You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlarfb.c 37 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. static doublereal c_b14 = 1.;
  486. static doublereal c_b25 = -1.;
  487. /* > \brief \b DLARFB applies a block reflector or its transpose to a general rectangular matrix. */
  488. /* =========== DOCUMENTATION =========== */
  489. /* Online html documentation available at */
  490. /* http://www.netlib.org/lapack/explore-html/ */
  491. /* > \htmlonly */
  492. /* > Download DLARFB + dependencies */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarfb.
  494. f"> */
  495. /* > [TGZ]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarfb.
  497. f"> */
  498. /* > [ZIP]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarfb.
  500. f"> */
  501. /* > [TXT]</a> */
  502. /* > \endhtmlonly */
  503. /* Definition: */
  504. /* =========== */
  505. /* SUBROUTINE DLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV, */
  506. /* T, LDT, C, LDC, WORK, LDWORK ) */
  507. /* CHARACTER DIRECT, SIDE, STOREV, TRANS */
  508. /* INTEGER K, LDC, LDT, LDV, LDWORK, M, N */
  509. /* DOUBLE PRECISION C( LDC, * ), T( LDT, * ), V( LDV, * ), */
  510. /* $ WORK( LDWORK, * ) */
  511. /* > \par Purpose: */
  512. /* ============= */
  513. /* > */
  514. /* > \verbatim */
  515. /* > */
  516. /* > DLARFB applies a real block reflector H or its transpose H**T to a */
  517. /* > real m by n matrix C, from either the left or the right. */
  518. /* > \endverbatim */
  519. /* Arguments: */
  520. /* ========== */
  521. /* > \param[in] SIDE */
  522. /* > \verbatim */
  523. /* > SIDE is CHARACTER*1 */
  524. /* > = 'L': apply H or H**T from the Left */
  525. /* > = 'R': apply H or H**T from the Right */
  526. /* > \endverbatim */
  527. /* > */
  528. /* > \param[in] TRANS */
  529. /* > \verbatim */
  530. /* > TRANS is CHARACTER*1 */
  531. /* > = 'N': apply H (No transpose) */
  532. /* > = 'T': apply H**T (Transpose) */
  533. /* > \endverbatim */
  534. /* > */
  535. /* > \param[in] DIRECT */
  536. /* > \verbatim */
  537. /* > DIRECT is CHARACTER*1 */
  538. /* > Indicates how H is formed from a product of elementary */
  539. /* > reflectors */
  540. /* > = 'F': H = H(1) H(2) . . . H(k) (Forward) */
  541. /* > = 'B': H = H(k) . . . H(2) H(1) (Backward) */
  542. /* > \endverbatim */
  543. /* > */
  544. /* > \param[in] STOREV */
  545. /* > \verbatim */
  546. /* > STOREV is CHARACTER*1 */
  547. /* > Indicates how the vectors which define the elementary */
  548. /* > reflectors are stored: */
  549. /* > = 'C': Columnwise */
  550. /* > = 'R': Rowwise */
  551. /* > \endverbatim */
  552. /* > */
  553. /* > \param[in] M */
  554. /* > \verbatim */
  555. /* > M is INTEGER */
  556. /* > The number of rows of the matrix C. */
  557. /* > \endverbatim */
  558. /* > */
  559. /* > \param[in] N */
