You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slasq2.c 32 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static integer c__2 = 2;
  488. /* > \brief \b SLASQ2 computes all the eigenvalues of the symmetric positive definite tridiagonal matrix assoc
  489. iated with the qd Array Z to high relative accuracy. Used by sbdsqr and sstegr. */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download SLASQ2 + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasq2.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasq2.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasq2.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE SLASQ2( N, Z, INFO ) */
  508. /* INTEGER INFO, N */
  509. /* REAL Z( * ) */
  510. /* > \par Purpose: */
  511. /* ============= */
  512. /* > */
  513. /* > \verbatim */
  514. /* > */
  515. /* > SLASQ2 computes all the eigenvalues of the symmetric positive */
  516. /* > definite tridiagonal matrix associated with the qd array Z to high */
  517. /* > relative accuracy are computed to high relative accuracy, in the */
  518. /* > absence of denormalization, underflow and overflow. */
  519. /* > */
  520. /* > To see the relation of Z to the tridiagonal matrix, let L be a */
  521. /* > unit lower bidiagonal matrix with subdiagonals Z(2,4,6,,..) and */
  522. /* > let U be an upper bidiagonal matrix with 1's above and diagonal */
  523. /* > Z(1,3,5,,..). The tridiagonal is L*U or, if you prefer, the */
  524. /* > symmetric tridiagonal to which it is similar. */
  525. /* > */
  526. /* > Note : SLASQ2 defines a logical variable, IEEE, which is true */
  527. /* > on machines which follow ieee-754 floating-point standard in their */
  528. /* > handling of infinities and NaNs, and false otherwise. This variable */
  529. /* > is passed to SLASQ3. */
  530. /* > \endverbatim */
  531. /* Arguments: */
  532. /* ========== */
  533. /* > \param[in] N */
  534. /* > \verbatim */
  535. /* > N is INTEGER */
  536. /* > The number of rows and columns in the matrix. N >= 0. */
  537. /* > \endverbatim */
  538. /* > */
  539. /* > \param[in,out] Z */
  540. /* > \verbatim */
  541. /* > Z is REAL array, dimension ( 4*N ) */
  542. /* > On entry Z holds the qd array. On exit, entries 1 to N hold */
  543. /* > the eigenvalues in decreasing order, Z( 2*N+1 ) holds the */
  544. /* > trace, and Z( 2*N+2 ) holds the sum of the eigenvalues. If */
  545. /* > N > 2, then Z( 2*N+3 ) holds the iteration count, Z( 2*N+4 ) */
  546. /* > holds NDIVS/NIN^2, and Z( 2*N+5 ) holds the percentage of */
  547. /* > shifts that failed. */
  548. /* > \endverbatim */
  549. /* > */
  550. /* > \param[out] INFO */
  551. /* > \verbatim */
  552. /* > INFO is INTEGER */
  553. /* > = 0: successful exit */
  554. /* > < 0: if the i-th argument is a scalar and had an illegal */
  555. /* > value, then INFO = -i, if the i-th argument is an */
  556. /* > array and the j-entry had an illegal value, then */
  557. /* > INFO = -(i*100+j) */
  558. /* > > 0: the algorithm failed */
  559. /* > = 1, a split was marked by a positive value in E */
  560. /* > = 2, current block of Z not diagonalized after 100*N */
