You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

csteqr.c 30 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static complex c_b1 = {0.f,0.f};
  485. static complex c_b2 = {1.f,0.f};
  486. static integer c__0 = 0;
  487. static integer c__1 = 1;
  488. static integer c__2 = 2;
  489. static real c_b41 = 1.f;
  490. /* > \brief \b CSTEQR */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download CSTEQR + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/csteqr.
  497. f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/csteqr.
  500. f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/csteqr.
  503. f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE CSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO ) */
  509. /* CHARACTER COMPZ */
  510. /* INTEGER INFO, LDZ, N */
  511. /* REAL D( * ), E( * ), WORK( * ) */
  512. /* COMPLEX Z( LDZ, * ) */
  513. /* > \par Purpose: */
  514. /* ============= */
  515. /* > */
  516. /* > \verbatim */
  517. /* > */
  518. /* > CSTEQR computes all eigenvalues and, optionally, eigenvectors of a */
  519. /* > symmetric tridiagonal matrix using the implicit QL or QR method. */
  520. /* > The eigenvectors of a full or band complex Hermitian matrix can also */
  521. /* > be found if CHETRD or CHPTRD or CHBTRD has been used to reduce this */
  522. /* > matrix to tridiagonal form. */
  523. /* > \endverbatim */
  524. /* Arguments: */
  525. /* ========== */
  526. /* > \param[in] COMPZ */
  527. /* > \verbatim */
  528. /* > COMPZ is CHARACTER*1 */
  529. /* > = 'N': Compute eigenvalues only. */
  530. /* > = 'V': Compute eigenvalues and eigenvectors of the original */
  531. /* > Hermitian matrix. On entry, Z must contain the */
  532. /* > unitary matrix used to reduce the original matrix */
  533. /* > to tridiagonal form. */
  534. /* > = 'I': Compute eigenvalues and eigenvectors of the */
  535. /* > tridiagonal matrix. Z is initialized to the identity */
  536. /* > matrix. */
  537. /* > \endverbatim */
  538. /* > */
  539. /* > \param[in] N */
  540. /* > \verbatim */
  541. /* > N is INTEGER */
  542. /* > The order of the matrix. N >= 0. */
  543. /* > \endverbatim */
  544. /* > */
  545. /* > \param[in,out] D */
  546. /* > \verbatim */
  547. /* > D is REAL array, dimension (N) */
  548. /* > On entry, the diagonal elements of the tridiagonal matrix. */
  549. /* > On exit, if INFO = 0, the eigenvalues in ascending order. */
  550. /* > \endverbatim */
  551. /* > */
  552. /* > \param[in,out] E */
  553. /* > \verbatim */
  554. /* > E is REAL array, dimension (N-1) */
  555. /* > On entry, the (n-1) subdiagonal elements of the tridiagonal */
  556. /* > matrix. */
  557. /* > On exit, E has been destroyed. */
  558. /* > \endverbatim */
  559. /* > */
  560. /* > \param[in,out] Z */
  561. /* > \verbatim */
  562. /* > Z is COMPLEX array, dimension (LDZ, N) */
  563. /* > On entry, if COMPZ = 'V', then Z contains the unitary */
  564. /* > matrix used in the reduction to tridiagonal form. */
  565. /* > On exit, if INFO = 0, then if COMPZ = 'V', Z contains the */
  566. /* > orthonormal eigenvectors of the original Hermitian matrix, */
  567. /* > and if COMPZ = 'I', Z contains the orthonormal eigenvectors */
  568. /* > of the symmetric tridiagonal matrix. */
  569. /* > If COMPZ = 'N', then Z is not referenced. */
  570. /* > \endverbatim */
  571. /* > */
  572. /* > \param[in] LDZ */
  573. /* > \verbatim */