  560. /* > \verbatim */
  561. /* > N is INTEGER */
  562. /* > The number of columns of the matrix C. */
  563. /* > \endverbatim */
  564. /* > */
  565. /* > \param[in] K */
  566. /* > \verbatim */
  567. /* > K is INTEGER */
  568. /* > The order of the matrix T (= the number of elementary */
  569. /* > reflectors whose product defines the block reflector). */
  570. /* > If SIDE = 'L', M >= K >= 0; */
  571. /* > if SIDE = 'R', N >= K >= 0. */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[in] V */
  575. /* > \verbatim */
  576. /* > V is DOUBLE PRECISION array, dimension */
  577. /* > (LDV,K) if STOREV = 'C' */
  578. /* > (LDV,M) if STOREV = 'R' and SIDE = 'L' */
  579. /* > (LDV,N) if STOREV = 'R' and SIDE = 'R' */
  580. /* > The matrix V. See Further Details. */
  581. /* > \endverbatim */
  582. /* > */
  583. /* > \param[in] LDV */
  584. /* > \verbatim */
  585. /* > LDV is INTEGER */
  586. /* > The leading dimension of the array V. */
  587. /* > If STOREV = 'C' and SIDE = 'L', LDV >= f2cmax(1,M); */
  588. /* > if STOREV = 'C' and SIDE = 'R', LDV >= f2cmax(1,N); */
  589. /* > if STOREV = 'R', LDV >= K. */
  590. /* > \endverbatim */
  591. /* > */
  592. /* > \param[in] T */
  593. /* > \verbatim */
  594. /* > T is DOUBLE PRECISION array, dimension (LDT,K) */
  595. /* > The triangular k by k matrix T in the representation of the */
  596. /* > block reflector. */
  597. /* > \endverbatim */
  598. /* > */
  599. /* > \param[in] LDT */
  600. /* > \verbatim */
  601. /* > LDT is INTEGER */
  602. /* > The leading dimension of the array T. LDT >= K. */
  603. /* > \endverbatim */
  604. /* > */
  605. /* > \param[in,out] C */
  606. /* > \verbatim */
  607. /* > C is DOUBLE PRECISION array, dimension (LDC,N) */
  608. /* > On entry, the m by n matrix C. */
  609. /* > On exit, C is overwritten by H*C or H**T*C or C*H or C*H**T. */
  610. /* > \endverbatim */
  611. /* > */
  612. /* > \param[in] LDC */
  613. /* > \verbatim */
  614. /* > LDC is INTEGER */
  615. /* > The leading dimension of the array C. LDC >= f2cmax(1,M). */
  616. /* > \endverbatim */
  617. /* > */
  618. /* > \param[out] WORK */
  619. /* > \verbatim */
  620. /* > WORK is DOUBLE PRECISION array, dimension (LDWORK,K) */
  621. /* > \endverbatim */
  622. /* > */
  623. /* > \param[in] LDWORK */
  624. /* > \verbatim */
  625. /* > LDWORK is INTEGER */
  626. /* > The leading dimension of the array WORK. */
  627. /* > If SIDE = 'L', LDWORK >= f2cmax(1,N); */
  628. /* > if SIDE = 'R', LDWORK >= f2cmax(1,M). */
  629. /* > \endverbatim */
  630. /* Authors: */
  631. /* ======== */
  632. /* > \author Univ. of Tennessee */
  633. /* > \author Univ. of California Berkeley */
  634. /* > \author Univ. of Colorado Denver */
  635. /* > \author NAG Ltd. */
  636. /* > \date June 2013 */
