You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cptrfs.c 34 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. static complex c_b16 = {1.f,0.f};
  486. /* > \brief \b CPTRFS */
  487. /* =========== DOCUMENTATION =========== */
  488. /* Online html documentation available at */
  489. /* http://www.netlib.org/lapack/explore-html/ */
  490. /* > \htmlonly */
  491. /* > Download CPTRFS + dependencies */
  492. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cptrfs.
  493. f"> */
  494. /* > [TGZ]</a> */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cptrfs.
  496. f"> */
  497. /* > [ZIP]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cptrfs.
  499. f"> */
  500. /* > [TXT]</a> */
  501. /* > \endhtmlonly */
  502. /* Definition: */
  503. /* =========== */
  504. /* SUBROUTINE CPTRFS( UPLO, N, NRHS, D, E, DF, EF, B, LDB, X, LDX, */
  505. /* FERR, BERR, WORK, RWORK, INFO ) */
  506. /* CHARACTER UPLO */
  507. /* INTEGER INFO, LDB, LDX, N, NRHS */
  508. /* REAL BERR( * ), D( * ), DF( * ), FERR( * ), */
  509. /* $ RWORK( * ) */
  510. /* COMPLEX B( LDB, * ), E( * ), EF( * ), WORK( * ), */
  511. /* $ X( LDX, * ) */
  512. /* > \par Purpose: */
  513. /* ============= */
  514. /* > */
  515. /* > \verbatim */
  516. /* > */
  517. /* > CPTRFS improves the computed solution to a system of linear */
  518. /* > equations when the coefficient matrix is Hermitian positive definite */
  519. /* > and tridiagonal, and provides error bounds and backward error */
  520. /* > estimates for the solution. */
  521. /* > \endverbatim */
  522. /* Arguments: */
  523. /* ========== */
  524. /* > \param[in] UPLO */
  525. /* > \verbatim */
  526. /* > UPLO is CHARACTER*1 */
  527. /* > Specifies whether the superdiagonal or the subdiagonal of the */
  528. /* > tridiagonal matrix A is stored and the form of the */
  529. /* > factorization: */
  530. /* > = 'U': E is the superdiagonal of A, and A = U**H*D*U; */
  531. /* > = 'L': E is the subdiagonal of A, and A = L*D*L**H. */
  532. /* > (The two forms are equivalent if A is real.) */
  533. /* > \endverbatim */
  534. /* > */
  535. /* > \param[in] N */
  536. /* > \verbatim */
  537. /* > N is INTEGER */
  538. /* > The order of the matrix A. N >= 0. */
  539. /* > \endverbatim */
  540. /* > */
  541. /* > \param[in] NRHS */
  542. /* > \verbatim */
  543. /* > NRHS is INTEGER */
  544. /* > The number of right hand sides, i.e., the number of columns */
  545. /* > of the matrix B. NRHS >= 0. */
  546. /* > \endverbatim */
  547. /* > */
  548. /* > \param[in] D */
  549. /* > \verbatim */
  550. /* > D is REAL array, dimension (N) */
  551. /* > The n real diagonal elements of the tridiagonal matrix A. */
  552. /* > \endverbatim */
  553. /* > */
  554. /* > \param[in] E */
  555. /* > \verbatim */
  556. /* > E is COMPLEX array, dimension (N-1) */
  557. /* > The (n-1) off-diagonal elements of the tridiagonal matrix A */
  558. /* > (see UPLO). */
  559. /* > \endverbatim */
  560. /* > */
  561. /* > \param[in] DF */
  562. /* > \verbatim */
  563. /* > DF is REAL array, dimension (N) */
  564. /* > The n diagonal elements of the diagonal matrix D from */