  574. /* > LDZ is INTEGER */
  575. /* > The leading dimension of the array Z. LDZ >= 1, and if */
  576. /* > eigenvectors are desired, then LDZ >= f2cmax(1,N). */
  577. /* > \endverbatim */
  578. /* > */
  579. /* > \param[out] WORK */
  580. /* > \verbatim */
  581. /* > WORK is REAL array, dimension (f2cmax(1,2*N-2)) */
  582. /* > If COMPZ = 'N', then WORK is not referenced. */
  583. /* > \endverbatim */
  584. /* > */
  585. /* > \param[out] INFO */
  586. /* > \verbatim */
  587. /* > INFO is INTEGER */
  588. /* > = 0: successful exit */
  589. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  590. /* > > 0: the algorithm has failed to find all the eigenvalues in */
  591. /* > a total of 30*N iterations; if INFO = i, then i */
  592. /* > elements of E have not converged to zero; on exit, D */
  593. /* > and E contain the elements of a symmetric tridiagonal */
  594. /* > matrix which is unitarily similar to the original */
  595. /* > matrix. */
  596. /* > \endverbatim */
  597. /* Authors: */
  598. /* ======== */
  599. /* > \author Univ. of Tennessee */
  600. /* > \author Univ. of California Berkeley */
  601. /* > \author Univ. of Colorado Denver */
  602. /* > \author NAG Ltd. */
  603. /* > \date December 2016 */
  604. /* > \ingroup complexOTHERcomputational */
  605. /* ===================================================================== */
  606. /* Subroutine */ void csteqr_(char *compz, integer *n, real *d__, real *e,
  607. complex *z__, integer *ldz, real *work, integer *info)
  608. {
  609. /* System generated locals */
  610. integer z_dim1, z_offset, i__1, i__2;
  611. real r__1, r__2;
  612. /* Local variables */
  613. integer lend, jtot;
  614. extern /* Subroutine */ void slae2_(real *, real *, real *, real *, real *)
  615. ;
  616. real b, c__, f, g;
  617. integer i__, j, k, l, m;
  618. real p, r__, s;
  619. extern logical lsame_(char *, char *);
  620. extern /* Subroutine */ void clasr_(char *, char *, char *, integer *,
  621. integer *, real *, real *, complex *, integer *);
  622. real anorm;
  623. extern /* Subroutine */ void cswap_(integer *, complex *, integer *,
  624. complex *, integer *);
  625. integer l1, lendm1, lendp1;
  626. extern /* Subroutine */ void slaev2_(real *, real *, real *, real *, real *
  627. , real *, real *);
  628. extern real slapy2_(real *, real *);
  629. integer ii, mm, iscale;
  630. extern real slamch_(char *);
  631. extern /* Subroutine */ void claset_(char *, integer *, integer *, complex
  632. *, complex *, complex *, integer *);
  633. real safmin;
  634. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  635. real safmax;
  636. extern /* Subroutine */ void slascl_(char *, integer *, integer *, real *,
  637. real *, integer *, integer *, real *, integer *, integer *);
  638. integer lendsv;
  639. extern /* Subroutine */ void slartg_(real *, real *, real *, real *, real *
  640. );
  641. real ssfmin;
  642. integer nmaxit, icompz;
  643. real ssfmax;
  644. extern real slanst_(char *, integer *, real *, real *);
  645. extern /* Subroutine */ void slasrt_(char *, integer *, real *, integer *);
  646. integer lm1, mm1, nm1;
  647. real rt1, rt2, eps;
  648. integer lsv;
  649. real tst, eps2;
  650. /* -- LAPACK computational routine (version 3.7.0) -- */
  651. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  652. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  653. /* December 2016 */