  561. /* > iterations (in inner while loop). On exit Z holds */
  562. /* > a qd array with the same eigenvalues as the given Z. */
  563. /* > = 3, termination criterion of outer while loop not met */
  564. /* > (program created more than N unreduced blocks) */
  565. /* > \endverbatim */
  566. /* Authors: */
  567. /* ======== */
  568. /* > \author Univ. of Tennessee */
  569. /* > \author Univ. of California Berkeley */
  570. /* > \author Univ. of Colorado Denver */
  571. /* > \author NAG Ltd. */
  572. /* > \date December 2016 */
  573. /* > \ingroup auxOTHERcomputational */
  574. /* > \par Further Details: */
  575. /* ===================== */
  576. /* > */
  577. /* > \verbatim */
  578. /* > */
  579. /* > Local Variables: I0:N0 defines a current unreduced segment of Z. */
  580. /* > The shifts are accumulated in SIGMA. Iteration count is in ITER. */
  581. /* > Ping-pong is controlled by PP (alternates between 0 and 1). */
  582. /* > \endverbatim */
  583. /* > */
  584. /* ===================================================================== */
  585. /* Subroutine */ void slasq2_(integer *n, real *z__, integer *info)
  586. {
  587. /* System generated locals */
  588. integer i__1, i__2, i__3;
  589. real r__1, r__2;
  590. /* Local variables */
  591. logical ieee;
  592. integer nbig;
  593. real dmin__, emin, emax;
  594. integer kmin, ndiv, iter;
  595. real qmin, temp, qmax, zmax;
  596. integer splt;
  597. real dmin1, dmin2, d__, e, g;
  598. integer k;
  599. real s, t;
  600. integer nfail;
  601. real desig, trace, sigma;
  602. integer iinfo;
  603. real tempe, tempq;
  604. integer i0, i1, i4, n0, n1, ttype;
  605. extern /* Subroutine */ void slasq3_(integer *, integer *, real *, integer
  606. *, real *, real *, real *, real *, integer *, integer *, integer *
  607. , logical *, integer *, real *, real *, real *, real *, real *,
  608. real *, real *);
  609. real dn;
  610. integer pp;
  611. real deemin;
  612. extern real slamch_(char *);
  613. integer iwhila, iwhilb;
  614. real oldemn, safmin;
  615. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  616. real dn1, dn2;
  617. extern /* Subroutine */ void slasrt_(char *, integer *, real *, integer *);
  618. real dee, eps, tau, tol;
  619. integer ipn4;
  620. real tol2;
  621. /* -- LAPACK computational routine (version 3.7.0) -- */
  622. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  623. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  624. /* December 2016 */
  625. /* ===================================================================== */
  626. /* Test the input arguments. */
  627. /* (in case SLASQ2 is not called by SLASQ1) */
  628. /* Parameter adjustments */
  629. --z__;
  630. /* Function Body */
  631. *info = 0;
  632. eps = slamch_("Precision");
  633. safmin = slamch_("Safe minimum");
  634. tol = eps * 100.f;
  635. /* Computing 2nd power */
  636. r__1 = tol;
  637. tol2 = r__1 * r__1;
  638. if (*n < 0) {
  639. *info = -1;
  640. xerbla_("SLASQ2", &c__1, (ftnlen)6);
  641. return;
  642. } else if (*n == 0) {
  643. return;
  644. } else if (*n == 1) {
