You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zgtts2.c 33 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* > \brief \b ZGTTS2 solves a system of linear equations with a tridiagonal matrix using the LU factorization
  484. computed by sgttrf. */
  485. /* =========== DOCUMENTATION =========== */
  486. /* Online html documentation available at */
  487. /* http://www.netlib.org/lapack/explore-html/ */
  488. /* > \htmlonly */
  489. /* > Download ZGTTS2 + dependencies */
  490. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgtts2.
  491. f"> */
  492. /* > [TGZ]</a> */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgtts2.
  494. f"> */
  495. /* > [ZIP]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgtts2.
  497. f"> */
  498. /* > [TXT]</a> */
  499. /* > \endhtmlonly */
  500. /* Definition: */
  501. /* =========== */
  502. /* SUBROUTINE ZGTTS2( ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB ) */
  503. /* INTEGER ITRANS, LDB, N, NRHS */
  504. /* INTEGER IPIV( * ) */
  505. /* COMPLEX*16 B( LDB, * ), D( * ), DL( * ), DU( * ), DU2( * ) */
  506. /* > \par Purpose: */
  507. /* ============= */
  508. /* > */
  509. /* > \verbatim */
  510. /* > */
  511. /* > ZGTTS2 solves one of the systems of equations */
  512. /* > A * X = B, A**T * X = B, or A**H * X = B, */
  513. /* > with a tridiagonal matrix A using the LU factorization computed */
  514. /* > by ZGTTRF. */
  515. /* > \endverbatim */
  516. /* Arguments: */
  517. /* ========== */
  518. /* > \param[in] ITRANS */
  519. /* > \verbatim */
  520. /* > ITRANS is INTEGER */
  521. /* > Specifies the form of the system of equations. */
  522. /* > = 0: A * X = B (No transpose) */
  523. /* > = 1: A**T * X = B (Transpose) */
  524. /* > = 2: A**H * X = B (Conjugate transpose) */
  525. /* > \endverbatim */
  526. /* > */
  527. /* > \param[in] N */
  528. /* > \verbatim */
  529. /* > N is INTEGER */
  530. /* > The order of the matrix A. */
  531. /* > \endverbatim */
  532. /* > */
  533. /* > \param[in] NRHS */
  534. /* > \verbatim */
  535. /* > NRHS is INTEGER */
  536. /* > The number of right hand sides, i.e., the number of columns */
  537. /* > of the matrix B. NRHS >= 0. */
  538. /* > \endverbatim */
  539. /* > */
  540. /* > \param[in] DL */
  541. /* > \verbatim */
  542. /* > DL is COMPLEX*16 array, dimension (N-1) */
  543. /* > The (n-1) multipliers that define the matrix L from the */
  544. /* > LU factorization of A. */
  545. /* > \endverbatim */
  546. /* > */
  547. /* > \param[in] D */
  548. /* > \verbatim */
  549. /* > D is COMPLEX*16 array, dimension (N) */
  550. /* > The n diagonal elements of the upper triangular matrix U from */
  551. /* > the LU factorization of A. */
  552. /* > \endverbatim */
  553. /* > */
  554. /* > \param[in] DU */
  555. /* > \verbatim */
  556. /* > DU is COMPLEX*16 array, dimension (N-1) */
  557. /* > The (n-1) elements of the first super-diagonal of U. */
  558. /* > \endverbatim */
  559. /* > */
