You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ztgsy2.c 32 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle_() continue;
  235. #define myceiling_(w) {ceil(w)}
  236. #define myhuge_(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__2 = 2;
  487. static integer c__1 = 1;
  488. /* > \brief \b ZTGSY2 solves the generalized Sylvester equation (unblocked algorithm). */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download ZTGSY2 + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztgsy2.
  495. f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztgsy2.
  498. f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztgsy2.
  501. f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE ZTGSY2( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D, */
  507. /* LDD, E, LDE, F, LDF, SCALE, RDSUM, RDSCAL, */
  508. /* INFO ) */
  509. /* CHARACTER TRANS */
  510. /* INTEGER IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF, M, N */
  511. /* DOUBLE PRECISION RDSCAL, RDSUM, SCALE */
  512. /* COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * ), */
  513. /* $ D( LDD, * ), E( LDE, * ), F( LDF, * ) */
  514. /* > \par Purpose: */
  515. /* ============= */
  516. /* > */
  517. /* > \verbatim */
  518. /* > */
  519. /* > ZTGSY2 solves the generalized Sylvester equation */
  520. /* > */
  521. /* > A * R - L * B = scale * C (1) */
  522. /* > D * R - L * E = scale * F */
  523. /* > */
  524. /* > using Level 1 and 2 BLAS, where R and L are unknown M-by-N matrices, */
  525. /* > (A, D), (B, E) and (C, F) are given matrix pairs of size M-by-M, */
  526. /* > N-by-N and M-by-N, respectively. A, B, D and E are upper triangular */
  527. /* > (i.e., (A,D) and (B,E) in generalized Schur form). */
  528. /* > */
  529. /* > The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output */
  530. /* > scaling factor chosen to avoid overflow. */
  531. /* > */
  532. /* > In matrix notation solving equation (1) corresponds to solve */
  533. /* > Zx = scale * b, where Z is defined as */
  534. /* > */
  535. /* > Z = [ kron(In, A) -kron(B**H, Im) ] (2) */
  536. /* > [ kron(In, D) -kron(E**H, Im) ], */
  537. /* > */
  538. /* > Ik is the identity matrix of size k and X**H is the conjuguate transpose of X. */
  539. /* > kron(X, Y) is the Kronecker product between the matrices X and Y. */
  540. /* > */
  541. /* > If TRANS = 'C', y in the conjugate transposed system Z**H*y = scale*b */
  542. /* > is solved for, which is equivalent to solve for R and L in */
  543. /* > */
  544. /* > A**H * R + D**H * L = scale * C (3) */
  545. /* > R * B**H + L * E**H = scale * -F */
  546. /* > */
  547. /* > This case is used to compute an estimate of Dif[(A, D), (B, E)] = */
  548. /* > = sigma_min(Z) using reverse communication with ZLACON. */
  549. /* > */
  550. /* > ZTGSY2 also (IJOB >= 1) contributes to the computation in ZTGSYL */
  551. /* > of an upper bound on the separation between to matrix pairs. Then */
  552. /* > the input (A, D), (B, E) are sub-pencils of two matrix pairs in */
  553. /* > ZTGSYL. */
  554. /* > \endverbatim */
  555. /* Arguments: */
  556. /* ========== */
  557. /* > \param[in] TRANS */
  558. /* > \verbatim */
  559. /* > TRANS is CHARACTER*1 */
  560. /* > = 'N': solve the generalized Sylvester equation (1). */
  561. /* > = 'T': solve the 'transposed' system (3). */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in] IJOB */
  565. /* > \verbatim */
  566. /* > IJOB is INTEGER */
  567. /* > Specifies what kind of functionality to be performed. */
  568. /* > =0: solve (1) only. */
  569. /* > =1: A contribution from this subsystem to a Frobenius */
  570. /* > norm-based estimate of the separation between two matrix */
  571. /* > pairs is computed. (look ahead strategy is used). */
  572. /* > =2: A contribution from this subsystem to a Frobenius */
  573. /* > norm-based estimate of the separation between two matrix */
  574. /* > pairs is computed. (DGECON on sub-systems is used.) */
  575. /* > Not referenced if TRANS = 'T'. */
  576. /* > \endverbatim */
  577. /* > */
  578. /* > \param[in] M */
  579. /* > \verbatim */
  580. /* > M is INTEGER */
  581. /* > On entry, M specifies the order of A and D, and the row */
  582. /* > dimension of C, F, R and L. */