  637. /* > \ingroup doubleOTHERauxiliary */
  638. /* > \par Further Details: */
  639. /* ===================== */
  640. /* > */
  641. /* > \verbatim */
  642. /* > */
  643. /* > The shape of the matrix V and the storage of the vectors which define */
  644. /* > the H(i) is best illustrated by the following example with n = 5 and */
  645. /* > k = 3. The elements equal to 1 are not stored; the corresponding */
  646. /* > array elements are modified but restored on exit. The rest of the */
  647. /* > array is not used. */
  648. /* > */
  649. /* > DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': */
  650. /* > */
  651. /* > V = ( 1 ) V = ( 1 v1 v1 v1 v1 ) */
  652. /* > ( v1 1 ) ( 1 v2 v2 v2 ) */
  653. /* > ( v1 v2 1 ) ( 1 v3 v3 ) */
  654. /* > ( v1 v2 v3 ) */
  655. /* > ( v1 v2 v3 ) */
  656. /* > */
  657. /* > DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': */
  658. /* > */
  659. /* > V = ( v1 v2 v3 ) V = ( v1 v1 1 ) */
  660. /* > ( v1 v2 v3 ) ( v2 v2 v2 1 ) */
  661. /* > ( 1 v2 v3 ) ( v3 v3 v3 v3 1 ) */
  662. /* > ( 1 v3 ) */
  663. /* > ( 1 ) */
  664. /* > \endverbatim */
  665. /* > */
  666. /* ===================================================================== */
  667. /* Subroutine */ void dlarfb_(char *side, char *trans, char *direct, char *
  668. storev, integer *m, integer *n, integer *k, doublereal *v, integer *
  669. ldv, doublereal *t, integer *ldt, doublereal *c__, integer *ldc,
  670. doublereal *work, integer *ldwork)
  671. {
  672. /* System generated locals */
  673. integer c_dim1, c_offset, t_dim1, t_offset, v_dim1, v_offset, work_dim1,
  674. work_offset, i__1, i__2;
  675. /* Local variables */
  676. integer i__, j;
  677. extern /* Subroutine */ void dgemm_(char *, char *, integer *, integer *,
  678. integer *, doublereal *, doublereal *, integer *, doublereal *,
  679. integer *, doublereal *, doublereal *, integer *);
  680. extern logical lsame_(char *, char *);
  681. extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
  682. doublereal *, integer *), dtrmm_(char *, char *, char *, char *,
  683. integer *, integer *, doublereal *, doublereal *, integer *,
  684. doublereal *, integer *);
  685. char transt[1];
  686. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  687. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  688. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  689. /* June 2013 */
  690. /* ===================================================================== */
  691. /* Quick return if possible */
  692. /* Parameter adjustments */
  693. v_dim1 = *ldv;
  694. v_offset = 1 + v_dim1 * 1;
  695. v -= v_offset;
  696. t_dim1 = *ldt;
  697. t_offset = 1 + t_dim1 * 1;
  698. t -= t_offset;
  699. c_dim1 = *ldc;
  700. c_offset = 1 + c_dim1 * 1;
  701. c__ -= c_offset;
  702. work_dim1 = *ldwork;
  703. work_offset = 1 + work_dim1 * 1;