  565. /* > the factorization computed by CPTTRF. */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in] EF */
  569. /* > \verbatim */
  570. /* > EF is COMPLEX array, dimension (N-1) */
  571. /* > The (n-1) off-diagonal elements of the unit bidiagonal */
  572. /* > factor U or L from the factorization computed by CPTTRF */
  573. /* > (see UPLO). */
  574. /* > \endverbatim */
  575. /* > */
  576. /* > \param[in] B */
  577. /* > \verbatim */
  578. /* > B is COMPLEX array, dimension (LDB,NRHS) */
  579. /* > The right hand side matrix B. */
  580. /* > \endverbatim */
  581. /* > */
  582. /* > \param[in] LDB */
  583. /* > \verbatim */
  584. /* > LDB is INTEGER */
  585. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  586. /* > \endverbatim */
  587. /* > */
  588. /* > \param[in,out] X */
  589. /* > \verbatim */
  590. /* > X is COMPLEX array, dimension (LDX,NRHS) */
  591. /* > On entry, the solution matrix X, as computed by CPTTRS. */
  592. /* > On exit, the improved solution matrix X. */
  593. /* > \endverbatim */
  594. /* > */
  595. /* > \param[in] LDX */
  596. /* > \verbatim */
  597. /* > LDX is INTEGER */
  598. /* > The leading dimension of the array X. LDX >= f2cmax(1,N). */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[out] FERR */
  602. /* > \verbatim */
  603. /* > FERR is REAL array, dimension (NRHS) */
  604. /* > The forward error bound for each solution vector */
  605. /* > X(j) (the j-th column of the solution matrix X). */
  606. /* > If XTRUE is the true solution corresponding to X(j), FERR(j) */
  607. /* > is an estimated upper bound for the magnitude of the largest */
  608. /* > element in (X(j) - XTRUE) divided by the magnitude of the */
  609. /* > largest element in X(j). */
  610. /* > \endverbatim */
  611. /* > */
  612. /* > \param[out] BERR */
  613. /* > \verbatim */
  614. /* > BERR is REAL array, dimension (NRHS) */
  615. /* > The componentwise relative backward error of each solution */
  616. /* > vector X(j) (i.e., the smallest relative change in */
  617. /* > any element of A or B that makes X(j) an exact solution). */
  618. /* > \endverbatim */
  619. /* > */
  620. /* > \param[out] WORK */
  621. /* > \verbatim */
  622. /* > WORK is COMPLEX array, dimension (N) */
  623. /* > \endverbatim */
  624. /* > */
  625. /* > \param[out] RWORK */
  626. /* > \verbatim */
  627. /* > RWORK is REAL array, dimension (N) */
  628. /* > \endverbatim */
  629. /* > */
  630. /* > \param[out] INFO */
  631. /* > \verbatim */
  632. /* > INFO is INTEGER */
  633. /* > = 0: successful exit */
  634. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  635. /* > \endverbatim */
  636. /* > \par Internal Parameters: */
  637. /* ========================= */
  638. /* > */
  639. /* > \verbatim */
  640. /* > ITMAX is the maximum number of steps of iterative refinement. */
  641. /* > \endverbatim */
  642. /* Authors: */
  643. /* ======== */
  644. /* > \author Univ. of Tennessee */
  645. /* > \author Univ. of California Berkeley */
  646. /* > \author Univ. of Colorado Denver */
  647. /* > \author NAG Ltd. */