  583. /* > \endverbatim */
  584. /* > */
  585. /* > \param[in] N */
  586. /* > \verbatim */
  587. /* > N is INTEGER */
  588. /* > On entry, N specifies the order of B and E, and the column */
  589. /* > dimension of C, F, R and L. */
  590. /* > \endverbatim */
  591. /* > */
  592. /* > \param[in] A */
  593. /* > \verbatim */
  594. /* > A is COMPLEX*16 array, dimension (LDA, M) */
  595. /* > On entry, A contains an upper triangular matrix. */
  596. /* > \endverbatim */
  597. /* > */
  598. /* > \param[in] LDA */
  599. /* > \verbatim */
  600. /* > LDA is INTEGER */
  601. /* > The leading dimension of the matrix A. LDA >= f2cmax(1, M). */
  602. /* > \endverbatim */
  603. /* > */
  604. /* > \param[in] B */
  605. /* > \verbatim */
  606. /* > B is COMPLEX*16 array, dimension (LDB, N) */
  607. /* > On entry, B contains an upper triangular matrix. */
  608. /* > \endverbatim */
  609. /* > */
  610. /* > \param[in] LDB */
  611. /* > \verbatim */
  612. /* > LDB is INTEGER */
  613. /* > The leading dimension of the matrix B. LDB >= f2cmax(1, N). */
  614. /* > \endverbatim */
  615. /* > */
  616. /* > \param[in,out] C */
  617. /* > \verbatim */
  618. /* > C is COMPLEX*16 array, dimension (LDC, N) */
  619. /* > On entry, C contains the right-hand-side of the first matrix */
  620. /* > equation in (1). */
  621. /* > On exit, if IJOB = 0, C has been overwritten by the solution */
  622. /* > R. */
  623. /* > \endverbatim */
  624. /* > */
  625. /* > \param[in] LDC */
  626. /* > \verbatim */
  627. /* > LDC is INTEGER */
  628. /* > The leading dimension of the matrix C. LDC >= f2cmax(1, M). */
  629. /* > \endverbatim */
  630. /* > */
  631. /* > \param[in] D */
  632. /* > \verbatim */
  633. /* > D is COMPLEX*16 array, dimension (LDD, M) */
  634. /* > On entry, D contains an upper triangular matrix. */
  635. /* > \endverbatim */
  636. /* > */
  637. /* > \param[in] LDD */
  638. /* > \verbatim */
  639. /* > LDD is INTEGER */
  640. /* > The leading dimension of the matrix D. LDD >= f2cmax(1, M). */
  641. /* > \endverbatim */
  642. /* > */
  643. /* > \param[in] E */
  644. /* > \verbatim */
  645. /* > E is COMPLEX*16 array, dimension (LDE, N) */
  646. /* > On entry, E contains an upper triangular matrix. */
  647. /* > \endverbatim */
  648. /* > */
  649. /* > \param[in] LDE */
  650. /* > \verbatim */
  651. /* > LDE is INTEGER */
  652. /* > The leading dimension of the matrix E. LDE >= f2cmax(1, N). */
  653. /* > \endverbatim */
  654. /* > */
  655. /* > \param[in,out] F */
  656. /* > \verbatim */
  657. /* > F is COMPLEX*16 array, dimension (LDF, N) */
  658. /* > On entry, F contains the right-hand-side of the second matrix */
  659. /* > equation in (1). */
  660. /* > On exit, if IJOB = 0, F has been overwritten by the solution */
  661. /* > L. */
  662. /* > \endverbatim */
  663. /* > */
  664. /* > \param[in] LDF */
  665. /* > \verbatim */
  666. /* > LDF is INTEGER */
  667. /* > The leading dimension of the matrix F. LDF >= f2cmax(1, M). */
  668. /* > \endverbatim */
  669. /* > */
  670. /* > \param[out] SCALE */
  671. /* > \verbatim */
  672. /* > SCALE is DOUBLE PRECISION */
  673. /* > On exit, 0 <= SCALE <= 1. If 0 < SCALE < 1, the solutions */
  674. /* > R and L (C and F on entry) will hold the solutions to a */
  675. /* > slightly perturbed system but the input matrices A, B, D and */
  676. /* > E have not been changed. If SCALE = 0, R and L will hold the */
  677. /* > solutions to the homogeneous system with C = F = 0. */
  678. /* > Normally, SCALE = 1. */
  679. /* > \endverbatim */
  680. /* > */
  681. /* > \param[in,out] RDSUM */
  682. /* > \verbatim */
  683. /* > RDSUM is DOUBLE PRECISION */
  684. /* > On entry, the sum of squares of computed contributions to */
  685. /* > the Dif-estimate under computation by ZTGSYL, where the */
  686. /* > scaling factor RDSCAL (see below) has been factored out. */
  687. /* > On exit, the corresponding sum of squares updated with the */
  688. /* > contributions from the current sub-system. */
  689. /* > If TRANS = 'T' RDSUM is not touched. */
  690. /* > NOTE: RDSUM only makes sense when ZTGSY2 is called by */
  691. /* > ZTGSYL. */
  692. /* > \endverbatim */
  693. /* > */
  694. /* > \param[in,out] RDSCAL */