  704. work -= work_offset;
  705. /* Function Body */
  706. if (*m <= 0 || *n <= 0) {
  707. return;
  708. }
  709. if (lsame_(trans, "N")) {
  710. *(unsigned char *)transt = 'T';
  711. } else {
  712. *(unsigned char *)transt = 'N';
  713. }
  714. if (lsame_(storev, "C")) {
  715. if (lsame_(direct, "F")) {
  716. /* Let V = ( V1 ) (first K rows) */
  717. /* ( V2 ) */
  718. /* where V1 is unit lower triangular. */
  719. if (lsame_(side, "L")) {
  720. /* Form H * C or H**T * C where C = ( C1 ) */
  721. /* ( C2 ) */
  722. /* W := C**T * V = (C1**T * V1 + C2**T * V2) (stored in WORK) */
  723. /* W := C1**T */
  724. i__1 = *k;
  725. for (j = 1; j <= i__1; ++j) {
  726. dcopy_(n, &c__[j + c_dim1], ldc, &work[j * work_dim1 + 1],
  727. &c__1);
  728. /* L10: */
  729. }
  730. /* W := W * V1 */
  731. dtrmm_("Right", "Lower", "No transpose", "Unit", n, k, &c_b14,
  732. &v[v_offset], ldv, &work[work_offset], ldwork);
  733. if (*m > *k) {
  734. /* W := W + C2**T * V2 */
  735. i__1 = *m - *k;
  736. dgemm_("Transpose", "No transpose", n, k, &i__1, &c_b14, &
  737. c__[*k + 1 + c_dim1], ldc, &v[*k + 1 + v_dim1],
  738. ldv, &c_b14, &work[work_offset], ldwork);
  739. }
  740. /* W := W * T**T or W * T */
  741. dtrmm_("Right", "Upper", transt, "Non-unit", n, k, &c_b14, &t[
  742. t_offset], ldt, &work[work_offset], ldwork);
  743. /* C := C - V * W**T */
  744. if (*m > *k) {
  745. /* C2 := C2 - V2 * W**T */
  746. i__1 = *m - *k;
  747. dgemm_("No transpose", "Transpose", &i__1, n, k, &c_b25, &
  748. v[*k + 1 + v_dim1], ldv, &work[work_offset],
  749. ldwork, &c_b14, &c__[*k + 1 + c_dim1], ldc);
  750. }
  751. /* W := W * V1**T */
  752. dtrmm_("Right", "Lower", "Transpose", "Unit", n, k, &c_b14, &
  753. v[v_offset], ldv, &work[work_offset], ldwork);
  754. /* C1 := C1 - W**T */
  755. i__1 = *k;
  756. for (j = 1; j <= i__1; ++j) {
  757. i__2 = *n;
  758. for (i__ = 1; i__ <= i__2; ++i__) {
  759. c__[j + i__ * c_dim1] -= work[i__ + j * work_dim1];
  760. /* L20: */
  761. }
  762. /* L30: */
  763. }
  764. } else if (lsame_(side, "R")) {
  765. /* Form C * H or C * H**T where C = ( C1 C2 ) */
  766. /* W := C * V = (C1*V1 + C2*V2) (stored in WORK) */
  767. /* W := C1 */
  768. i__1 = *k;
  769. for (j = 1; j <= i__1; ++j) {
  770. dcopy_(m, &c__[j * c_dim1 + 1], &c__1, &work[j *
  771. work_dim1 + 1], &c__1);
  772. /* L40: */
  773. }
  774. /* W := W * V1 */
  775. dtrmm_("Right", "Lower", "No transpose", "Unit", m, k, &c_b14,
  776. &v[v_offset], ldv, &work[work_offset], ldwork);
  777. if (*n > *k) {
  778. /* W := W + C2 * V2 */
  779. i__1 = *n - *k;
  780. dgemm_("No transpose", "No transpose", m, k, &i__1, &
  781. c_b14, &c__[(*k + 1) * c_dim1 + 1], ldc, &v[*k +
  782. 1 + v_dim1], ldv, &c_b14, &work[work_offset],
  783. ldwork);
  784. }
  785. /* W := W * T or W * T**T */