  560. /* > \param[in] DU2 */
  561. /* > \verbatim */
  562. /* > DU2 is COMPLEX*16 array, dimension (N-2) */
  563. /* > The (n-2) elements of the second super-diagonal of U. */
  564. /* > \endverbatim */
  565. /* > */
  566. /* > \param[in] IPIV */
  567. /* > \verbatim */
  568. /* > IPIV is INTEGER array, dimension (N) */
  569. /* > The pivot indices; for 1 <= i <= n, row i of the matrix was */
  570. /* > interchanged with row IPIV(i). IPIV(i) will always be either */
  571. /* > i or i+1; IPIV(i) = i indicates a row interchange was not */
  572. /* > required. */
  573. /* > \endverbatim */
  574. /* > */
  575. /* > \param[in,out] B */
  576. /* > \verbatim */
  577. /* > B is COMPLEX*16 array, dimension (LDB,NRHS) */
  578. /* > On entry, the matrix of right hand side vectors B. */
  579. /* > On exit, B is overwritten by the solution vectors X. */
  580. /* > \endverbatim */
  581. /* > */
  582. /* > \param[in] LDB */
  583. /* > \verbatim */
  584. /* > LDB is INTEGER */
  585. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  586. /* > \endverbatim */
  587. /* Authors: */
  588. /* ======== */
  589. /* > \author Univ. of Tennessee */
  590. /* > \author Univ. of California Berkeley */
  591. /* > \author Univ. of Colorado Denver */
  592. /* > \author NAG Ltd. */
  593. /* > \date December 2016 */
  594. /* > \ingroup complex16GTcomputational */
  595. /* ===================================================================== */
  596. /* Subroutine */ void zgtts2_(integer *itrans, integer *n, integer *nrhs,
  597. doublecomplex *dl, doublecomplex *d__, doublecomplex *du,
  598. doublecomplex *du2, integer *ipiv, doublecomplex *b, integer *ldb)
  599. {
  600. /* System generated locals */
  601. integer b_dim1, b_offset, i__1, i__2, i__3, i__4, i__5, i__6, i__7, i__8;
  602. doublecomplex z__1, z__2, z__3, z__4, z__5, z__6, z__7, z__8;
  603. /* Local variables */
  604. doublecomplex temp;
  605. integer i__, j;
  606. /* -- LAPACK computational routine (version 3.7.0) -- */
  607. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  608. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  609. /* December 2016 */
  610. /* ===================================================================== */
  611. /* Quick return if possible */
  612. /* Parameter adjustments */
  613. --dl;
  614. --d__;
  615. --du;
  616. --du2;
  617. --ipiv;
  618. b_dim1 = *ldb;
  619. b_offset = 1 + b_dim1 * 1;
  620. b -= b_offset;
  621. /* Function Body */
  622. if (*n == 0 || *nrhs == 0) {
  623. return;
  624. }
  625. if (*itrans == 0) {
  626. /* Solve A*X = B using the LU factorization of A, */
  627. /* overwriting each right hand side vector with its solution. */
  628. if (*nrhs <= 1) {
  629. j = 1;
  630. L10:
  631. /* Solve L*x = b. */
  632. i__1 = *n - 1;
  633. for (i__ = 1; i__ <= i__1; ++i__) {
  634. if (ipiv[i__] == i__) {
  635. i__2 = i__ + 1 + j * b_dim1;
  636. i__3 = i__ + 1 + j * b_dim1;
  637. i__4 = i__;
  638. i__5 = i__ + j * b_dim1;