  648. /* > \date December 2016 */
  649. /* > \ingroup complexPTcomputational */
  650. /* ===================================================================== */
  651. /* Subroutine */ void cptrfs_(char *uplo, integer *n, integer *nrhs, real *d__,
  652. complex *e, real *df, complex *ef, complex *b, integer *ldb, complex
  653. *x, integer *ldx, real *ferr, real *berr, complex *work, real *rwork,
  654. integer *info)
  655. {
  656. /* System generated locals */
  657. integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2, i__3, i__4, i__5,
  658. i__6;
  659. real r__1, r__2, r__3, r__4, r__5, r__6, r__7, r__8, r__9, r__10, r__11,
  660. r__12;
  661. complex q__1, q__2, q__3;
  662. /* Local variables */
  663. real safe1, safe2;
  664. integer i__, j;
  665. real s;
  666. extern logical lsame_(char *, char *);
  667. extern /* Subroutine */ void caxpy_(integer *, complex *, complex *,
  668. integer *, complex *, integer *);
  669. integer count;
  670. logical upper;
  671. complex bi, cx, dx, ex;
  672. integer ix;
  673. extern real slamch_(char *);
  674. integer nz;
  675. real safmin;
  676. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  677. extern integer isamax_(integer *, real *, integer *);
  678. real lstres;
  679. extern /* Subroutine */ void cpttrs_(char *, integer *, integer *, real *,
  680. complex *, complex *, integer *, integer *);
  681. real eps;
  682. /* -- LAPACK computational routine (version 3.7.0) -- */
  683. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  684. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  685. /* December 2016 */
  686. /* ===================================================================== */
  687. /* Test the input parameters. */
  688. /* Parameter adjustments */
  689. --d__;
  690. --e;
  691. --df;
  692. --ef;
  693. b_dim1 = *ldb;
  694. b_offset = 1 + b_dim1 * 1;
  695. b -= b_offset;
  696. x_dim1 = *ldx;
  697. x_offset = 1 + x_dim1 * 1;
  698. x -= x_offset;
  699. --ferr;
  700. --berr;
  701. --work;
  702. --rwork;
  703. /* Function Body */
  704. *info = 0;
  705. upper = lsame_(uplo, "U");
  706. if (! upper && ! lsame_(uplo, "L")) {
  707. *info = -1;
  708. } else if (*n < 0) {
  709. *info = -2;
  710. } else if (*nrhs < 0) {
  711. *info = -3;
  712. } else if (*ldb < f2cmax(1,*n)) {
  713. *info = -9;
  714. } else if (*ldx < f2cmax(1,*n)) {
  715. *info = -11;
  716. }
  717. if (*info != 0) {
  718. i__1 = -(*info);
  719. xerbla_("CPTRFS", &i__1, (ftnlen)6);
  720. return;
  721. }
  722. /* Quick return if possible */
  723. if (*n == 0 || *nrhs == 0) {
  724. i__1 = *nrhs;
  725. for (j = 1; j <= i__1; ++j) {
  726. ferr[j] = 0.f;
  727. berr[j] = 0.f;
  728. /* L10: */
  729. }
  730. return;
  731. }
  732. /* NZ = maximum number of nonzero elements in each row of A, plus 1 */
  733. nz = 4;
  734. eps = slamch_("Epsilon");
  735. safmin = slamch_("Safe minimum");
  736. safe1 = nz * safmin;
  737. safe2 = safe1 / eps;
  738. /* Do for each right hand side */
  739. i__1 = *nrhs;
  740. for (j = 1; j <= i__1; ++j) {
  741. count = 1;
  742. lstres = 3.f;
  743. L20:
  744. /* Loop until stopping criterion is satisfied. */