  786. dtrmm_("Right", "Upper", trans, "Non-unit", m, k, &c_b14, &t[
  787. t_offset], ldt, &work[work_offset], ldwork);
  788. /* C := C - W * V**T */
  789. if (*n > *k) {
  790. /* C2 := C2 - W * V2**T */
  791. i__1 = *n - *k;
  792. dgemm_("No transpose", "Transpose", m, &i__1, k, &c_b25, &
  793. work[work_offset], ldwork, &v[*k + 1 + v_dim1],
  794. ldv, &c_b14, &c__[(*k + 1) * c_dim1 + 1], ldc);
  795. }
  796. /* W := W * V1**T */
  797. dtrmm_("Right", "Lower", "Transpose", "Unit", m, k, &c_b14, &
  798. v[v_offset], ldv, &work[work_offset], ldwork);
  799. /* C1 := C1 - W */
  800. i__1 = *k;
  801. for (j = 1; j <= i__1; ++j) {
  802. i__2 = *m;
  803. for (i__ = 1; i__ <= i__2; ++i__) {
  804. c__[i__ + j * c_dim1] -= work[i__ + j * work_dim1];
  805. /* L50: */
  806. }
  807. /* L60: */
  808. }
  809. }
  810. } else {
  811. /* Let V = ( V1 ) */
  812. /* ( V2 ) (last K rows) */
  813. /* where V2 is unit upper triangular. */
  814. if (lsame_(side, "L")) {
  815. /* Form H * C or H**T * C where C = ( C1 ) */
  816. /* ( C2 ) */
  817. /* W := C**T * V = (C1**T * V1 + C2**T * V2) (stored in WORK) */
  818. /* W := C2**T */
  819. i__1 = *k;
  820. for (j = 1; j <= i__1; ++j) {
  821. dcopy_(n, &c__[*m - *k + j + c_dim1], ldc, &work[j *
  822. work_dim1 + 1], &c__1);
  823. /* L70: */
  824. }
  825. /* W := W * V2 */
  826. dtrmm_("Right", "Upper", "No transpose", "Unit", n, k, &c_b14,
  827. &v[*m - *k + 1 + v_dim1], ldv, &work[work_offset],
  828. ldwork);
  829. if (*m > *k) {
  830. /* W := W + C1**T * V1 */
  831. i__1 = *m - *k;
  832. dgemm_("Transpose", "No transpose", n, k, &i__1, &c_b14, &
  833. c__[c_offset], ldc, &v[v_offset], ldv, &c_b14, &
  834. work[work_offset], ldwork);
  835. }
  836. /* W := W * T**T or W * T */
  837. dtrmm_("Right", "Lower", transt, "Non-unit", n, k, &c_b14, &t[
  838. t_offset], ldt, &work[work_offset], ldwork);
  839. /* C := C - V * W**T */
  840. if (*m > *k) {
  841. /* C1 := C1 - V1 * W**T */
  842. i__1 = *m - *k;
  843. dgemm_("No transpose", "Transpose", &i__1, n, k, &c_b25, &
  844. v[v_offset], ldv, &work[work_offset], ldwork, &
  845. c_b14, &c__[c_offset], ldc)
  846. ;
  847. }
  848. /* W := W * V2**T */
  849. dtrmm_("Right", "Upper", "Transpose", "Unit", n, k, &c_b14, &
  850. v[*m - *k + 1 + v_dim1], ldv, &work[work_offset],
  851. ldwork);
  852. /* C2 := C2 - W**T */
  853. i__1 = *k;
  854. for (j = 1; j <= i__1; ++j) {
  855. i__2 = *n;
  856. for (i__ = 1; i__ <= i__2; ++i__) {
  857. c__[*m - *k + j + i__ * c_dim1] -= work[i__ + j *
  858. work_dim1];
  859. /* L80: */
  860. }
  861. /* L90: */
  862. }
  863. } else if (lsame_(side, "R")) {
  864. /* Form C * H or C * H**T where C = ( C1 C2 ) */
  865. /* W := C * V = (C1*V1 + C2*V2) (stored in WORK) */
  866. /* W := C2 */
  867. i__1 = *k;
  868. for (j = 1; j <= i__1; ++j) {