  645. /* 1-by-1 case. */
  646. if (z__[1] < 0.f) {
  647. *info = -201;
  648. xerbla_("SLASQ2", &c__2, (ftnlen)6);
  649. }
  650. return;
  651. } else if (*n == 2) {
  652. /* 2-by-2 case. */
  653. if (z__[1] < 0.f) {
  654. *info = -201;
  655. xerbla_("SLASQ2", &c__2, (ftnlen)6);
  656. return;
  657. } else if (z__[2] < 0.f) {
  658. *info = -202;
  659. xerbla_("SLASQ2", &c__2, (ftnlen)6);
  660. return;
  661. } else if (z__[3] < 0.f) {
  662. *info = -203;
  663. xerbla_("SLASQ2", &c__2, (ftnlen)6);
  664. return;
  665. } else if (z__[3] > z__[1]) {
  666. d__ = z__[3];
  667. z__[3] = z__[1];
  668. z__[1] = d__;
  669. }
  670. z__[5] = z__[1] + z__[2] + z__[3];
  671. if (z__[2] > z__[3] * tol2) {
  672. t = (z__[1] - z__[3] + z__[2]) * .5f;
  673. s = z__[3] * (z__[2] / t);
  674. if (s <= t) {
  675. s = z__[3] * (z__[2] / (t * (sqrt(s / t + 1.f) + 1.f)));
  676. } else {
  677. s = z__[3] * (z__[2] / (t + sqrt(t) * sqrt(t + s)));
  678. }
  679. t = z__[1] + (s + z__[2]);
  680. z__[3] *= z__[1] / t;
  681. z__[1] = t;
  682. }
  683. z__[2] = z__[3];
  684. z__[6] = z__[2] + z__[1];
  685. return;
  686. }
  687. /* Check for negative data and compute sums of q's and e's. */
  688. z__[*n * 2] = 0.f;
  689. emin = z__[2];
  690. qmax = 0.f;
  691. zmax = 0.f;
  692. d__ = 0.f;
  693. e = 0.f;
  694. i__1 = *n - 1 << 1;
  695. for (k = 1; k <= i__1; k += 2) {
  696. if (z__[k] < 0.f) {
  697. *info = -(k + 200);
  698. xerbla_("SLASQ2", &c__2, (ftnlen)6);
  699. return;
  700. } else if (z__[k + 1] < 0.f) {
  701. *info = -(k + 201);
  702. xerbla_("SLASQ2", &c__2, (ftnlen)6);
  703. return;
  704. }
  705. d__ += z__[k];
  706. e += z__[k + 1];
  707. /* Computing MAX */
  708. r__1 = qmax, r__2 = z__[k];
  709. qmax = f2cmax(r__1,r__2);
  710. /* Computing MIN */
  711. r__1 = emin, r__2 = z__[k + 1];
  712. emin = f2cmin(r__1,r__2);
  713. /* Computing MAX */
  714. r__1 = f2cmax(qmax,zmax), r__2 = z__[k + 1];
  715. zmax = f2cmax(r__1,r__2);
  716. /* L10: */
  717. }
  718. if (z__[(*n << 1) - 1] < 0.f) {
  719. *info = -((*n << 1) + 199);
  720. xerbla_("SLASQ2", &c__2, (ftnlen)6);
  721. return;
  722. }
  723. d__ += z__[(*n << 1) - 1];
  724. /* Computing MAX */
  725. r__1 = qmax, r__2 = z__[(*n << 1) - 1];
  726. qmax = f2cmax(r__1,r__2);
  727. zmax = f2cmax(qmax,zmax);
  728. /* Check for diagonality. */
  729. if (e == 0.f) {
  730. i__1 = *n;
  731. for (k = 2; k <= i__1; ++k) {
  732. z__[k] = z__[(k << 1) - 1];
  733. /* L20: */
  734. }
  735. slasrt_("D", n, &z__[1], &iinfo);
  736. z__[(*n << 1) - 1] = d__;
  737. return;
  738. }
  739. trace = d__ + e;
  740. /* Check for zero data. */
  741. if (trace == 0.f) {
  742. z__[(*n << 1) - 1] = 0.f;
  743. return;
  744. }
  745. /* Check whether the machine is IEEE conformable. */
  746. /* IEEE = ILAENV( 10, 'SLASQ2', 'N', 1, 2, 3, 4 ).EQ.1 .AND. */
  747. /* $ ILAENV( 11, 'SLASQ2', 'N', 1, 2, 3, 4 ).EQ.1 */
  748. /* [11/15/2008] The case IEEE=.TRUE. has a problem in single precision with */
  749. /* some the test matrices of type 16. The double precision code is fine. */
  750. ieee = FALSE_;