  745. /* Compute residual R = B - A * X. Also compute */
  746. /* abs(A)*abs(x) + abs(b) for use in the backward error bound. */
  747. if (upper) {
  748. if (*n == 1) {
  749. i__2 = j * b_dim1 + 1;
  750. bi.r = b[i__2].r, bi.i = b[i__2].i;
  751. i__2 = j * x_dim1 + 1;
  752. q__1.r = d__[1] * x[i__2].r, q__1.i = d__[1] * x[i__2].i;
  753. dx.r = q__1.r, dx.i = q__1.i;
  754. q__1.r = bi.r - dx.r, q__1.i = bi.i - dx.i;
  755. work[1].r = q__1.r, work[1].i = q__1.i;
  756. rwork[1] = (r__1 = bi.r, abs(r__1)) + (r__2 = r_imag(&bi),
  757. abs(r__2)) + ((r__3 = dx.r, abs(r__3)) + (r__4 =
  758. r_imag(&dx), abs(r__4)));
  759. } else {
  760. i__2 = j * b_dim1 + 1;
  761. bi.r = b[i__2].r, bi.i = b[i__2].i;
  762. i__2 = j * x_dim1 + 1;
  763. q__1.r = d__[1] * x[i__2].r, q__1.i = d__[1] * x[i__2].i;
  764. dx.r = q__1.r, dx.i = q__1.i;
  765. i__2 = j * x_dim1 + 2;
  766. q__1.r = e[1].r * x[i__2].r - e[1].i * x[i__2].i, q__1.i = e[
  767. 1].r * x[i__2].i + e[1].i * x[i__2].r;
  768. ex.r = q__1.r, ex.i = q__1.i;
  769. q__2.r = bi.r - dx.r, q__2.i = bi.i - dx.i;
  770. q__1.r = q__2.r - ex.r, q__1.i = q__2.i - ex.i;
  771. work[1].r = q__1.r, work[1].i = q__1.i;
  772. i__2 = j * x_dim1 + 2;
  773. rwork[1] = (r__1 = bi.r, abs(r__1)) + (r__2 = r_imag(&bi),
  774. abs(r__2)) + ((r__3 = dx.r, abs(r__3)) + (r__4 =
  775. r_imag(&dx), abs(r__4))) + ((r__5 = e[1].r, abs(r__5))
  776. + (r__6 = r_imag(&e[1]), abs(r__6))) * ((r__7 = x[
  777. i__2].r, abs(r__7)) + (r__8 = r_imag(&x[j * x_dim1 +
  778. 2]), abs(r__8)));
  779. i__2 = *n - 1;
  780. for (i__ = 2; i__ <= i__2; ++i__) {
  781. i__3 = i__ + j * b_dim1;
  782. bi.r = b[i__3].r, bi.i = b[i__3].i;
  783. r_cnjg(&q__2, &e[i__ - 1]);
  784. i__3 = i__ - 1 + j * x_dim1;
  785. q__1.r = q__2.r * x[i__3].r - q__2.i * x[i__3].i, q__1.i =
  786. q__2.r * x[i__3].i + q__2.i * x[i__3].r;
  787. cx.r = q__1.r, cx.i = q__1.i;
  788. i__3 = i__;
  789. i__4 = i__ + j * x_dim1;
  790. q__1.r = d__[i__3] * x[i__4].r, q__1.i = d__[i__3] * x[
  791. i__4].i;
  792. dx.r = q__1.r, dx.i = q__1.i;
  793. i__3 = i__;
  794. i__4 = i__ + 1 + j * x_dim1;
  795. q__1.r = e[i__3].r * x[i__4].r - e[i__3].i * x[i__4].i,
  796. q__1.i = e[i__3].r * x[i__4].i + e[i__3].i * x[
  797. i__4].r;
  798. ex.r = q__1.r, ex.i = q__1.i;
  799. i__3 = i__;
  800. q__3.r = bi.r - cx.r, q__3.i = bi.i - cx.i;
  801. q__2.r = q__3.r - dx.r, q__2.i = q__3.i - dx.i;
  802. q__1.r = q__2.r - ex.r, q__1.i = q__2.i - ex.i;
  803. work[i__3].r = q__1.r, work[i__3].i = q__1.i;
  804. i__3 = i__ - 1;
  805. i__4 = i__ - 1 + j * x_dim1;
  806. i__5 = i__;
  807. i__6 = i__ + 1 + j * x_dim1;
  808. rwork[i__] = (r__1 = bi.r, abs(r__1)) + (r__2 = r_imag(&
  809. bi), abs(r__2)) + ((r__3 = e[i__3].r, abs(r__3))
  810. + (r__4 = r_imag(&e[i__ - 1]), abs(r__4))) * ((
  811. r__5 = x[i__4].r, abs(r__5)) + (r__6 = r_imag(&x[
  812. i__ - 1 + j * x_dim1]), abs(r__6))) + ((r__7 =
  813. dx.r, abs(r__7)) + (r__8 = r_imag(&dx), abs(r__8))
  814. ) + ((r__9 = e[i__5].r, abs(r__9)) + (r__10 =
  815. r_imag(&e[i__]), abs(r__10))) * ((r__11 = x[i__6]
  816. .r, abs(r__11)) + (r__12 = r_imag(&x[i__ + 1 + j *