  869. dcopy_(m, &c__[(*n - *k + j) * c_dim1 + 1], &c__1, &work[
  870. j * work_dim1 + 1], &c__1);
  871. /* L100: */
  872. }
  873. /* W := W * V2 */
  874. dtrmm_("Right", "Upper", "No transpose", "Unit", m, k, &c_b14,
  875. &v[*n - *k + 1 + v_dim1], ldv, &work[work_offset],
  876. ldwork);
  877. if (*n > *k) {
  878. /* W := W + C1 * V1 */
  879. i__1 = *n - *k;
  880. dgemm_("No transpose", "No transpose", m, k, &i__1, &
  881. c_b14, &c__[c_offset], ldc, &v[v_offset], ldv, &
  882. c_b14, &work[work_offset], ldwork);
  883. }
  884. /* W := W * T or W * T**T */
  885. dtrmm_("Right", "Lower", trans, "Non-unit", m, k, &c_b14, &t[
  886. t_offset], ldt, &work[work_offset], ldwork);
  887. /* C := C - W * V**T */
  888. if (*n > *k) {
  889. /* C1 := C1 - W * V1**T */
  890. i__1 = *n - *k;
  891. dgemm_("No transpose", "Transpose", m, &i__1, k, &c_b25, &
  892. work[work_offset], ldwork, &v[v_offset], ldv, &
  893. c_b14, &c__[c_offset], ldc)
  894. ;
  895. }
  896. /* W := W * V2**T */
  897. dtrmm_("Right", "Upper", "Transpose", "Unit", m, k, &c_b14, &
  898. v[*n - *k + 1 + v_dim1], ldv, &work[work_offset],
  899. ldwork);
  900. /* C2 := C2 - W */
  901. i__1 = *k;
  902. for (j = 1; j <= i__1; ++j) {
  903. i__2 = *m;
  904. for (i__ = 1; i__ <= i__2; ++i__) {
  905. c__[i__ + (*n - *k + j) * c_dim1] -= work[i__ + j *
  906. work_dim1];
  907. /* L110: */
  908. }
  909. /* L120: */
  910. }
  911. }
  912. }
  913. } else if (lsame_(storev, "R")) {
  914. if (lsame_(direct, "F")) {
  915. /* Let V = ( V1 V2 ) (V1: first K columns) */
  916. /* where V1 is unit upper triangular. */
  917. if (lsame_(side, "L")) {
  918. /* Form H * C or H**T * C where C = ( C1 ) */
  919. /* ( C2 ) */
  920. /* W := C**T * V**T = (C1**T * V1**T + C2**T * V2**T) (stored in WORK) */
  921. /* W := C1**T */
  922. i__1 = *k;
  923. for (j = 1; j <= i__1; ++j) {
  924. dcopy_(n, &c__[j + c_dim1], ldc, &work[j * work_dim1 + 1],
  925. &c__1);
  926. /* L130: */
  927. }
  928. /* W := W * V1**T */
  929. dtrmm_("Right", "Upper", "Transpose", "Unit", n, k, &c_b14, &
  930. v[v_offset], ldv, &work[work_offset], ldwork);
  931. if (*m > *k) {
  932. /* W := W + C2**T * V2**T */
  933. i__1 = *m - *k;
  934. dgemm_("Transpose", "Transpose", n, k, &i__1, &c_b14, &
  935. c__[*k + 1 + c_dim1], ldc, &v[(*k + 1) * v_dim1 +
  936. 1], ldv, &c_b14, &work[work_offset], ldwork);
  937. }
  938. /* W := W * T**T or W * T */
  939. dtrmm_("Right", "Upper", transt, "Non-unit", n, k, &c_b14, &t[
  940. t_offset], ldt, &work[work_offset], ldwork);
  941. /* C := C - V**T * W**T */
  942. if (*m > *k) {
  943. /* C2 := C2 - V2**T * W**T */
  944. i__1 = *m - *k;
  945. dgemm_("Transpose", "Transpose", &i__1, n, k, &c_b25, &v[(
  946. *k + 1) * v_dim1 + 1], ldv, &work[work_offset],
  947. ldwork, &c_b14, &c__[*k + 1 + c_dim1], ldc);
  948. }
  949. /* W := W * V1 */