  751. /* Rearrange data for locality: Z=(q1,qq1,e1,ee1,q2,qq2,e2,ee2,...). */
  752. for (k = *n << 1; k >= 2; k += -2) {
  753. z__[k * 2] = 0.f;
  754. z__[(k << 1) - 1] = z__[k];
  755. z__[(k << 1) - 2] = 0.f;
  756. z__[(k << 1) - 3] = z__[k - 1];
  757. /* L30: */
  758. }
  759. i0 = 1;
  760. n0 = *n;
  761. /* Reverse the qd-array, if warranted. */
  762. if (z__[(i0 << 2) - 3] * 1.5f < z__[(n0 << 2) - 3]) {
  763. ipn4 = i0 + n0 << 2;
  764. i__1 = i0 + n0 - 1 << 1;
  765. for (i4 = i0 << 2; i4 <= i__1; i4 += 4) {
  766. temp = z__[i4 - 3];
  767. z__[i4 - 3] = z__[ipn4 - i4 - 3];
  768. z__[ipn4 - i4 - 3] = temp;
  769. temp = z__[i4 - 1];
  770. z__[i4 - 1] = z__[ipn4 - i4 - 5];
  771. z__[ipn4 - i4 - 5] = temp;
  772. /* L40: */
  773. }
  774. }
  775. /* Initial split checking via dqd and Li's test. */
  776. pp = 0;
  777. for (k = 1; k <= 2; ++k) {
  778. d__ = z__[(n0 << 2) + pp - 3];
  779. i__1 = (i0 << 2) + pp;
  780. for (i4 = (n0 - 1 << 2) + pp; i4 >= i__1; i4 += -4) {
  781. if (z__[i4 - 1] <= tol2 * d__) {
  782. z__[i4 - 1] = 0.f;
  783. d__ = z__[i4 - 3];
  784. } else {
  785. d__ = z__[i4 - 3] * (d__ / (d__ + z__[i4 - 1]));
  786. }
  787. /* L50: */
  788. }
  789. /* dqd maps Z to ZZ plus Li's test. */
  790. emin = z__[(i0 << 2) + pp + 1];
  791. d__ = z__[(i0 << 2) + pp - 3];
  792. i__1 = (n0 - 1 << 2) + pp;
  793. for (i4 = (i0 << 2) + pp; i4 <= i__1; i4 += 4) {
  794. z__[i4 - (pp << 1) - 2] = d__ + z__[i4 - 1];
  795. if (z__[i4 - 1] <= tol2 * d__) {
  796. z__[i4 - 1] = 0.f;
  797. z__[i4 - (pp << 1) - 2] = d__;
  798. z__[i4 - (pp << 1)] = 0.f;
  799. d__ = z__[i4 + 1];
  800. } else if (safmin * z__[i4 + 1] < z__[i4 - (pp << 1) - 2] &&
  801. safmin * z__[i4 - (pp << 1) - 2] < z__[i4 + 1]) {
  802. temp = z__[i4 + 1] / z__[i4 - (pp << 1) - 2];
  803. z__[i4 - (pp << 1)] = z__[i4 - 1] * temp;
  804. d__ *= temp;
  805. } else {
  806. z__[i4 - (pp << 1)] = z__[i4 + 1] * (z__[i4 - 1] / z__[i4 - (
  807. pp << 1) - 2]);
  808. d__ = z__[i4 + 1] * (d__ / z__[i4 - (pp << 1) - 2]);
  809. }
  810. /* Computing MIN */
  811. r__1 = emin, r__2 = z__[i4 - (pp << 1)];
  812. emin = f2cmin(r__1,r__2);
  813. /* L60: */
  814. }
  815. z__[(n0 << 2) - pp - 2] = d__;
  816. /* Now find qmax. */
  817. qmax = z__[(i0 << 2) - pp - 2];
  818. i__1 = (n0 << 2) - pp - 2;
  819. for (i4 = (i0 << 2) - pp + 2; i4 <= i__1; i4 += 4) {
  820. /* Computing MAX */
  821. r__1 = qmax, r__2 = z__[i4];
  822. qmax = f2cmax(r__1,r__2);
  823. /* L70: */
  824. }
  825. /* Prepare for the next iteration on K. */
  826. pp = 1 - pp;
  827. /* L80: */
  828. }
  829. /* Initialise variables to pass to SLASQ3. */
  830. ttype = 0;
  831. dmin1 = 0.f;
  832. dmin2 = 0.f;
  833. dn = 0.f;
  834. dn1 = 0.f;
  835. dn2 = 0.f;
  836. g = 0.f;
  837. tau = 0.f;
  838. iter = 2;
  839. nfail = 0;
  840. ndiv = n0 - i0 << 1;
  841. i__1 = *n + 1;
  842. for (iwhila = 1; iwhila <= i__1; ++iwhila) {
  843. if (n0 < 1) {
  844. goto L170;
  845. }
  846. /* While array unfinished do */
  847. /* E(N0) holds the value of SIGMA when submatrix in I0:N0 */
  848. /* splits from the rest of the array, but is negated. */
  849. desig = 0.f;
  850. if (n0 == *n) {