  639. z__2.r = dl[i__4].r * b[i__5].r - dl[i__4].i * b[i__5].i,
  640. z__2.i = dl[i__4].r * b[i__5].i + dl[i__4].i * b[
  641. i__5].r;
  642. z__1.r = b[i__3].r - z__2.r, z__1.i = b[i__3].i - z__2.i;
  643. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  644. } else {
  645. i__2 = i__ + j * b_dim1;
  646. temp.r = b[i__2].r, temp.i = b[i__2].i;
  647. i__2 = i__ + j * b_dim1;
  648. i__3 = i__ + 1 + j * b_dim1;
  649. b[i__2].r = b[i__3].r, b[i__2].i = b[i__3].i;
  650. i__2 = i__ + 1 + j * b_dim1;
  651. i__3 = i__;
  652. i__4 = i__ + j * b_dim1;
  653. z__2.r = dl[i__3].r * b[i__4].r - dl[i__3].i * b[i__4].i,
  654. z__2.i = dl[i__3].r * b[i__4].i + dl[i__3].i * b[
  655. i__4].r;
  656. z__1.r = temp.r - z__2.r, z__1.i = temp.i - z__2.i;
  657. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  658. }
  659. /* L20: */
  660. }
  661. /* Solve U*x = b. */
  662. i__1 = *n + j * b_dim1;
  663. z_div(&z__1, &b[*n + j * b_dim1], &d__[*n]);
  664. b[i__1].r = z__1.r, b[i__1].i = z__1.i;
  665. if (*n > 1) {
  666. i__1 = *n - 1 + j * b_dim1;
  667. i__2 = *n - 1 + j * b_dim1;
  668. i__3 = *n - 1;
  669. i__4 = *n + j * b_dim1;
  670. z__3.r = du[i__3].r * b[i__4].r - du[i__3].i * b[i__4].i,
  671. z__3.i = du[i__3].r * b[i__4].i + du[i__3].i * b[i__4]
  672. .r;
  673. z__2.r = b[i__2].r - z__3.r, z__2.i = b[i__2].i - z__3.i;
  674. z_div(&z__1, &z__2, &d__[*n - 1]);
  675. b[i__1].r = z__1.r, b[i__1].i = z__1.i;
  676. }
  677. for (i__ = *n - 2; i__ >= 1; --i__) {
  678. i__1 = i__ + j * b_dim1;
  679. i__2 = i__ + j * b_dim1;
  680. i__3 = i__;
  681. i__4 = i__ + 1 + j * b_dim1;
  682. z__4.r = du[i__3].r * b[i__4].r - du[i__3].i * b[i__4].i,
  683. z__4.i = du[i__3].r * b[i__4].i + du[i__3].i * b[i__4]
  684. .r;
  685. z__3.r = b[i__2].r - z__4.r, z__3.i = b[i__2].i - z__4.i;
  686. i__5 = i__;
  687. i__6 = i__ + 2 + j * b_dim1;
  688. z__5.r = du2[i__5].r * b[i__6].r - du2[i__5].i * b[i__6].i,
  689. z__5.i = du2[i__5].r * b[i__6].i + du2[i__5].i * b[
  690. i__6].r;
  691. z__2.r = z__3.r - z__5.r, z__2.i = z__3.i - z__5.i;
  692. z_div(&z__1, &z__2, &d__[i__]);
  693. b[i__1].r = z__1.r, b[i__1].i = z__1.i;
  694. /* L30: */
  695. }
  696. if (j < *nrhs) {
  697. ++j;
  698. goto L10;
  699. }
  700. } else {
  701. i__1 = *nrhs;
  702. for (j = 1; j <= i__1; ++j) {
  703. /* Solve L*x = b. */
  704. i__2 = *n - 1;
  705. for (i__ = 1; i__ <= i__2; ++i__) {
  706. if (ipiv[i__] == i__) {
  707. i__3 = i__ + 1 + j * b_dim1;
  708. i__4 = i__ + 1 + j * b_dim1;
  709. i__5 = i__;
  710. i__6 = i__ + j * b_dim1;
  711. z__2.r = dl[i__5].r * b[i__6].r - dl[i__5].i * b[i__6]
  712. .i, z__2.i = dl[i__5].r * b[i__6].i + dl[i__5]
  713. .i * b[i__6].r;
  714. z__1.r = b[i__4].r - z__2.r, z__1.i = b[i__4].i -
  715. z__2.i;
  716. b[i__3].r = z__1.r, b[i__3].i = z__1.i;
  717. } else {
  718. i__3 = i__ + j * b_dim1;
  719. temp.r = b[i__3].r, temp.i = b[i__3].i;
  720. i__3 = i__ + j * b_dim1;
  721. i__4 = i__ + 1 + j * b_dim1;
  722. b[i__3].r = b[i__4].r, b[i__3].i = b[i__4].i;
