You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgeesx.c 38 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static integer c__0 = 0;
  488. static integer c_n1 = -1;
  489. /* > \brief <b> DGEESX computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors
  490. for GE matrices</b> */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download DGEESX + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgeesx.
  497. f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgeesx.
  500. f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgeesx.
  503. f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE DGEESX( JOBVS, SORT, SELECT, SENSE, N, A, LDA, SDIM, */
  509. /* WR, WI, VS, LDVS, RCONDE, RCONDV, WORK, LWORK, */
  510. /* IWORK, LIWORK, BWORK, INFO ) */
  511. /* CHARACTER JOBVS, SENSE, SORT */
  512. /* INTEGER INFO, LDA, LDVS, LIWORK, LWORK, N, SDIM */
  513. /* DOUBLE PRECISION RCONDE, RCONDV */
  514. /* LOGICAL BWORK( * ) */
  515. /* INTEGER IWORK( * ) */
  516. /* DOUBLE PRECISION A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ), */
  517. /* $ WR( * ) */
  518. /* LOGICAL SELECT */
  519. /* EXTERNAL SELECT */
  520. /* > \par Purpose: */
  521. /* ============= */
  522. /* > */
  523. /* > \verbatim */
  524. /* > */
  525. /* > DGEESX computes for an N-by-N real nonsymmetric matrix A, the */
  526. /* > eigenvalues, the real Schur form T, and, optionally, the matrix of */
  527. /* > Schur vectors Z. This gives the Schur factorization A = Z*T*(Z**T). */
  528. /* > */
  529. /* > Optionally, it also orders the eigenvalues on the diagonal of the */
  530. /* > real Schur form so that selected eigenvalues are at the top left; */
  531. /* > computes a reciprocal condition number for the average of the */
  532. /* > selected eigenvalues (RCONDE); and computes a reciprocal condition */
  533. /* > number for the right invariant subspace corresponding to the */
  534. /* > selected eigenvalues (RCONDV). The leading columns of Z form an */
  535. /* > orthonormal basis for this invariant subspace. */
  536. /* > */
  537. /* > For further explanation of the reciprocal condition numbers RCONDE */
  538. /* > and RCONDV, see Section 4.10 of the LAPACK Users' Guide (where */
  539. /* > these quantities are called s and sep respectively). */
  540. /* > */
  541. /* > A real matrix is in real Schur form if it is upper quasi-triangular */
  542. /* > with 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in */
  543. /* > the form */
  544. /* > [ a b ] */
  545. /* > [ c a ] */
  546. /* > */
  547. /* > where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc). */
  548. /* > \endverbatim */
  549. /* Arguments: */
  550. /* ========== */
  551. /* > \param[in] JOBVS */
  552. /* > \verbatim */
  553. /* > JOBVS is CHARACTER*1 */
  554. /* > = 'N': Schur vectors are not computed; */
  555. /* > = 'V': Schur vectors are computed. */
  556. /* > \endverbatim */
  557. /* > */
  558. /* > \param[in] SORT */
  559. /* > \verbatim */
  560. /* > SORT is CHARACTER*1 */
  561. /* > Specifies whether or not to order the eigenvalues on the */
  562. /* > diagonal of the Schur form. */
  563. /* > = 'N': Eigenvalues are not ordered; */
  564. /* > = 'S': Eigenvalues are ordered (see SELECT). */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in] SELECT */
  568. /* > \verbatim */
  569. /* > SELECT is a LOGICAL FUNCTION of two DOUBLE PRECISION arguments */
  570. /* > SELECT must be declared EXTERNAL in the calling subroutine. */
  571. /* > If SORT = 'S', SELECT is used to select eigenvalues to sort */
  572. /* > to the top left of the Schur form. */
  573. /* > If SORT = 'N', SELECT is not referenced. */
  574. /* > An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if */
  575. /* > SELECT(WR(j),WI(j)) is true; i.e., if either one of a */
  576. /* > complex conjugate pair of eigenvalues is selected, then both */