  950. dtrmm_("Right", "Upper", "No transpose", "Unit", n, k, &c_b14,
  951. &v[v_offset], ldv, &work[work_offset], ldwork);
  952. /* C1 := C1 - W**T */
  953. i__1 = *k;
  954. for (j = 1; j <= i__1; ++j) {
  955. i__2 = *n;
  956. for (i__ = 1; i__ <= i__2; ++i__) {
  957. c__[j + i__ * c_dim1] -= work[i__ + j * work_dim1];
  958. /* L140: */
  959. }
  960. /* L150: */
  961. }
  962. } else if (lsame_(side, "R")) {
  963. /* Form C * H or C * H**T where C = ( C1 C2 ) */
  964. /* W := C * V**T = (C1*V1**T + C2*V2**T) (stored in WORK) */
  965. /* W := C1 */
  966. i__1 = *k;
  967. for (j = 1; j <= i__1; ++j) {
  968. dcopy_(m, &c__[j * c_dim1 + 1], &c__1, &work[j *
  969. work_dim1 + 1], &c__1);
  970. /* L160: */
  971. }
  972. /* W := W * V1**T */
  973. dtrmm_("Right", "Upper", "Transpose", "Unit", m, k, &c_b14, &
  974. v[v_offset], ldv, &work[work_offset], ldwork);
  975. if (*n > *k) {
  976. /* W := W + C2 * V2**T */
  977. i__1 = *n - *k;
  978. dgemm_("No transpose", "Transpose", m, k, &i__1, &c_b14, &
  979. c__[(*k + 1) * c_dim1 + 1], ldc, &v[(*k + 1) *
  980. v_dim1 + 1], ldv, &c_b14, &work[work_offset],
  981. ldwork);
  982. }
  983. /* W := W * T or W * T**T */
  984. dtrmm_("Right", "Upper", trans, "Non-unit", m, k, &c_b14, &t[
  985. t_offset], ldt, &work[work_offset], ldwork);
  986. /* C := C - W * V */
  987. if (*n > *k) {
  988. /* C2 := C2 - W * V2 */
  989. i__1 = *n - *k;
  990. dgemm_("No transpose", "No transpose", m, &i__1, k, &
  991. c_b25, &work[work_offset], ldwork, &v[(*k + 1) *
  992. v_dim1 + 1], ldv, &c_b14, &c__[(*k + 1) * c_dim1
  993. + 1], ldc);
  994. }
  995. /* W := W * V1 */
  996. dtrmm_("Right", "Upper", "No transpose", "Unit", m, k, &c_b14,
  997. &v[v_offset], ldv, &work[work_offset], ldwork);
  998. /* C1 := C1 - W */
  999. i__1 = *k;
  1000. for (j = 1; j <= i__1; ++j) {
  1001. i__2 = *m;
  1002. for (i__ = 1; i__ <= i__2; ++i__) {
  1003. c__[i__ + j * c_dim1] -= work[i__ + j * work_dim1];
  1004. /* L170: */
  1005. }
  1006. /* L180: */
  1007. }
  1008. }
  1009. } else {
  1010. /* Let V = ( V1 V2 ) (V2: last K columns) */
  1011. /* where V2 is unit lower triangular. */
  1012. if (lsame_(side, "L")) {
  1013. /* Form H * C or H**T * C where C = ( C1 ) */
  1014. /* ( C2 ) */
  1015. /* W := C**T * V**T = (C1**T * V1**T + C2**T * V2**T) (stored in WORK) */
  1016. /* W := C2**T */
  1017. i__1 = *k;
  1018. for (j = 1; j <= i__1; ++j) {
  1019. dcopy_(n, &c__[*m - *k + j + c_dim1], ldc, &work[j *
  1020. work_dim1 + 1], &c__1);
  1021. /* L190: */
  1022. }
  1023. /* W := W * V2**T */
  1024. dtrmm_("Right", "Lower", "Transpose", "Unit", n, k, &c_b14, &
  1025. v[(*m - *k + 1) * v_dim1 + 1], ldv, &work[work_offset]
  1026. , ldwork);
  1027. if (*m > *k) {
  1028. /* W := W + C1**T * V1**T */
  1029. i__1 = *m - *k;