  723. i__3 = i__ + 1 + j * b_dim1;
  724. i__4 = i__;
  725. i__5 = i__ + j * b_dim1;
  726. z__2.r = dl[i__4].r * b[i__5].r - dl[i__4].i * b[i__5]
  727. .i, z__2.i = dl[i__4].r * b[i__5].i + dl[i__4]
  728. .i * b[i__5].r;
  729. z__1.r = temp.r - z__2.r, z__1.i = temp.i - z__2.i;
  730. b[i__3].r = z__1.r, b[i__3].i = z__1.i;
  731. }
  732. /* L40: */
  733. }
  734. /* Solve U*x = b. */
  735. i__2 = *n + j * b_dim1;
  736. z_div(&z__1, &b[*n + j * b_dim1], &d__[*n]);
  737. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  738. if (*n > 1) {
  739. i__2 = *n - 1 + j * b_dim1;
  740. i__3 = *n - 1 + j * b_dim1;
  741. i__4 = *n - 1;
  742. i__5 = *n + j * b_dim1;
  743. z__3.r = du[i__4].r * b[i__5].r - du[i__4].i * b[i__5].i,
  744. z__3.i = du[i__4].r * b[i__5].i + du[i__4].i * b[
  745. i__5].r;
  746. z__2.r = b[i__3].r - z__3.r, z__2.i = b[i__3].i - z__3.i;
  747. z_div(&z__1, &z__2, &d__[*n - 1]);
  748. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  749. }
  750. for (i__ = *n - 2; i__ >= 1; --i__) {
  751. i__2 = i__ + j * b_dim1;
  752. i__3 = i__ + j * b_dim1;
  753. i__4 = i__;
  754. i__5 = i__ + 1 + j * b_dim1;
  755. z__4.r = du[i__4].r * b[i__5].r - du[i__4].i * b[i__5].i,
  756. z__4.i = du[i__4].r * b[i__5].i + du[i__4].i * b[
  757. i__5].r;
  758. z__3.r = b[i__3].r - z__4.r, z__3.i = b[i__3].i - z__4.i;
  759. i__6 = i__;
  760. i__7 = i__ + 2 + j * b_dim1;
  761. z__5.r = du2[i__6].r * b[i__7].r - du2[i__6].i * b[i__7]
  762. .i, z__5.i = du2[i__6].r * b[i__7].i + du2[i__6]
  763. .i * b[i__7].r;
  764. z__2.r = z__3.r - z__5.r, z__2.i = z__3.i - z__5.i;
  765. z_div(&z__1, &z__2, &d__[i__]);
  766. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  767. /* L50: */
  768. }
  769. /* L60: */
  770. }
  771. }
  772. } else if (*itrans == 1) {
  773. /* Solve A**T * X = B. */
  774. if (*nrhs <= 1) {
  775. j = 1;
  776. L70:
  777. /* Solve U**T * x = b. */
  778. i__1 = j * b_dim1 + 1;
  779. z_div(&z__1, &b[j * b_dim1 + 1], &d__[1]);
  780. b[i__1].r = z__1.r, b[i__1].i = z__1.i;
  781. if (*n > 1) {
  782. i__1 = j * b_dim1 + 2;
  783. i__2 = j * b_dim1 + 2;
  784. i__3 = j * b_dim1 + 1;
  785. z__3.r = du[1].r * b[i__3].r - du[1].i * b[i__3].i, z__3.i =
  786. du[1].r * b[i__3].i + du[1].i * b[i__3].r;
  787. z__2.r = b[i__2].r - z__3.r, z__2.i = b[i__2].i - z__3.i;
  788. z_div(&z__1, &z__2, &d__[2]);
  789. b[i__1].r = z__1.r, b[i__1].i = z__1.i;
  790. }
  791. i__1 = *n;
  792. for (i__ = 3; i__ <= i__1; ++i__) {
  793. i__2 = i__ + j * b_dim1;
  794. i__3 = i__ + j * b_dim1;
  795. i__4 = i__ - 1;
  796. i__5 = i__ - 1 + j * b_dim1;
  797. z__4.r = du[i__4].r * b[i__5].r - du[i__4].i * b[i__5].i,
  798. z__4.i = du[i__4].r * b[i__5].i + du[i__4].i * b[i__5]
  799. .r;
  800. z__3.r = b[i__3].r - z__4.r, z__3.i = b[i__3].i - z__4.i;
  801. i__6 = i__ - 2;
  802. i__7 = i__ - 2 + j * b_dim1;
  803. z__5.r = du2[i__6].r * b[i__7].r - du2[i__6].i * b[i__7].i,
  804. z__5.i = du2[i__6].r * b[i__7].i + du2[i__6].i * b[