  817. x_dim1]), abs(r__12)));
  818. /* L30: */
  819. }
  820. i__2 = *n + j * b_dim1;
  821. bi.r = b[i__2].r, bi.i = b[i__2].i;
  822. r_cnjg(&q__2, &e[*n - 1]);
  823. i__2 = *n - 1 + j * x_dim1;
  824. q__1.r = q__2.r * x[i__2].r - q__2.i * x[i__2].i, q__1.i =
  825. q__2.r * x[i__2].i + q__2.i * x[i__2].r;
  826. cx.r = q__1.r, cx.i = q__1.i;
  827. i__2 = *n;
  828. i__3 = *n + j * x_dim1;
  829. q__1.r = d__[i__2] * x[i__3].r, q__1.i = d__[i__2] * x[i__3]
  830. .i;
  831. dx.r = q__1.r, dx.i = q__1.i;
  832. i__2 = *n;
  833. q__2.r = bi.r - cx.r, q__2.i = bi.i - cx.i;
  834. q__1.r = q__2.r - dx.r, q__1.i = q__2.i - dx.i;
  835. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  836. i__2 = *n - 1;
  837. i__3 = *n - 1 + j * x_dim1;
  838. rwork[*n] = (r__1 = bi.r, abs(r__1)) + (r__2 = r_imag(&bi),
  839. abs(r__2)) + ((r__3 = e[i__2].r, abs(r__3)) + (r__4 =
  840. r_imag(&e[*n - 1]), abs(r__4))) * ((r__5 = x[i__3].r,
  841. abs(r__5)) + (r__6 = r_imag(&x[*n - 1 + j * x_dim1]),
  842. abs(r__6))) + ((r__7 = dx.r, abs(r__7)) + (r__8 =
  843. r_imag(&dx), abs(r__8)));
  844. }
  845. } else {
  846. if (*n == 1) {
  847. i__2 = j * b_dim1 + 1;
  848. bi.r = b[i__2].r, bi.i = b[i__2].i;
  849. i__2 = j * x_dim1 + 1;
  850. q__1.r = d__[1] * x[i__2].r, q__1.i = d__[1] * x[i__2].i;
  851. dx.r = q__1.r, dx.i = q__1.i;
  852. q__1.r = bi.r - dx.r, q__1.i = bi.i - dx.i;
  853. work[1].r = q__1.r, work[1].i = q__1.i;
  854. rwork[1] = (r__1 = bi.r, abs(r__1)) + (r__2 = r_imag(&bi),
  855. abs(r__2)) + ((r__3 = dx.r, abs(r__3)) + (r__4 =
  856. r_imag(&dx), abs(r__4)));
  857. } else {
  858. i__2 = j * b_dim1 + 1;
  859. bi.r = b[i__2].r, bi.i = b[i__2].i;
  860. i__2 = j * x_dim1 + 1;
  861. q__1.r = d__[1] * x[i__2].r, q__1.i = d__[1] * x[i__2].i;
  862. dx.r = q__1.r, dx.i = q__1.i;
  863. r_cnjg(&q__2, &e[1]);
  864. i__2 = j * x_dim1 + 2;
  865. q__1.r = q__2.r * x[i__2].r - q__2.i * x[i__2].i, q__1.i =
  866. q__2.r * x[i__2].i + q__2.i * x[i__2].r;
  867. ex.r = q__1.r, ex.i = q__1.i;
  868. q__2.r = bi.r - dx.r, q__2.i = bi.i - dx.i;
  869. q__1.r = q__2.r - ex.r, q__1.i = q__2.i - ex.i;
  870. work[1].r = q__1.r, work[1].i = q__1.i;
  871. i__2 = j * x_dim1 + 2;
  872. rwork[1] = (r__1 = bi.r, abs(r__1)) + (r__2 = r_imag(&bi),
  873. abs(r__2)) + ((r__3 = dx.r, abs(r__3)) + (r__4 =
  874. r_imag(&dx), abs(r__4))) + ((r__5 = e[1].r, abs(r__5))
  875. + (r__6 = r_imag(&e[1]), abs(r__6))) * ((r__7 = x[
  876. i__2].r, abs(r__7)) + (r__8 = r_imag(&x[j * x_dim1 +
  877. 2]), abs(r__8)));
  878. i__2 = *n - 1;
  879. for (i__ = 2; i__ <= i__2; ++i__) {
  880. i__3 = i__ + j * b_dim1;
  881. bi.r = b[i__3].r, bi.i = b[i__3].i;
  882. i__3 = i__ - 1;
  883. i__4 = i__ - 1 + j * x_dim1;
  884. q__1.r = e[i__3].r * x[i__4].r - e[i__3].i * x[i__4].i,
  885. q__1.i = e[i__3].r * x[i__4].i + e[i__3].i * x[
  886. i__4].r;
  887. cx.r = q__1.r, cx.i = q__1.i;
  888. i__3 = i__;
  889. i__4 = i__ + j * x_dim1;
  890. q__1.r = d__[i__3] * x[i__4].r, q__1.i = d__[i__3] * x[
  891. i__4].i;
  892. dx.r = q__1.r, dx.i = q__1.i;
  893. r_cnjg(&q__2, &e[i__]);
  894. i__3 = i__ + 1 + j * x_dim1;
