
  1071. vsr_offset], ldvsr, &ierr);
  1072. }
  1073. /* Check if unscaling would cause over/underflow, if so, rescale */
  1074. /* (ALPHAR(I),ALPHAI(I),BETA(I)) so BETA(I) is on the order of */
  1075. /* B(I,I) and ALPHAR(I) and ALPHAI(I) are on the order of A(I,I) */
  1076. if (ilascl) {
  1077. i__1 = *n;
  1078. for (i__ = 1; i__ <= i__1; ++i__) {
  1079. if (alphai[i__] != 0.f) {
  1080. if (alphar[i__] / safmax > anrmto / anrm || safmin / alphar[
  1081. i__] > anrm / anrmto) {
  1082. work[1] = (r__1 = a[i__ + i__ * a_dim1] / alphar[i__],
  1083. abs(r__1));
  1084. beta[i__] *= work[1];
  1085. alphar[i__] *= work[1];
  1086. alphai[i__] *= work[1];
  1087. } else if (alphai[i__] / safmax > anrmto / anrm || safmin /
  1088. alphai[i__] > anrm / anrmto) {
  1089. work[1] = (r__1 = a[i__ + (i__ + 1) * a_dim1] / alphai[
  1090. i__], abs(r__1));
  1091. beta[i__] *= work[1];
  1092. alphar[i__] *= work[1];
  1093. alphai[i__] *= work[1];
  1094. }
  1095. }
  1096. /* L50: */
  1097. }
  1098. }
  1099. if (ilbscl) {
  1100. i__1 = *n;
  1101. for (i__ = 1; i__ <= i__1; ++i__) {
  1102. if (alphai[i__] != 0.f) {
  1103. if (beta[i__] / safmax > bnrmto / bnrm || safmin / beta[i__]
  1104. > bnrm / bnrmto) {
  1105. work[1] = (r__1 = b[i__ + i__ * b_dim1] / beta[i__], abs(
  1106. r__1));
  1107. beta[i__] *= work[1];
  1108. alphar[i__] *= work[1];
  1109. alphai[i__] *= work[1];
  1110. }
  1111. }
  1112. /* L60: */
  1113. }
  1114. }
  1115. /* Undo scaling */
  1116. if (ilascl) {
  1117. slascl_("H", &c__0, &c__0, &anrmto, &anrm, n, n, &a[a_offset], lda, &
  1118. ierr);
  1119. slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, &
  1120. ierr);
  1121. slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, &
  1122. ierr);
  1123. }
  1124. if (ilbscl) {
  1125. slascl_("U", &c__0, &c__0, &bnrmto, &bnrm, n, n, &b[b_offset], ldb, &
  1126. ierr);
  1127. slascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
  1128. ierr);
  1129. }
  1130. if (wantst) {
  1131. /* Check if reordering is correct */
  1132. lastsl = TRUE_;
  1133. lst2sl = TRUE_;
  1134. *sdim = 0;
  1135. ip = 0;
  1136. i__1 = *n;
  1137. for (i__ = 1; i__ <= i__1; ++i__) {
  1138. cursl = (*selctg)(&alphar[i__], &alphai[i__], &beta[i__]);
  1139. if (alphai[i__] == 0.f) {
  1140. if (cursl) {
  1141. ++(*sdim);
  1142. }
  1143. ip = 0;
  1144. if (cursl && ! lastsl) {
  1145. *info = *n + 2;
  1146. }
  1147. } else {
  1148. if (ip == 1) {
  1149. /* Last eigenvalue of conjugate pair */
  1150. cursl = cursl || lastsl;
  1151. lastsl = cursl;
  1152. if (cursl) {
  1153. *sdim += 2;
  1154. }
  1155. ip = -1;
  1156. if (cursl && ! lst2sl) {
  1157. *info = *n + 2;
  1158. }
  1159. } else {
  1160. /* First eigenvalue of conjugate pair */
  1161. ip = 1;
  1162. }
  1163. }
  1164. lst2sl = lastsl;
  1165. lastsl = cursl;
  1166. /* L30: */
  1167. }
  1168. }
  1169. L40:
  1170. work[1] = (real) lwkopt;
  1171. return;
  1172. /* End of SGGES3 */
  1173. } /* sgges3_ */