  851. sigma = 0.f;
  852. } else {
  853. sigma = -z__[(n0 << 2) - 1];
  854. }
  855. if (sigma < 0.f) {
  856. *info = 1;
  857. return;
  858. }
  859. /* Find last unreduced submatrix's top index I0, find QMAX and */
  860. /* EMIN. Find Gershgorin-type bound if Q's much greater than E's. */
  861. emax = 0.f;
  862. if (n0 > i0) {
  863. emin = (r__1 = z__[(n0 << 2) - 5], abs(r__1));
  864. } else {
  865. emin = 0.f;
  866. }
  867. qmin = z__[(n0 << 2) - 3];
  868. qmax = qmin;
  869. for (i4 = n0 << 2; i4 >= 8; i4 += -4) {
  870. if (z__[i4 - 5] <= 0.f) {
  871. goto L100;
  872. }
  873. if (qmin >= emax * 4.f) {
  874. /* Computing MIN */
  875. r__1 = qmin, r__2 = z__[i4 - 3];
  876. qmin = f2cmin(r__1,r__2);
  877. /* Computing MAX */
  878. r__1 = emax, r__2 = z__[i4 - 5];
  879. emax = f2cmax(r__1,r__2);
  880. }
  881. /* Computing MAX */
  882. r__1 = qmax, r__2 = z__[i4 - 7] + z__[i4 - 5];
  883. qmax = f2cmax(r__1,r__2);
  884. /* Computing MIN */
  885. r__1 = emin, r__2 = z__[i4 - 5];
  886. emin = f2cmin(r__1,r__2);
  887. /* L90: */
  888. }
  889. i4 = 4;
  890. L100:
  891. i0 = i4 / 4;
  892. pp = 0;
  893. if (n0 - i0 > 1) {
  894. dee = z__[(i0 << 2) - 3];
  895. deemin = dee;
  896. kmin = i0;
  897. i__2 = (n0 << 2) - 3;
  898. for (i4 = (i0 << 2) + 1; i4 <= i__2; i4 += 4) {
  899. dee = z__[i4] * (dee / (dee + z__[i4 - 2]));
  900. if (dee <= deemin) {
  901. deemin = dee;
  902. kmin = (i4 + 3) / 4;
  903. }
  904. /* L110: */
  905. }
  906. if (kmin - i0 << 1 < n0 - kmin && deemin <= z__[(n0 << 2) - 3] *
  907. .5f) {
  908. ipn4 = i0 + n0 << 2;
  909. pp = 2;
  910. i__2 = i0 + n0 - 1 << 1;
  911. for (i4 = i0 << 2; i4 <= i__2; i4 += 4) {
  912. temp = z__[i4 - 3];
  913. z__[i4 - 3] = z__[ipn4 - i4 - 3];
  914. z__[ipn4 - i4 - 3] = temp;
  915. temp = z__[i4 - 2];
  916. z__[i4 - 2] = z__[ipn4 - i4 - 2];
  917. z__[ipn4 - i4 - 2] = temp;
  918. temp = z__[i4 - 1];
  919. z__[i4 - 1] = z__[ipn4 - i4 - 5];
  920. z__[ipn4 - i4 - 5] = temp;
  921. temp = z__[i4];
  922. z__[i4] = z__[ipn4 - i4 - 4];
  923. z__[ipn4 - i4 - 4] = temp;
  924. /* L120: */
  925. }
  926. }
  927. }
  928. /* Put -(initial shift) into DMIN. */
  929. /* Computing MAX */
  930. r__1 = 0.f, r__2 = qmin - sqrt(qmin) * 2.f * sqrt(emax);
  931. dmin__ = -f2cmax(r__1,r__2);
  932. /* Now I0:N0 is unreduced. */
  933. /* PP = 0 for ping, PP = 1 for pong. */
  934. /* PP = 2 indicates that flipping was applied to the Z array and */
  935. /* and that the tests for deflation upon entry in SLASQ3 */
  936. /* should not be performed. */
  937. nbig = (n0 - i0 + 1) * 100;
  938. i__2 = nbig;
  939. for (iwhilb = 1; iwhilb <= i__2; ++iwhilb) {
  940. if (i0 > n0) {
  941. goto L150;
  942. }
  943. /* While submatrix unfinished take a good dqds step. */
  944. slasq3_(&i0, &n0, &z__[1], &pp, &dmin__, &sigma, &desig, &qmax, &
  945. nfail, &iter, &ndiv, &ieee, &ttype, &dmin1, &dmin2, &dn, &
  946. dn1, &dn2, &g, &tau);
  947. pp = 1 - pp;
  948. /* When EMIN is very small check for splits. */
  949. if (pp == 0 && n0 - i0 >= 3) {
  950. if (z__[n0 * 4] <= tol2 * qmax || z__[(n0 << 2) - 1] <= tol2 *