  895. q__1.r = q__2.r * x[i__3].r - q__2.i * x[i__3].i, q__1.i =
  896. q__2.r * x[i__3].i + q__2.i * x[i__3].r;
  897. ex.r = q__1.r, ex.i = q__1.i;
  898. i__3 = i__;
  899. q__3.r = bi.r - cx.r, q__3.i = bi.i - cx.i;
  900. q__2.r = q__3.r - dx.r, q__2.i = q__3.i - dx.i;
  901. q__1.r = q__2.r - ex.r, q__1.i = q__2.i - ex.i;
  902. work[i__3].r = q__1.r, work[i__3].i = q__1.i;
  903. i__3 = i__ - 1;
  904. i__4 = i__ - 1 + j * x_dim1;
  905. i__5 = i__;
  906. i__6 = i__ + 1 + j * x_dim1;
  907. rwork[i__] = (r__1 = bi.r, abs(r__1)) + (r__2 = r_imag(&
  908. bi), abs(r__2)) + ((r__3 = e[i__3].r, abs(r__3))
  909. + (r__4 = r_imag(&e[i__ - 1]), abs(r__4))) * ((
  910. r__5 = x[i__4].r, abs(r__5)) + (r__6 = r_imag(&x[
  911. i__ - 1 + j * x_dim1]), abs(r__6))) + ((r__7 =
  912. dx.r, abs(r__7)) + (r__8 = r_imag(&dx), abs(r__8))
  913. ) + ((r__9 = e[i__5].r, abs(r__9)) + (r__10 =
  914. r_imag(&e[i__]), abs(r__10))) * ((r__11 = x[i__6]
  915. .r, abs(r__11)) + (r__12 = r_imag(&x[i__ + 1 + j *
  916. x_dim1]), abs(r__12)));
  917. /* L40: */
  918. }
  919. i__2 = *n + j * b_dim1;
  920. bi.r = b[i__2].r, bi.i = b[i__2].i;
  921. i__2 = *n - 1;
  922. i__3 = *n - 1 + j * x_dim1;
  923. q__1.r = e[i__2].r * x[i__3].r - e[i__2].i * x[i__3].i,
  924. q__1.i = e[i__2].r * x[i__3].i + e[i__2].i * x[i__3]
  925. .r;
  926. cx.r = q__1.r, cx.i = q__1.i;
  927. i__2 = *n;
  928. i__3 = *n + j * x_dim1;
  929. q__1.r = d__[i__2] * x[i__3].r, q__1.i = d__[i__2] * x[i__3]
  930. .i;
  931. dx.r = q__1.r, dx.i = q__1.i;
  932. i__2 = *n;
  933. q__2.r = bi.r - cx.r, q__2.i = bi.i - cx.i;
  934. q__1.r = q__2.r - dx.r, q__1.i = q__2.i - dx.i;
  935. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  936. i__2 = *n - 1;
  937. i__3 = *n - 1 + j * x_dim1;
  938. rwork[*n] = (r__1 = bi.r, abs(r__1)) + (r__2 = r_imag(&bi),
  939. abs(r__2)) + ((r__3 = e[i__2].r, abs(r__3)) + (r__4 =
  940. r_imag(&e[*n - 1]), abs(r__4))) * ((r__5 = x[i__3].r,
  941. abs(r__5)) + (r__6 = r_imag(&x[*n - 1 + j * x_dim1]),
  942. abs(r__6))) + ((r__7 = dx.r, abs(r__7)) + (r__8 =
  943. r_imag(&dx), abs(r__8)));
  944. }
  945. }
  946. /* Compute componentwise relative backward error from formula */
  947. /* f2cmax(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) ) */
  948. /* where abs(Z) is the componentwise absolute value of the matrix */
  949. /* or vector Z. If the i-th component of the denominator is less */
  950. /* than SAFE2, then SAFE1 is added to the i-th components of the */
  951. /* numerator and denominator before dividing. */
  952. s = 0.f;
  953. i__2 = *n;
  954. for (i__ = 1; i__ <= i__2; ++i__) {
  955. if (rwork[i__] > safe2) {
  956. /* Computing MAX */
  957. i__3 = i__;
  958. r__3 = s, r__4 = ((r__1 = work[i__3].r, abs(r__1)) + (r__2 =
  959. r_imag(&work[i__]), abs(r__2))) / rwork[i__];
  960. s = f2cmax(r__3,r__4);
  961. } else {
  962. /* Computing MAX */
  963. i__3 = i__;
  964. r__3 = s, r__4 = ((r__1 = work[i__3].r, abs(r__1)) + (r__2 =
  965. r_imag(&work[i__]), abs(r__2)) + safe1) / (rwork[i__]
  966. + safe1);
  967. s = f2cmax(r__3,r__4);
  968. }
  969. /* L50: */
  970. }
  971. berr[j] = s;