  577. /* > are. Note that a selected complex eigenvalue may no longer */
  578. /* > satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since */
  579. /* > ordering may change the value of complex eigenvalues */
  580. /* > (especially if the eigenvalue is ill-conditioned); in this */
  581. /* > case INFO may be set to N+3 (see INFO below). */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in] SENSE */
  585. /* > \verbatim */
  586. /* > SENSE is CHARACTER*1 */
  587. /* > Determines which reciprocal condition numbers are computed. */
  588. /* > = 'N': None are computed; */
  589. /* > = 'E': Computed for average of selected eigenvalues only; */
  590. /* > = 'V': Computed for selected right invariant subspace only; */
  591. /* > = 'B': Computed for both. */
  592. /* > If SENSE = 'E', 'V' or 'B', SORT must equal 'S'. */
  593. /* > \endverbatim */
  594. /* > */
  595. /* > \param[in] N */
  596. /* > \verbatim */
  597. /* > N is INTEGER */
  598. /* > The order of the matrix A. N >= 0. */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[in,out] A */
  602. /* > \verbatim */
  603. /* > A is DOUBLE PRECISION array, dimension (LDA, N) */
  604. /* > On entry, the N-by-N matrix A. */
  605. /* > On exit, A is overwritten by its real Schur form T. */
  606. /* > \endverbatim */
  607. /* > */
  608. /* > \param[in] LDA */
  609. /* > \verbatim */
  610. /* > LDA is INTEGER */
  611. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  612. /* > \endverbatim */
  613. /* > */
  614. /* > \param[out] SDIM */
  615. /* > \verbatim */
  616. /* > SDIM is INTEGER */
  617. /* > If SORT = 'N', SDIM = 0. */
  618. /* > If SORT = 'S', SDIM = number of eigenvalues (after sorting) */
  619. /* > for which SELECT is true. (Complex conjugate */
  620. /* > pairs for which SELECT is true for either */
  621. /* > eigenvalue count as 2.) */
  622. /* > \endverbatim */
  623. /* > */
  624. /* > \param[out] WR */
  625. /* > \verbatim */
  626. /* > WR is DOUBLE PRECISION array, dimension (N) */
  627. /* > \endverbatim */
  628. /* > */
  629. /* > \param[out] WI */
  630. /* > \verbatim */
  631. /* > WI is DOUBLE PRECISION array, dimension (N) */
  632. /* > WR and WI contain the real and imaginary parts, respectively, */
  633. /* > of the computed eigenvalues, in the same order that they */
  634. /* > appear on the diagonal of the output Schur form T. Complex */
  635. /* > conjugate pairs of eigenvalues appear consecutively with the */
  636. /* > eigenvalue having the positive imaginary part first. */
  637. /* > \endverbatim */
  638. /* > */
  639. /* > \param[out] VS */
  640. /* > \verbatim */
  641. /* > VS is DOUBLE PRECISION array, dimension (LDVS,N) */
  642. /* > If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur */
  643. /* > vectors. */
  644. /* > If JOBVS = 'N', VS is not referenced. */
  645. /* > \endverbatim */
  646. /* > */
  647. /* > \param[in] LDVS */
  648. /* > \verbatim */
  649. /* > LDVS is INTEGER */
  650. /* > The leading dimension of the array VS. LDVS >= 1, and if */
  651. /* > JOBVS = 'V', LDVS >= N. */
  652. /* > \endverbatim */
  653. /* > */
  654. /* > \param[out] RCONDE */
  655. /* > \verbatim */
  656. /* > RCONDE is DOUBLE PRECISION */
  657. /* > If SENSE = 'E' or 'B', RCONDE contains the reciprocal */
  658. /* > condition number for the average of the selected eigenvalues. */
  659. /* > Not referenced if SENSE = 'N' or 'V'. */
  660. /* > \endverbatim */
  661. /* > */
  662. /* > \param[out] RCONDV */
  663. /* > \verbatim */
  664. /* > RCONDV is DOUBLE PRECISION */
  665. /* > If SENSE = 'V' or 'B', RCONDV contains the reciprocal */
  666. /* > condition number for the selected right invariant subspace. */
  667. /* > Not referenced if SENSE = 'N' or 'E'. */
  668. /* > \endverbatim */
  669. /* > */
  670. /* > \param[out] WORK */
  671. /* > \verbatim */