  654. /* ===================================================================== */
  655. /* Test the input parameters. */
  656. /* Parameter adjustments */
  657. --d__;
  658. --e;
  659. z_dim1 = *ldz;
  660. z_offset = 1 + z_dim1 * 1;
  661. z__ -= z_offset;
  662. --work;
  663. /* Function Body */
  664. *info = 0;
  665. if (lsame_(compz, "N")) {
  666. icompz = 0;
  667. } else if (lsame_(compz, "V")) {
  668. icompz = 1;
  669. } else if (lsame_(compz, "I")) {
  670. icompz = 2;
  671. } else {
  672. icompz = -1;
  673. }
  674. if (icompz < 0) {
  675. *info = -1;
  676. } else if (*n < 0) {
  677. *info = -2;
  678. } else if (*ldz < 1 || icompz > 0 && *ldz < f2cmax(1,*n)) {
  679. *info = -6;
  680. }
  681. if (*info != 0) {
  682. i__1 = -(*info);
  683. xerbla_("CSTEQR", &i__1, (ftnlen)6);
  684. return;
  685. }
  686. /* Quick return if possible */
  687. if (*n == 0) {
  688. return;
  689. }
  690. if (*n == 1) {
  691. if (icompz == 2) {
  692. i__1 = z_dim1 + 1;
  693. z__[i__1].r = 1.f, z__[i__1].i = 0.f;
  694. }
  695. return;
  696. }
  697. /* Determine the unit roundoff and over/underflow thresholds. */
  698. eps = slamch_("E");
  699. /* Computing 2nd power */
  700. r__1 = eps;
  701. eps2 = r__1 * r__1;
  702. safmin = slamch_("S");
  703. safmax = 1.f / safmin;
  704. ssfmax = sqrt(safmax) / 3.f;
  705. ssfmin = sqrt(safmin) / eps2;
  706. /* Compute the eigenvalues and eigenvectors of the tridiagonal */
  707. /* matrix. */
  708. if (icompz == 2) {
  709. claset_("Full", n, n, &c_b1, &c_b2, &z__[z_offset], ldz);
  710. }
  711. nmaxit = *n * 30;
  712. jtot = 0;
  713. /* Determine where the matrix splits and choose QL or QR iteration */
  714. /* for each block, according to whether top or bottom diagonal */
  715. /* element is smaller. */
  716. l1 = 1;
  717. nm1 = *n - 1;
  718. L10:
  719. if (l1 > *n) {
  720. goto L160;
  721. }
  722. if (l1 > 1) {
  723. e[l1 - 1] = 0.f;
  724. }
  725. if (l1 <= nm1) {
  726. i__1 = nm1;
  727. for (m = l1; m <= i__1; ++m) {
  728. tst = (r__1 = e[m], abs(r__1));
  729. if (tst == 0.f) {
  730. goto L30;
  731. }
  732. if (tst <= sqrt((r__1 = d__[m], abs(r__1))) * sqrt((r__2 = d__[m
  733. + 1], abs(r__2))) * eps) {
  734. e[m] = 0.f;
  735. goto L30;
  736. }
  737. /* L20: */
  738. }
  739. }
  740. m = *n;
  741. L30:
  742. l = l1;
  743. lsv = l;
  744. lend = m;
  745. lendsv = lend;
  746. l1 = m + 1;
  747. if (lend == l) {
  748. goto L10;
  749. }
  750. /* Scale submatrix in rows and columns L to LEND */
  751. i__1 = lend - l + 1;
  752. anorm = slanst_("I", &i__1, &d__[l], &e[l]);
  753. iscale = 0;
  754. if (anorm == 0.f) {
  755. goto L10;
  756. }
  757. if (anorm > ssfmax) {
  758. iscale = 1;
  759. i__1 = lend - l + 1;
  760. slascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &d__[l], n,
  761. info);
  762. i__1 = lend - l;
  763. slascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &e[l], n,
  764. info);
  765. } else if (anorm < ssfmin) {
  766. iscale = 2;
  767. i__1 = lend - l + 1;
  768. slascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &d__[l], n,
  769. info);
  770. i__1 = lend - l;
  771. slascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &e[l], n,
  772. info);
  773. }
  774. /* Choose between QL and QR iteration */
  775. if ((r__1 = d__[lend], abs(r__1)) < (r__2 = d__[l], abs(r__2))) {
  776. lend = lsv;
  777. l = lendsv;
  778. }