  805. i__7].r;
  806. z__2.r = z__3.r - z__5.r, z__2.i = z__3.i - z__5.i;
  807. z_div(&z__1, &z__2, &d__[i__]);
  808. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  809. /* L80: */
  810. }
  811. /* Solve L**T * x = b. */
  812. for (i__ = *n - 1; i__ >= 1; --i__) {
  813. if (ipiv[i__] == i__) {
  814. i__1 = i__ + j * b_dim1;
  815. i__2 = i__ + j * b_dim1;
  816. i__3 = i__;
  817. i__4 = i__ + 1 + j * b_dim1;
  818. z__2.r = dl[i__3].r * b[i__4].r - dl[i__3].i * b[i__4].i,
  819. z__2.i = dl[i__3].r * b[i__4].i + dl[i__3].i * b[
  820. i__4].r;
  821. z__1.r = b[i__2].r - z__2.r, z__1.i = b[i__2].i - z__2.i;
  822. b[i__1].r = z__1.r, b[i__1].i = z__1.i;
  823. } else {
  824. i__1 = i__ + 1 + j * b_dim1;
  825. temp.r = b[i__1].r, temp.i = b[i__1].i;
  826. i__1 = i__ + 1 + j * b_dim1;
  827. i__2 = i__ + j * b_dim1;
  828. i__3 = i__;
  829. z__2.r = dl[i__3].r * temp.r - dl[i__3].i * temp.i,
  830. z__2.i = dl[i__3].r * temp.i + dl[i__3].i *
  831. temp.r;
  832. z__1.r = b[i__2].r - z__2.r, z__1.i = b[i__2].i - z__2.i;
  833. b[i__1].r = z__1.r, b[i__1].i = z__1.i;
  834. i__1 = i__ + j * b_dim1;
  835. b[i__1].r = temp.r, b[i__1].i = temp.i;
  836. }
  837. /* L90: */
  838. }
  839. if (j < *nrhs) {
  840. ++j;
  841. goto L70;
  842. }
  843. } else {
  844. i__1 = *nrhs;
  845. for (j = 1; j <= i__1; ++j) {
  846. /* Solve U**T * x = b. */
  847. i__2 = j * b_dim1 + 1;
  848. z_div(&z__1, &b[j * b_dim1 + 1], &d__[1]);
  849. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  850. if (*n > 1) {
  851. i__2 = j * b_dim1 + 2;
  852. i__3 = j * b_dim1 + 2;
  853. i__4 = j * b_dim1 + 1;
  854. z__3.r = du[1].r * b[i__4].r - du[1].i * b[i__4].i,
  855. z__3.i = du[1].r * b[i__4].i + du[1].i * b[i__4]
  856. .r;
  857. z__2.r = b[i__3].r - z__3.r, z__2.i = b[i__3].i - z__3.i;
  858. z_div(&z__1, &z__2, &d__[2]);
  859. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  860. }
  861. i__2 = *n;
  862. for (i__ = 3; i__ <= i__2; ++i__) {
  863. i__3 = i__ + j * b_dim1;
  864. i__4 = i__ + j * b_dim1;
  865. i__5 = i__ - 1;
  866. i__6 = i__ - 1 + j * b_dim1;
  867. z__4.r = du[i__5].r * b[i__6].r - du[i__5].i * b[i__6].i,
  868. z__4.i = du[i__5].r * b[i__6].i + du[i__5].i * b[
  869. i__6].r;
  870. z__3.r = b[i__4].r - z__4.r, z__3.i = b[i__4].i - z__4.i;
  871. i__7 = i__ - 2;
  872. i__8 = i__ - 2 + j * b_dim1;
  873. z__5.r = du2[i__7].r * b[i__8].r - du2[i__7].i * b[i__8]
  874. .i, z__5.i = du2[i__7].r * b[i__8].i + du2[i__7]
  875. .i * b[i__8].r;
  876. z__2.r = z__3.r - z__5.r, z__2.i = z__3.i - z__5.i;
  877. z_div(&z__1, &z__2, &d__[i__]);
  878. b[i__3].r = z__1.r, b[i__3].i = z__1.i;
  879. /* L100: */
  880. }
  881. /* Solve L**T * x = b. */
  882. for (i__ = *n - 1; i__ >= 1; --i__) {
  883. if (ipiv[i__] == i__) {
  884. i__2 = i__ + j * b_dim1;
  885. i__3 = i__ + j * b_dim1;
  886. i__4 = i__;
  887. i__5 = i__ + 1 + j * b_dim1;
  888. z__2.r = dl[i__4].r * b[i__5].r - dl[i__4].i * b[i__5]
  889. .i, z__2.i = dl[i__4].r * b[i__5].i + dl[i__4]