  672. /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
  673. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  674. /* > \endverbatim */
  675. /* > */
  676. /* > \param[in] LWORK */
  677. /* > \verbatim */
  678. /* > LWORK is INTEGER */
  679. /* > The dimension of the array WORK. LWORK >= f2cmax(1,3*N). */
  680. /* > Also, if SENSE = 'E' or 'V' or 'B', */
  681. /* > LWORK >= N+2*SDIM*(N-SDIM), where SDIM is the number of */
  682. /* > selected eigenvalues computed by this routine. Note that */
  683. /* > N+2*SDIM*(N-SDIM) <= N+N*N/2. Note also that an error is only */
  684. /* > returned if LWORK < f2cmax(1,3*N), but if SENSE = 'E' or 'V' or */
  685. /* > 'B' this may not be large enough. */
  686. /* > For good performance, LWORK must generally be larger. */
  687. /* > */
  688. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  689. /* > only calculates upper bounds on the optimal sizes of the */
  690. /* > arrays WORK and IWORK, returns these values as the first */
  691. /* > entries of the WORK and IWORK arrays, and no error messages */
  692. /* > related to LWORK or LIWORK are issued by XERBLA. */
  693. /* > \endverbatim */
  694. /* > */
  695. /* > \param[out] IWORK */
  696. /* > \verbatim */
  697. /* > IWORK is INTEGER array, dimension (MAX(1,LIWORK)) */
  698. /* > On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
  699. /* > \endverbatim */
  700. /* > */
  701. /* > \param[in] LIWORK */
  702. /* > \verbatim */
  703. /* > LIWORK is INTEGER */
  704. /* > The dimension of the array IWORK. */
  705. /* > LIWORK >= 1; if SENSE = 'V' or 'B', LIWORK >= SDIM*(N-SDIM). */
  706. /* > Note that SDIM*(N-SDIM) <= N*N/4. Note also that an error is */
  707. /* > only returned if LIWORK < 1, but if SENSE = 'V' or 'B' this */
  708. /* > may not be large enough. */
  709. /* > */
  710. /* > If LIWORK = -1, then a workspace query is assumed; the */
  711. /* > routine only calculates upper bounds on the optimal sizes of */
  712. /* > the arrays WORK and IWORK, returns these values as the first */
  713. /* > entries of the WORK and IWORK arrays, and no error messages */
  714. /* > related to LWORK or LIWORK are issued by XERBLA. */
  715. /* > \endverbatim */
  716. /* > */
  717. /* > \param[out] BWORK */
  718. /* > \verbatim */
  719. /* > BWORK is LOGICAL array, dimension (N) */
  720. /* > Not referenced if SORT = 'N'. */
  721. /* > \endverbatim */
  722. /* > */
  723. /* > \param[out] INFO */
  724. /* > \verbatim */
  725. /* > INFO is INTEGER */
  726. /* > = 0: successful exit */
  727. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  728. /* > > 0: if INFO = i, and i is */
  729. /* > <= N: the QR algorithm failed to compute all the */
  730. /* > eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI */
  731. /* > contain those eigenvalues which have converged; if */
  732. /* > JOBVS = 'V', VS contains the transformation which */
  733. /* > reduces A to its partially converged Schur form. */
  734. /* > = N+1: the eigenvalues could not be reordered because some */
  735. /* > eigenvalues were too close to separate (the problem */
  736. /* > is very ill-conditioned); */
  737. /* > = N+2: after reordering, roundoff changed values of some */
  738. /* > complex eigenvalues so that leading eigenvalues in */
  739. /* > the Schur form no longer satisfy SELECT=.TRUE. This */
  740. /* > could also be caused by underflow due to scaling. */
  741. /* > \endverbatim */
  742. /* Authors: */
  743. /* ======== */
  744. /* > \author Univ. of Tennessee */
  745. /* > \author Univ. of California Berkeley */
  746. /* > \author Univ. of Colorado Denver */
  747. /* > \author NAG Ltd. */
  748. /* > \date June 2016 */
  749. /* > \ingroup doubleGEeigen */
  750. /* ===================================================================== */
  751. /* Subroutine */ void dgeesx_(char *jobvs, char *sort, L_fp select, char *