  779. if (lend > l) {
  780. /* QL Iteration */
  781. /* Look for small subdiagonal element. */
  782. L40:
  783. if (l != lend) {
  784. lendm1 = lend - 1;
  785. i__1 = lendm1;
  786. for (m = l; m <= i__1; ++m) {
  787. /* Computing 2nd power */
  788. r__2 = (r__1 = e[m], abs(r__1));
  789. tst = r__2 * r__2;
  790. if (tst <= eps2 * (r__1 = d__[m], abs(r__1)) * (r__2 = d__[m
  791. + 1], abs(r__2)) + safmin) {
  792. goto L60;
  793. }
  794. /* L50: */
  795. }
  796. }
  797. m = lend;
  798. L60:
  799. if (m < lend) {
  800. e[m] = 0.f;
  801. }
  802. p = d__[l];
  803. if (m == l) {
  804. goto L80;
  805. }
  806. /* If remaining matrix is 2-by-2, use SLAE2 or SLAEV2 */
  807. /* to compute its eigensystem. */
  808. if (m == l + 1) {
  809. if (icompz > 0) {
  810. slaev2_(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2, &c__, &s);
  811. work[l] = c__;
  812. work[*n - 1 + l] = s;
  813. clasr_("R", "V", "B", n, &c__2, &work[l], &work[*n - 1 + l], &
  814. z__[l * z_dim1 + 1], ldz);
  815. } else {
  816. slae2_(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2);
  817. }
  818. d__[l] = rt1;
  819. d__[l + 1] = rt2;
  820. e[l] = 0.f;
  821. l += 2;
  822. if (l <= lend) {
  823. goto L40;
  824. }
  825. goto L140;
  826. }
  827. if (jtot == nmaxit) {
  828. goto L140;
  829. }
  830. ++jtot;
  831. /* Form shift. */
  832. g = (d__[l + 1] - p) / (e[l] * 2.f);
  833. r__ = slapy2_(&g, &c_b41);
  834. g = d__[m] - p + e[l] / (g + r_sign(&r__, &g));
  835. s = 1.f;
  836. c__ = 1.f;
  837. p = 0.f;
  838. /* Inner loop */
  839. mm1 = m - 1;
  840. i__1 = l;
  841. for (i__ = mm1; i__ >= i__1; --i__) {
  842. f = s * e[i__];
  843. b = c__ * e[i__];
  844. slartg_(&g, &f, &c__, &s, &r__);
  845. if (i__ != m - 1) {
  846. e[i__ + 1] = r__;
  847. }
  848. g = d__[i__ + 1] - p;
  849. r__ = (d__[i__] - g) * s + c__ * 2.f * b;
  850. p = s * r__;
  851. d__[i__ + 1] = g + p;
  852. g = c__ * r__ - b;
  853. /* If eigenvectors are desired, then save rotations. */
  854. if (icompz > 0) {
  855. work[i__] = c__;
  856. work[*n - 1 + i__] = -s;
  857. }
  858. /* L70: */
  859. }
  860. /* If eigenvectors are desired, then apply saved rotations. */
  861. if (icompz > 0) {
  862. mm = m - l + 1;
  863. clasr_("R", "V", "B", n, &mm, &work[l], &work[*n - 1 + l], &z__[l
  864. * z_dim1 + 1], ldz);
  865. }
  866. d__[l] -= p;
  867. e[l] = g;
  868. goto L40;
  869. /* Eigenvalue found. */
  870. L80:
  871. d__[l] = p;
  872. ++l;
  873. if (l <= lend) {
  874. goto L40;
  875. }
  876. goto L140;
  877. } else {
  878. /* QR Iteration */
  879. /* Look for small superdiagonal element. */
  880. L90:
  881. if (l != lend) {
  882. lendp1 = lend + 1;
  883. i__1 = lendp1;
  884. for (m = l; m >= i__1; --m) {
  885. /* Computing 2nd power */
  886. r__2 = (r__1 = e[m - 1], abs(r__1));
  887. tst = r__2 * r__2;
  888. if (tst <= eps2 * (r__1 = d__[m], abs(r__1)) * (r__2 = d__[m
  889. - 1], abs(r__2)) + safmin) {
  890. goto L110;
  891. }
  892. /* L100: */
  893. }
  894. }
  895. m = lend;
  896. L110:
  897. if (m > lend) {
  898. e[m - 1] = 0.f;
  899. }
  900. p = d__[l];
  901. if (m == l) {
  902. goto L130;
  903. }
  904. /* If remaining matrix is 2-by-2, use SLAE2 or SLAEV2 */
  905. /* to compute its eigensystem. */
  906. if (m == l - 1) {
  907. if (icompz > 0) {
  908. slaev2_(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2, &c__, &s)
  909. ;
  910. work[m] = c__;