  890. .i * b[i__5].r;
  891. z__1.r = b[i__3].r - z__2.r, z__1.i = b[i__3].i -
  892. z__2.i;
  893. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  894. } else {
  895. i__2 = i__ + 1 + j * b_dim1;
  896. temp.r = b[i__2].r, temp.i = b[i__2].i;
  897. i__2 = i__ + 1 + j * b_dim1;
  898. i__3 = i__ + j * b_dim1;
  899. i__4 = i__;
  900. z__2.r = dl[i__4].r * temp.r - dl[i__4].i * temp.i,
  901. z__2.i = dl[i__4].r * temp.i + dl[i__4].i *
  902. temp.r;
  903. z__1.r = b[i__3].r - z__2.r, z__1.i = b[i__3].i -
  904. z__2.i;
  905. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  906. i__2 = i__ + j * b_dim1;
  907. b[i__2].r = temp.r, b[i__2].i = temp.i;
  908. }
  909. /* L110: */
  910. }
  911. /* L120: */
  912. }
  913. }
  914. } else {
  915. /* Solve A**H * X = B. */
  916. if (*nrhs <= 1) {
  917. j = 1;
  918. L130:
  919. /* Solve U**H * x = b. */
  920. i__1 = j * b_dim1 + 1;
  921. d_cnjg(&z__2, &d__[1]);
  922. z_div(&z__1, &b[j * b_dim1 + 1], &z__2);
  923. b[i__1].r = z__1.r, b[i__1].i = z__1.i;
  924. if (*n > 1) {
  925. i__1 = j * b_dim1 + 2;
  926. i__2 = j * b_dim1 + 2;
  927. d_cnjg(&z__4, &du[1]);
  928. i__3 = j * b_dim1 + 1;
  929. z__3.r = z__4.r * b[i__3].r - z__4.i * b[i__3].i, z__3.i =
  930. z__4.r * b[i__3].i + z__4.i * b[i__3].r;
  931. z__2.r = b[i__2].r - z__3.r, z__2.i = b[i__2].i - z__3.i;
  932. d_cnjg(&z__5, &d__[2]);
  933. z_div(&z__1, &z__2, &z__5);
  934. b[i__1].r = z__1.r, b[i__1].i = z__1.i;
  935. }
  936. i__1 = *n;
  937. for (i__ = 3; i__ <= i__1; ++i__) {
  938. i__2 = i__ + j * b_dim1;
  939. i__3 = i__ + j * b_dim1;
  940. d_cnjg(&z__5, &du[i__ - 1]);
  941. i__4 = i__ - 1 + j * b_dim1;
  942. z__4.r = z__5.r * b[i__4].r - z__5.i * b[i__4].i, z__4.i =
  943. z__5.r * b[i__4].i + z__5.i * b[i__4].r;
  944. z__3.r = b[i__3].r - z__4.r, z__3.i = b[i__3].i - z__4.i;
  945. d_cnjg(&z__7, &du2[i__ - 2]);
  946. i__5 = i__ - 2 + j * b_dim1;
  947. z__6.r = z__7.r * b[i__5].r - z__7.i * b[i__5].i, z__6.i =
  948. z__7.r * b[i__5].i + z__7.i * b[i__5].r;
  949. z__2.r = z__3.r - z__6.r, z__2.i = z__3.i - z__6.i;
  950. d_cnjg(&z__8, &d__[i__]);
  951. z_div(&z__1, &z__2, &z__8);
  952. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  953. /* L140: */
  954. }
  955. /* Solve L**H * x = b. */
  956. for (i__ = *n - 1; i__ >= 1; --i__) {
  957. if (ipiv[i__] == i__) {
  958. i__1 = i__ + j * b_dim1;
  959. i__2 = i__ + j * b_dim1;
  960. d_cnjg(&z__3, &dl[i__]);
  961. i__3 = i__ + 1 + j * b_dim1;
  962. z__2.r = z__3.r * b[i__3].r - z__3.i * b[i__3].i, z__2.i =
  963. z__3.r * b[i__3].i + z__3.i * b[i__3].r;
  964. z__1.r = b[i__2].r - z__2.r, z__1.i = b[i__2].i - z__2.i;
  965. b[i__1].r = z__1.r, b[i__1].i = z__1.i;
  966. } else {
  967. i__1 = i__ + 1 + j * b_dim1;
  968. temp.r = b[i__1].r, temp.i = b[i__1].i;
  969. i__1 = i__ + 1 + j * b_dim1;
  970. i__2 = i__ + j * b_dim1;
  971. d_cnjg(&z__3, &dl[i__]);
  972. z__2.r = z__3.r * temp.r - z__3.i * temp.i, z__2.i =