  752. sense, integer *n, doublereal *a, integer *lda, integer *sdim,
  753. doublereal *wr, doublereal *wi, doublereal *vs, integer *ldvs,
  754. doublereal *rconde, doublereal *rcondv, doublereal *work, integer *
  755. lwork, integer *iwork, integer *liwork, logical *bwork, integer *info)
  756. {
  757. /* System generated locals */
  758. integer a_dim1, a_offset, vs_dim1, vs_offset, i__1, i__2, i__3;
  759. /* Local variables */
  760. integer ibal;
  761. doublereal anrm;
  762. integer ierr, itau, iwrk, lwrk, inxt, i__, icond, ieval;
  763. extern logical lsame_(char *, char *);
  764. extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
  765. doublereal *, integer *), dswap_(integer *, doublereal *, integer
  766. *, doublereal *, integer *);
  767. logical cursl;
  768. integer liwrk, i1, i2;
  769. extern /* Subroutine */ void dlabad_(doublereal *, doublereal *), dgebak_(
  770. char *, char *, integer *, integer *, integer *, doublereal *,
  771. integer *, doublereal *, integer *, integer *),
  772. dgebal_(char *, integer *, doublereal *, integer *, integer *,
  773. integer *, doublereal *, integer *);
  774. logical lst2sl, scalea;
  775. integer ip;
  776. doublereal cscale;
  777. extern doublereal dlamch_(char *), dlange_(char *, integer *,
  778. integer *, doublereal *, integer *, doublereal *);
  779. extern /* Subroutine */ void dgehrd_(integer *, integer *, integer *,
  780. doublereal *, integer *, doublereal *, doublereal *, integer *,
  781. integer *), dlascl_(char *, integer *, integer *, doublereal *,
  782. doublereal *, integer *, integer *, doublereal *, integer *,
  783. integer *), dlacpy_(char *, integer *, integer *,
  784. doublereal *, integer *, doublereal *, integer *);
  785. extern int xerbla_(char *, integer *, ftnlen);
  786. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  787. integer *, integer *, ftnlen, ftnlen);
  788. doublereal bignum;
  789. extern /* Subroutine */ void dorghr_(integer *, integer *, integer *,
  790. doublereal *, integer *, doublereal *, doublereal *, integer *,
  791. integer *), dhseqr_(char *, char *, integer *, integer *, integer
  792. *, doublereal *, integer *, doublereal *, doublereal *,
  793. doublereal *, integer *, doublereal *, integer *, integer *);
  794. logical wantsb;
  795. extern /* Subroutine */ void dtrsen_(char *, char *, logical *, integer *,
  796. doublereal *, integer *, doublereal *, integer *, doublereal *,
  797. doublereal *, integer *, doublereal *, doublereal *, doublereal *,
  798. integer *, integer *, integer *, integer *);
  799. logical wantse, lastsl;
  800. integer minwrk, maxwrk;
  801. logical wantsn;
  802. doublereal smlnum;
  803. integer hswork;
  804. logical wantst, lquery, wantsv, wantvs;
  805. integer ihi, ilo;
  806. doublereal dum[1], eps;
  807. /* -- LAPACK driver routine (version 3.7.0) -- */
  808. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  809. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  810. /* June 2016 */
  811. /* ===================================================================== */
  812. /* Test the input arguments */
  813. /* Parameter adjustments */
  814. a_dim1 = *lda;
  815. a_offset = 1 + a_dim1 * 1;
  816. a -= a_offset;
  817. --wr;
  818. --wi;
  819. vs_dim1 = *ldvs;
  820. vs_offset = 1 + vs_dim1 * 1;
  821. vs -= vs_offset;
  822. --work;
  823. --iwork;
  824. --bwork;
  825. /* Function Body */
  826. *info = 0;
  827. wantvs = lsame_(jobvs, "V");
  828. wantst = lsame_(sort, "S");
  829. wantsn = lsame_(sense, "N");
  830. wantse = lsame_(sense, "E");
  831. wantsv = lsame_(sense, "V");
  832. wantsb = lsame_(sense, "B");
  833. lquery = *lwork == -1 || *liwork == -1;
  834. if (! wantvs && ! lsame_(jobvs, "N")) {
  835. *info = -1;
  836. } else if (! wantst && ! lsame_(sort, "N")) {
  837. *info = -2;
  838. } else if (! (wantsn || wantse || wantsv || wantsb) || ! wantst && !