  1030. dgemm_("Transpose", "Transpose", n, k, &i__1, &c_b14, &
  1031. c__[c_offset], ldc, &v[v_offset], ldv, &c_b14, &
  1032. work[work_offset], ldwork);
  1033. }
  1034. /* W := W * T**T or W * T */
  1035. dtrmm_("Right", "Lower", transt, "Non-unit", n, k, &c_b14, &t[
  1036. t_offset], ldt, &work[work_offset], ldwork);
  1037. /* C := C - V**T * W**T */
  1038. if (*m > *k) {
  1039. /* C1 := C1 - V1**T * W**T */
  1040. i__1 = *m - *k;
  1041. dgemm_("Transpose", "Transpose", &i__1, n, k, &c_b25, &v[
  1042. v_offset], ldv, &work[work_offset], ldwork, &
  1043. c_b14, &c__[c_offset], ldc);
  1044. }
  1045. /* W := W * V2 */
  1046. dtrmm_("Right", "Lower", "No transpose", "Unit", n, k, &c_b14,
  1047. &v[(*m - *k + 1) * v_dim1 + 1], ldv, &work[
  1048. work_offset], ldwork);
  1049. /* C2 := C2 - W**T */
  1050. i__1 = *k;
  1051. for (j = 1; j <= i__1; ++j) {
  1052. i__2 = *n;
  1053. for (i__ = 1; i__ <= i__2; ++i__) {
  1054. c__[*m - *k + j + i__ * c_dim1] -= work[i__ + j *
  1055. work_dim1];
  1056. /* L200: */
  1057. }
  1058. /* L210: */
  1059. }
  1060. } else if (lsame_(side, "R")) {
  1061. /* Form C * H or C * H' where C = ( C1 C2 ) */
  1062. /* W := C * V**T = (C1*V1**T + C2*V2**T) (stored in WORK) */
  1063. /* W := C2 */
  1064. i__1 = *k;
  1065. for (j = 1; j <= i__1; ++j) {
  1066. dcopy_(m, &c__[(*n - *k + j) * c_dim1 + 1], &c__1, &work[
  1067. j * work_dim1 + 1], &c__1);
  1068. /* L220: */
  1069. }
  1070. /* W := W * V2**T */
  1071. dtrmm_("Right", "Lower", "Transpose", "Unit", m, k, &c_b14, &
  1072. v[(*n - *k + 1) * v_dim1 + 1], ldv, &work[work_offset]
  1073. , ldwork);
  1074. if (*n > *k) {
  1075. /* W := W + C1 * V1**T */
  1076. i__1 = *n - *k;
  1077. dgemm_("No transpose", "Transpose", m, k, &i__1, &c_b14, &
  1078. c__[c_offset], ldc, &v[v_offset], ldv, &c_b14, &
  1079. work[work_offset], ldwork);
  1080. }
  1081. /* W := W * T or W * T**T */
  1082. dtrmm_("Right", "Lower", trans, "Non-unit", m, k, &c_b14, &t[
  1083. t_offset], ldt, &work[work_offset], ldwork);
  1084. /* C := C - W * V */
  1085. if (*n > *k) {
  1086. /* C1 := C1 - W * V1 */
  1087. i__1 = *n - *k;
  1088. dgemm_("No transpose", "No transpose", m, &i__1, k, &
  1089. c_b25, &work[work_offset], ldwork, &v[v_offset],
  1090. ldv, &c_b14, &c__[c_offset], ldc);
  1091. }
  1092. /* W := W * V2 */
  1093. dtrmm_("Right", "Lower", "No transpose", "Unit", m, k, &c_b14,
  1094. &v[(*n - *k + 1) * v_dim1 + 1], ldv, &work[
  1095. work_offset], ldwork);
  1096. /* C1 := C1 - W */
  1097. i__1 = *k;
  1098. for (j = 1; j <= i__1; ++j) {
  1099. i__2 = *m;
  1100. for (i__ = 1; i__ <= i__2; ++i__) {
  1101. c__[i__ + (*n - *k + j) * c_dim1] -= work[i__ + j *
  1102. work_dim1];
  1103. /* L230: */
  1104. }
  1105. /* L240: */
  1106. }
  1107. }
  1108. }
  1109. }
  1110. return;
  1111. /* End of DLARFB */
  1112. } /* dlarfb_ */