  911. work[*n - 1 + m] = s;
  912. clasr_("R", "V", "F", n, &c__2, &work[m], &work[*n - 1 + m], &
  913. z__[(l - 1) * z_dim1 + 1], ldz);
  914. } else {
  915. slae2_(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2);
  916. }
  917. d__[l - 1] = rt1;
  918. d__[l] = rt2;
  919. e[l - 1] = 0.f;
  920. l += -2;
  921. if (l >= lend) {
  922. goto L90;
  923. }
  924. goto L140;
  925. }
  926. if (jtot == nmaxit) {
  927. goto L140;
  928. }
  929. ++jtot;
  930. /* Form shift. */
  931. g = (d__[l - 1] - p) / (e[l - 1] * 2.f);
  932. r__ = slapy2_(&g, &c_b41);
  933. g = d__[m] - p + e[l - 1] / (g + r_sign(&r__, &g));
  934. s = 1.f;
  935. c__ = 1.f;
  936. p = 0.f;
  937. /* Inner loop */
  938. lm1 = l - 1;
  939. i__1 = lm1;
  940. for (i__ = m; i__ <= i__1; ++i__) {
  941. f = s * e[i__];
  942. b = c__ * e[i__];
  943. slartg_(&g, &f, &c__, &s, &r__);
  944. if (i__ != m) {
  945. e[i__ - 1] = r__;
  946. }
  947. g = d__[i__] - p;
  948. r__ = (d__[i__ + 1] - g) * s + c__ * 2.f * b;
  949. p = s * r__;
  950. d__[i__] = g + p;
  951. g = c__ * r__ - b;
  952. /* If eigenvectors are desired, then save rotations. */
  953. if (icompz > 0) {
  954. work[i__] = c__;
  955. work[*n - 1 + i__] = s;
  956. }
  957. /* L120: */
  958. }
  959. /* If eigenvectors are desired, then apply saved rotations. */
  960. if (icompz > 0) {
  961. mm = l - m + 1;
  962. clasr_("R", "V", "F", n, &mm, &work[m], &work[*n - 1 + m], &z__[m
  963. * z_dim1 + 1], ldz);
  964. }
  965. d__[l] -= p;
  966. e[lm1] = g;
  967. goto L90;
  968. /* Eigenvalue found. */
  969. L130:
  970. d__[l] = p;
  971. --l;
  972. if (l >= lend) {
  973. goto L90;
  974. }
  975. goto L140;
  976. }
  977. /* Undo scaling if necessary */
  978. L140:
  979. if (iscale == 1) {
  980. i__1 = lendsv - lsv + 1;
  981. slascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &d__[lsv],
  982. n, info);
  983. i__1 = lendsv - lsv;
  984. slascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &e[lsv], n,
  985. info);
  986. } else if (iscale == 2) {
  987. i__1 = lendsv - lsv + 1;
  988. slascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &d__[lsv],
  989. n, info);
  990. i__1 = lendsv - lsv;
  991. slascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &e[lsv], n,
  992. info);
  993. }
  994. /* Check for no convergence to an eigenvalue after a total */
  995. /* of N*MAXIT iterations. */
  996. if (jtot == nmaxit) {
  997. i__1 = *n - 1;
  998. for (i__ = 1; i__ <= i__1; ++i__) {
  999. if (e[i__] != 0.f) {
  1000. ++(*info);
  1001. }
  1002. /* L150: */
  1003. }
  1004. return;
  1005. }
  1006. goto L10;
  1007. /* Order eigenvalues and eigenvectors. */
  1008. L160:
  1009. if (icompz == 0) {
  1010. /* Use Quick Sort */
  1011. slasrt_("I", n, &d__[1], info);
  1012. } else {
  1013. /* Use Selection Sort to minimize swaps of eigenvectors */
  1014. i__1 = *n;
  1015. for (ii = 2; ii <= i__1; ++ii) {
  1016. i__ = ii - 1;
  1017. k = i__;
  1018. p = d__[i__];
  1019. i__2 = *n;
  1020. for (j = ii; j <= i__2; ++j) {
  1021. if (d__[j] < p) {
  1022. k = j;
  1023. p = d__[j];
  1024. }
  1025. /* L170: */
  1026. }
  1027. if (k != i__) {
  1028. d__[k] = d__[i__];
  1029. d__[i__] = p;
  1030. cswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[k * z_dim1 + 1],
  1031. &c__1);
  1032. }
  1033. /* L180: */
  1034. }
  1035. }
  1036. return;
  1037. /* End of CSTEQR */
  1038. } /* csteqr_ */