  839. wantsn) {
  840. *info = -4;
  841. } else if (*n < 0) {
  842. *info = -5;
  843. } else if (*lda < f2cmax(1,*n)) {
  844. *info = -7;
  845. } else if (*ldvs < 1 || wantvs && *ldvs < *n) {
  846. *info = -12;
  847. }
  848. /* Compute workspace */
  849. /* (Note: Comments in the code beginning "RWorkspace:" describe the */
  850. /* minimal amount of real workspace needed at that point in the */
  851. /* code, as well as the preferred amount for good performance. */
  852. /* IWorkspace refers to integer workspace. */
  853. /* NB refers to the optimal block size for the immediately */
  854. /* following subroutine, as returned by ILAENV. */
  855. /* HSWORK refers to the workspace preferred by DHSEQR, as */
  856. /* calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */
  857. /* the worst case. */
  858. /* If SENSE = 'E', 'V' or 'B', then the amount of workspace needed */
  859. /* depends on SDIM, which is computed by the routine DTRSEN later */
  860. /* in the code.) */
  861. if (*info == 0) {
  862. liwrk = 1;
  863. if (*n == 0) {
  864. minwrk = 1;
  865. lwrk = 1;
  866. } else {
  867. maxwrk = (*n << 1) + *n * ilaenv_(&c__1, "DGEHRD", " ", n, &c__1,
  868. n, &c__0, (ftnlen)6, (ftnlen)1);
  869. minwrk = *n * 3;
  870. dhseqr_("S", jobvs, n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[1]
  871. , &vs[vs_offset], ldvs, &work[1], &c_n1, &ieval);
  872. hswork = (integer) work[1];
  873. if (! wantvs) {
  874. /* Computing MAX */
  875. i__1 = maxwrk, i__2 = *n + hswork;
  876. maxwrk = f2cmax(i__1,i__2);
  877. } else {
  878. /* Computing MAX */
  879. i__1 = maxwrk, i__2 = (*n << 1) + (*n - 1) * ilaenv_(&c__1,
  880. "DORGHR", " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)
  881. 1);
  882. maxwrk = f2cmax(i__1,i__2);
  883. /* Computing MAX */
  884. i__1 = maxwrk, i__2 = *n + hswork;
  885. maxwrk = f2cmax(i__1,i__2);
  886. }
  887. lwrk = maxwrk;
  888. if (! wantsn) {
  889. /* Computing MAX */
  890. i__1 = lwrk, i__2 = *n + *n * *n / 2;
  891. lwrk = f2cmax(i__1,i__2);
  892. }
  893. if (wantsv || wantsb) {
  894. liwrk = *n * *n / 4;
  895. }
  896. }
  897. iwork[1] = liwrk;
  898. work[1] = (doublereal) lwrk;
  899. if (*lwork < minwrk && ! lquery) {
  900. *info = -16;
  901. } else if (*liwork < 1 && ! lquery) {
  902. *info = -18;
  903. }
  904. }
  905. if (*info != 0) {
  906. i__1 = -(*info);
  907. xerbla_("DGEESX", &i__1, (ftnlen)6);
  908. return;
  909. } else if (lquery) {
  910. return;
  911. }
  912. /* Quick return if possible */
  913. if (*n == 0) {
  914. *sdim = 0;
  915. return;
  916. }
  917. /* Get machine constants */
  918. eps = dlamch_("P");
  919. smlnum = dlamch_("S");
  920. bignum = 1. / smlnum;
  921. dlabad_(&smlnum, &bignum);
  922. smlnum = sqrt(smlnum) / eps;
  923. bignum = 1. / smlnum;
  924. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  925. anrm = dlange_("M", n, n, &a[a_offset], lda, dum);
  926. scalea = FALSE_;
  927. if (anrm > 0. && anrm < smlnum) {
  928. scalea = TRUE_;
  929. cscale = smlnum;
  930. } else if (anrm > bignum) {
  931. scalea = TRUE_;
  932. cscale = bignum;
  933. }
  934. if (scalea) {
  935. dlascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