  973. z__3.r * temp.i + z__3.i * temp.r;
  974. z__1.r = b[i__2].r - z__2.r, z__1.i = b[i__2].i - z__2.i;
  975. b[i__1].r = z__1.r, b[i__1].i = z__1.i;
  976. i__1 = i__ + j * b_dim1;
  977. b[i__1].r = temp.r, b[i__1].i = temp.i;
  978. }
  979. /* L150: */
  980. }
  981. if (j < *nrhs) {
  982. ++j;
  983. goto L130;
  984. }
  985. } else {
  986. i__1 = *nrhs;
  987. for (j = 1; j <= i__1; ++j) {
  988. /* Solve U**H * x = b. */
  989. i__2 = j * b_dim1 + 1;
  990. d_cnjg(&z__2, &d__[1]);
  991. z_div(&z__1, &b[j * b_dim1 + 1], &z__2);
  992. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  993. if (*n > 1) {
  994. i__2 = j * b_dim1 + 2;
  995. i__3 = j * b_dim1 + 2;
  996. d_cnjg(&z__4, &du[1]);
  997. i__4 = j * b_dim1 + 1;
  998. z__3.r = z__4.r * b[i__4].r - z__4.i * b[i__4].i, z__3.i =
  999. z__4.r * b[i__4].i + z__4.i * b[i__4].r;
  1000. z__2.r = b[i__3].r - z__3.r, z__2.i = b[i__3].i - z__3.i;
  1001. d_cnjg(&z__5, &d__[2]);
  1002. z_div(&z__1, &z__2, &z__5);
  1003. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  1004. }
  1005. i__2 = *n;
  1006. for (i__ = 3; i__ <= i__2; ++i__) {
  1007. i__3 = i__ + j * b_dim1;
  1008. i__4 = i__ + j * b_dim1;
  1009. d_cnjg(&z__5, &du[i__ - 1]);
  1010. i__5 = i__ - 1 + j * b_dim1;
  1011. z__4.r = z__5.r * b[i__5].r - z__5.i * b[i__5].i, z__4.i =
  1012. z__5.r * b[i__5].i + z__5.i * b[i__5].r;
  1013. z__3.r = b[i__4].r - z__4.r, z__3.i = b[i__4].i - z__4.i;
  1014. d_cnjg(&z__7, &du2[i__ - 2]);
  1015. i__6 = i__ - 2 + j * b_dim1;
  1016. z__6.r = z__7.r * b[i__6].r - z__7.i * b[i__6].i, z__6.i =
  1017. z__7.r * b[i__6].i + z__7.i * b[i__6].r;
  1018. z__2.r = z__3.r - z__6.r, z__2.i = z__3.i - z__6.i;
  1019. d_cnjg(&z__8, &d__[i__]);
  1020. z_div(&z__1, &z__2, &z__8);
  1021. b[i__3].r = z__1.r, b[i__3].i = z__1.i;
  1022. /* L160: */
  1023. }
  1024. /* Solve L**H * x = b. */
  1025. for (i__ = *n - 1; i__ >= 1; --i__) {
  1026. if (ipiv[i__] == i__) {
  1027. i__2 = i__ + j * b_dim1;
  1028. i__3 = i__ + j * b_dim1;
  1029. d_cnjg(&z__3, &dl[i__]);
  1030. i__4 = i__ + 1 + j * b_dim1;
  1031. z__2.r = z__3.r * b[i__4].r - z__3.i * b[i__4].i,
  1032. z__2.i = z__3.r * b[i__4].i + z__3.i * b[i__4]
  1033. .r;
  1034. z__1.r = b[i__3].r - z__2.r, z__1.i = b[i__3].i -
  1035. z__2.i;
  1036. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  1037. } else {
  1038. i__2 = i__ + 1 + j * b_dim1;
  1039. temp.r = b[i__2].r, temp.i = b[i__2].i;
  1040. i__2 = i__ + 1 + j * b_dim1;
  1041. i__3 = i__ + j * b_dim1;
  1042. d_cnjg(&z__3, &dl[i__]);
  1043. z__2.r = z__3.r * temp.r - z__3.i * temp.i, z__2.i =
  1044. z__3.r * temp.i + z__3.i * temp.r;
  1045. z__1.r = b[i__3].r - z__2.r, z__1.i = b[i__3].i -
  1046. z__2.i;
  1047. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  1048. i__2 = i__ + j * b_dim1;
  1049. b[i__2].r = temp.r, b[i__2].i = temp.i;
  1050. }
  1051. /* L170: */
  1052. }
  1053. /* L180: */
  1054. }
  1055. }
  1056. }
  1057. /* End of ZGTTS2 */
  1058. return;
  1059. } /* zgtts2_ */