  972. /* Test stopping criterion. Continue iterating if */
  973. /* 1) The residual BERR(J) is larger than machine epsilon, and */
  974. /* 2) BERR(J) decreased by at least a factor of 2 during the */
  975. /* last iteration, and */
  976. /* 3) At most ITMAX iterations tried. */
  977. if (berr[j] > eps && berr[j] * 2.f <= lstres && count <= 5) {
  978. /* Update solution and try again. */
  979. cpttrs_(uplo, n, &c__1, &df[1], &ef[1], &work[1], n, info);
  980. caxpy_(n, &c_b16, &work[1], &c__1, &x[j * x_dim1 + 1], &c__1);
  981. lstres = berr[j];
  982. ++count;
  983. goto L20;
  984. }
  985. /* Bound error from formula */
  986. /* norm(X - XTRUE) / norm(X) .le. FERR = */
  987. /* norm( abs(inv(A))* */
  988. /* ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X) */
  989. /* where */
  990. /* norm(Z) is the magnitude of the largest component of Z */
  991. /* inv(A) is the inverse of A */
  992. /* abs(Z) is the componentwise absolute value of the matrix or */
  993. /* vector Z */
  994. /* NZ is the maximum number of nonzeros in any row of A, plus 1 */
  995. /* EPS is machine epsilon */
  996. /* The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B)) */
  997. /* is incremented by SAFE1 if the i-th component of */
  998. /* abs(A)*abs(X) + abs(B) is less than SAFE2. */
  999. i__2 = *n;
  1000. for (i__ = 1; i__ <= i__2; ++i__) {
  1001. if (rwork[i__] > safe2) {
  1002. i__3 = i__;
  1003. rwork[i__] = (r__1 = work[i__3].r, abs(r__1)) + (r__2 =
  1004. r_imag(&work[i__]), abs(r__2)) + nz * eps * rwork[i__]
  1005. ;
  1006. } else {
  1007. i__3 = i__;
  1008. rwork[i__] = (r__1 = work[i__3].r, abs(r__1)) + (r__2 =
  1009. r_imag(&work[i__]), abs(r__2)) + nz * eps * rwork[i__]
  1010. + safe1;
  1011. }
  1012. /* L60: */
  1013. }
  1014. ix = isamax_(n, &rwork[1], &c__1);
  1015. ferr[j] = rwork[ix];
  1016. /* Estimate the norm of inv(A). */
  1017. /* Solve M(A) * x = e, where M(A) = (m(i,j)) is given by */
  1018. /* m(i,j) = abs(A(i,j)), i = j, */
  1019. /* m(i,j) = -abs(A(i,j)), i .ne. j, */
  1020. /* and e = [ 1, 1, ..., 1 ]**T. Note M(A) = M(L)*D*M(L)**H. */
  1021. /* Solve M(L) * x = e. */
  1022. rwork[1] = 1.f;
  1023. i__2 = *n;
  1024. for (i__ = 2; i__ <= i__2; ++i__) {
  1025. rwork[i__] = rwork[i__ - 1] * c_abs(&ef[i__ - 1]) + 1.f;
  1026. /* L70: */
  1027. }
  1028. /* Solve D * M(L)**H * x = b. */
  1029. rwork[*n] /= df[*n];
  1030. for (i__ = *n - 1; i__ >= 1; --i__) {
  1031. rwork[i__] = rwork[i__] / df[i__] + rwork[i__ + 1] * c_abs(&ef[
  1032. i__]);
  1033. /* L80: */
  1034. }
  1035. /* Compute norm(inv(A)) = f2cmax(x(i)), 1<=i<=n. */
  1036. ix = isamax_(n, &rwork[1], &c__1);
  1037. ferr[j] *= (r__1 = rwork[ix], abs(r__1));
  1038. /* Normalize error. */
  1039. lstres = 0.f;
  1040. i__2 = *n;
  1041. for (i__ = 1; i__ <= i__2; ++i__) {
  1042. /* Computing MAX */
  1043. r__1 = lstres, r__2 = c_abs(&x[i__ + j * x_dim1]);
  1044. lstres = f2cmax(r__1,r__2);
  1045. /* L90: */
  1046. }
  1047. if (lstres != 0.f) {
  1048. ferr[j] /= lstres;
  1049. }
  1050. /* L100: */
  1051. }
  1052. return;
  1053. /* End of CPTRFS */
  1054. } /* cptrfs_ */