  936. ierr);
  937. }
  938. /* Permute the matrix to make it more nearly triangular */
  939. /* (RWorkspace: need N) */
  940. ibal = 1;
  941. dgebal_("P", n, &a[a_offset], lda, &ilo, &ihi, &work[ibal], &ierr);
  942. /* Reduce to upper Hessenberg form */
  943. /* (RWorkspace: need 3*N, prefer 2*N+N*NB) */
  944. itau = *n + ibal;
  945. iwrk = *n + itau;
  946. i__1 = *lwork - iwrk + 1;
  947. dgehrd_(n, &ilo, &ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1,
  948. &ierr);
  949. if (wantvs) {
  950. /* Copy Householder vectors to VS */
  951. dlacpy_("L", n, n, &a[a_offset], lda, &vs[vs_offset], ldvs)
  952. ;
  953. /* Generate orthogonal matrix in VS */
  954. /* (RWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) */
  955. i__1 = *lwork - iwrk + 1;
  956. dorghr_(n, &ilo, &ihi, &vs[vs_offset], ldvs, &work[itau], &work[iwrk],
  957. &i__1, &ierr);
  958. }
  959. *sdim = 0;
  960. /* Perform QR iteration, accumulating Schur vectors in VS if desired */
  961. /* (RWorkspace: need N+1, prefer N+HSWORK (see comments) ) */
  962. iwrk = itau;
  963. i__1 = *lwork - iwrk + 1;
  964. dhseqr_("S", jobvs, n, &ilo, &ihi, &a[a_offset], lda, &wr[1], &wi[1], &vs[
  965. vs_offset], ldvs, &work[iwrk], &i__1, &ieval);
  966. if (ieval > 0) {
  967. *info = ieval;
  968. }
  969. /* Sort eigenvalues if desired */
  970. if (wantst && *info == 0) {
  971. if (scalea) {
  972. dlascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &wr[1], n, &
  973. ierr);
  974. dlascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &wi[1], n, &
  975. ierr);
  976. }
  977. i__1 = *n;
  978. for (i__ = 1; i__ <= i__1; ++i__) {
  979. bwork[i__] = (*select)(&wr[i__], &wi[i__]);
  980. /* L10: */
  981. }
  982. /* Reorder eigenvalues, transform Schur vectors, and compute */
  983. /* reciprocal condition numbers */
  984. /* (RWorkspace: if SENSE is not 'N', need N+2*SDIM*(N-SDIM) */
  985. /* otherwise, need N ) */
  986. /* (IWorkspace: if SENSE is 'V' or 'B', need SDIM*(N-SDIM) */
  987. /* otherwise, need 0 ) */
  988. i__1 = *lwork - iwrk + 1;
  989. dtrsen_(sense, jobvs, &bwork[1], n, &a[a_offset], lda, &vs[vs_offset],
  990. ldvs, &wr[1], &wi[1], sdim, rconde, rcondv, &work[iwrk], &
  991. i__1, &iwork[1], liwork, &icond);
  992. if (! wantsn) {
  993. /* Computing MAX */
  994. i__1 = maxwrk, i__2 = *n + (*sdim << 1) * (*n - *sdim);
  995. maxwrk = f2cmax(i__1,i__2);
  996. }
  997. if (icond == -15) {
  998. /* Not enough real workspace */
  999. *info = -16;
  1000. } else if (icond == -17) {
  1001. /* Not enough integer workspace */
  1002. *info = -18;
  1003. } else if (icond > 0) {
  1004. /* DTRSEN failed to reorder or to restore standard Schur form */
  1005. *info = icond + *n;
  1006. }
  1007. }
  1008. if (wantvs) {
  1009. /* Undo balancing */
  1010. /* (RWorkspace: need N) */
  1011. dgebak_("P", "R", n, &ilo, &ihi, &work[ibal], n, &vs[vs_offset], ldvs,
  1012. &ierr);
  1013. }
  1014. if (scalea) {
  1015. /* Undo scaling for the Schur form of A */
  1016. dlascl_("H", &c__0, &c__0, &cscale, &anrm, n, n, &a[a_offset], lda, &
  1017. ierr);
  1018. i__1 = *lda + 1;
  1019. dcopy_(n, &a[a_offset], &i__1, &wr[1], &c__1);