  951. sigma) {
  952. splt = i0 - 1;
  953. qmax = z__[(i0 << 2) - 3];
  954. emin = z__[(i0 << 2) - 1];
  955. oldemn = z__[i0 * 4];
  956. i__3 = n0 - 3 << 2;
  957. for (i4 = i0 << 2; i4 <= i__3; i4 += 4) {
  958. if (z__[i4] <= tol2 * z__[i4 - 3] || z__[i4 - 1] <=
  959. tol2 * sigma) {
  960. z__[i4 - 1] = -sigma;
  961. splt = i4 / 4;
  962. qmax = 0.f;
  963. emin = z__[i4 + 3];
  964. oldemn = z__[i4 + 4];
  965. } else {
  966. /* Computing MAX */
  967. r__1 = qmax, r__2 = z__[i4 + 1];
  968. qmax = f2cmax(r__1,r__2);
  969. /* Computing MIN */
  970. r__1 = emin, r__2 = z__[i4 - 1];
  971. emin = f2cmin(r__1,r__2);
  972. /* Computing MIN */
  973. r__1 = oldemn, r__2 = z__[i4];
  974. oldemn = f2cmin(r__1,r__2);
  975. }
  976. /* L130: */
  977. }
  978. z__[(n0 << 2) - 1] = emin;
  979. z__[n0 * 4] = oldemn;
  980. i0 = splt + 1;
  981. }
  982. }
  983. /* L140: */
  984. }
  985. *info = 2;
  986. /* Maximum number of iterations exceeded, restore the shift */
  987. /* SIGMA and place the new d's and e's in a qd array. */
  988. /* This might need to be done for several blocks */
  989. i1 = i0;
  990. n1 = n0;
  991. L145:
  992. tempq = z__[(i0 << 2) - 3];
  993. z__[(i0 << 2) - 3] += sigma;
  994. i__2 = n0;
  995. for (k = i0 + 1; k <= i__2; ++k) {
  996. tempe = z__[(k << 2) - 5];
  997. z__[(k << 2) - 5] *= tempq / z__[(k << 2) - 7];
  998. tempq = z__[(k << 2) - 3];
  999. z__[(k << 2) - 3] = z__[(k << 2) - 3] + sigma + tempe - z__[(k <<
  1000. 2) - 5];
  1001. }
  1002. /* Prepare to do this on the previous block if there is one */
  1003. if (i1 > 1) {
  1004. n1 = i1 - 1;
  1005. while(i1 >= 2 && z__[(i1 << 2) - 5] >= 0.f) {
  1006. --i1;
  1007. }
  1008. if (i1 >= 1) {
  1009. sigma = -z__[(n1 << 2) - 1];
  1010. goto L145;
  1011. }
  1012. }
  1013. i__2 = *n;
  1014. for (k = 1; k <= i__2; ++k) {
  1015. z__[(k << 1) - 1] = z__[(k << 2) - 3];
  1016. /* Only the block 1..N0 is unfinished. The rest of the e's */
  1017. /* must be essentially zero, although sometimes other data */
  1018. /* has been stored in them. */
  1019. if (k < n0) {
  1020. z__[k * 2] = z__[(k << 2) - 1];
  1021. } else {
  1022. z__[k * 2] = 0.f;
  1023. }
  1024. }
  1025. return;
  1026. /* end IWHILB */
  1027. L150:
  1028. /* L160: */
  1029. ;
  1030. }
  1031. *info = 3;
  1032. return;
  1033. /* end IWHILA */
  1034. L170:
  1035. /* Move q's to the front. */
  1036. i__1 = *n;
  1037. for (k = 2; k <= i__1; ++k) {
  1038. z__[k] = z__[(k << 2) - 3];
  1039. /* L180: */
  1040. }
  1041. /* Sort and compute sum of eigenvalues. */
  1042. slasrt_("D", n, &z__[1], &iinfo);
  1043. e = 0.f;
  1044. for (k = *n; k >= 1; --k) {
  1045. e += z__[k];
  1046. /* L190: */
  1047. }
  1048. /* Store trace, sum(eigenvalues) and information on performance. */
  1049. z__[(*n << 1) + 1] = trace;
  1050. z__[(*n << 1) + 2] = e;
  1051. z__[(*n << 1) + 3] = (real) iter;
  1052. /* Computing 2nd power */
  1053. i__1 = *n;
  1054. z__[(*n << 1) + 4] = (real) ndiv / (real) (i__1 * i__1);
  1055. z__[(*n << 1) + 5] = nfail * 100.f / (real) iter;
  1056. return;
  1057. /* End of SLASQ2 */
  1058. } /* slasq2_ */