  1020. if ((wantsv || wantsb) && *info == 0) {
  1021. dum[0] = *rcondv;
  1022. dlascl_("G", &c__0, &c__0, &cscale, &anrm, &c__1, &c__1, dum, &
  1023. c__1, &ierr);
  1024. *rcondv = dum[0];
  1025. }
  1026. if (cscale == smlnum) {
  1027. /* If scaling back towards underflow, adjust WI if an */
  1028. /* offdiagonal element of a 2-by-2 block in the Schur form */
  1029. /* underflows. */
  1030. if (ieval > 0) {
  1031. i1 = ieval + 1;
  1032. i2 = ihi - 1;
  1033. i__1 = ilo - 1;
  1034. dlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[
  1035. 1], n, &ierr);
  1036. } else if (wantst) {
  1037. i1 = 1;
  1038. i2 = *n - 1;
  1039. } else {
  1040. i1 = ilo;
  1041. i2 = ihi - 1;
  1042. }
  1043. inxt = i1 - 1;
  1044. i__1 = i2;
  1045. for (i__ = i1; i__ <= i__1; ++i__) {
  1046. if (i__ < inxt) {
  1047. goto L20;
  1048. }
  1049. if (wi[i__] == 0.) {
  1050. inxt = i__ + 1;
  1051. } else {
  1052. if (a[i__ + 1 + i__ * a_dim1] == 0.) {
  1053. wi[i__] = 0.;
  1054. wi[i__ + 1] = 0.;
  1055. } else if (a[i__ + 1 + i__ * a_dim1] != 0. && a[i__ + (
  1056. i__ + 1) * a_dim1] == 0.) {
  1057. wi[i__] = 0.;
  1058. wi[i__ + 1] = 0.;
  1059. if (i__ > 1) {
  1060. i__2 = i__ - 1;
  1061. dswap_(&i__2, &a[i__ * a_dim1 + 1], &c__1, &a[(
  1062. i__ + 1) * a_dim1 + 1], &c__1);
  1063. }
  1064. if (*n > i__ + 1) {
  1065. i__2 = *n - i__ - 1;
  1066. dswap_(&i__2, &a[i__ + (i__ + 2) * a_dim1], lda, &
  1067. a[i__ + 1 + (i__ + 2) * a_dim1], lda);
  1068. }
  1069. if (wantvs) {
  1070. dswap_(n, &vs[i__ * vs_dim1 + 1], &c__1, &vs[(i__
  1071. + 1) * vs_dim1 + 1], &c__1);
  1072. }
  1073. a[i__ + (i__ + 1) * a_dim1] = a[i__ + 1 + i__ *
  1074. a_dim1];
  1075. a[i__ + 1 + i__ * a_dim1] = 0.;
  1076. }
  1077. inxt = i__ + 2;
  1078. }
  1079. L20:
  1080. ;
  1081. }
  1082. }
  1083. i__1 = *n - ieval;
  1084. /* Computing MAX */
  1085. i__3 = *n - ieval;
  1086. i__2 = f2cmax(i__3,1);
  1087. dlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[ieval +
  1088. 1], &i__2, &ierr);
  1089. }
  1090. if (wantst && *info == 0) {
  1091. /* Check if reordering successful */
  1092. lastsl = TRUE_;
  1093. lst2sl = TRUE_;
  1094. *sdim = 0;
  1095. ip = 0;
  1096. i__1 = *n;
  1097. for (i__ = 1; i__ <= i__1; ++i__) {
  1098. cursl = (*select)(&wr[i__], &wi[i__]);
  1099. if (wi[i__] == 0.) {
  1100. if (cursl) {
  1101. ++(*sdim);
  1102. }
  1103. ip = 0;
  1104. if (cursl && ! lastsl) {
  1105. *info = *n + 2;
  1106. }
  1107. } else {
  1108. if (ip == 1) {
  1109. /* Last eigenvalue of conjugate pair */
  1110. cursl = cursl || lastsl;
  1111. lastsl = cursl;
  1112. if (cursl) {
  1113. *sdim += 2;
  1114. }
  1115. ip = -1;
  1116. if (cursl && ! lst2sl) {
  1117. *info = *n + 2;
  1118. }
  1119. } else {
  1120. /* First eigenvalue of conjugate pair */
  1121. ip = 1;
  1122. }
  1123. }
  1124. lst2sl = lastsl;
  1125. lastsl = cursl;
  1126. /* L30: */
  1127. }
  1128. }
  1129. work[1] = (doublereal) maxwrk;
  1130. if (wantsv || wantsb) {
  1131. /* Computing MAX */
  1132. i__1 = 1, i__2 = *sdim * (*n - *sdim);
  1133. iwork[1] = f2cmax(i__1,i__2);
  1134. } else {
  1135. iwork[1] = 1;
  1136. }
  1137. return;
  1138. /* End of DGEESX */
  1139. } /* dgeesx_ */