  695. /* > \verbatim */
  696. /* > RDSCAL is DOUBLE PRECISION */
  697. /* > On entry, scaling factor used to prevent overflow in RDSUM. */
  698. /* > On exit, RDSCAL is updated w.r.t. the current contributions */
  699. /* > in RDSUM. */
  700. /* > If TRANS = 'T', RDSCAL is not touched. */
  701. /* > NOTE: RDSCAL only makes sense when ZTGSY2 is called by */
  702. /* > ZTGSYL. */
  703. /* > \endverbatim */
  704. /* > */
  705. /* > \param[out] INFO */
  706. /* > \verbatim */
  707. /* > INFO is INTEGER */
  708. /* > On exit, if INFO is set to */
  709. /* > =0: Successful exit */
  710. /* > <0: If INFO = -i, input argument number i is illegal. */
  711. /* > >0: The matrix pairs (A, D) and (B, E) have common or very */
  712. /* > close eigenvalues. */
  713. /* > \endverbatim */
  714. /* Authors: */
  715. /* ======== */
  716. /* > \author Univ. of Tennessee */
  717. /* > \author Univ. of California Berkeley */
  718. /* > \author Univ. of Colorado Denver */
  719. /* > \author NAG Ltd. */
  720. /* > \date December 2016 */
  721. /* > \ingroup complex16SYauxiliary */
  722. /* > \par Contributors: */
  723. /* ================== */
  724. /* > */
  725. /* > Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
  726. /* > Umea University, S-901 87 Umea, Sweden. */
  727. /* ===================================================================== */
  728. /* Subroutine */ void ztgsy2_(char *trans, integer *ijob, integer *m, integer *
  729. n, doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb,
  730. doublecomplex *c__, integer *ldc, doublecomplex *d__, integer *ldd,
  731. doublecomplex *e, integer *lde, doublecomplex *f, integer *ldf,
  732. doublereal *scale, doublereal *rdsum, doublereal *rdscal, integer *
  733. info)
  734. {
  735. /* System generated locals */
  736. integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, d_dim1,
  737. d_offset, e_dim1, e_offset, f_dim1, f_offset, i__1, i__2, i__3,
  738. i__4;
  739. doublecomplex z__1, z__2, z__3, z__4, z__5, z__6;
  740. /* Local variables */
  741. integer ierr, ipiv[2], jpiv[2], i__, j, k;
  742. doublecomplex alpha, z__[4] /* was [2][2] */;
  743. extern logical lsame_(char *, char *);
  744. extern /* Subroutine */ void zscal_(integer *, doublecomplex *,
  745. doublecomplex *, integer *), zaxpy_(integer *, doublecomplex *,
  746. doublecomplex *, integer *, doublecomplex *, integer *), zgesc2_(
  747. integer *, doublecomplex *, integer *, doublecomplex *, integer *,
  748. integer *, doublereal *), zgetc2_(integer *, doublecomplex *,
  749. integer *, integer *, integer *, integer *);
  750. doublereal scaloc;
  751. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  752. extern void zlatdf_(
  753. integer *, integer *, doublecomplex *, integer *, doublecomplex *,
  754. doublereal *, doublereal *, integer *, integer *);
  755. logical notran;
  756. doublecomplex rhs[2];
  757. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  758. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  759. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  760. /* December 2016 */
  761. /* ===================================================================== */
  762. /* Decode and test input parameters */
  763. /* Parameter adjustments */
  764. a_dim1 = *lda;
  765. a_offset = 1 + a_dim1 * 1;
  766. a -= a_offset;
  767. b_dim1 = *ldb;
  768. b_offset = 1 + b_dim1 * 1;
  769. b -= b_offset;
  770. c_dim1 = *ldc;
  771. c_offset = 1 + c_dim1 * 1;
  772. c__ -= c_offset;
  773. d_dim1 = *ldd;
  774. d_offset = 1 + d_dim1 * 1;
  775. d__ -= d_offset;
  776. e_dim1 = *lde;
  777. e_offset = 1 + e_dim1 * 1;
  778. e -= e_offset;
  779. f_dim1 = *ldf;
  780. f_offset = 1 + f_dim1 * 1;
  781. f -= f_offset;
  782. /* Function Body */
  783. *info = 0;
  784. ierr = 0;
  785. notran = lsame_(trans, "N");
  786. if (! notran && ! lsame_(trans, "C")) {
  787. *info = -1;
  788. } else if (notran) {
  789. if (*ijob < 0 || *ijob > 2) {
  790. *info = -2;
  791. }
  792. }
  793. if (*info == 0) {
  794. if (*m <= 0) {
  795. *info = -3;
  796. } else if (*n <= 0) {
  797. *info = -4;
  798. } else if (*lda < f2cmax(1,*m)) {
  799. *info = -6;
  800. } else if (*ldb < f2cmax(1,*n)) {
  801. *info = -8;
  802. } else if (*ldc < f2cmax(1,*m)) {
  803. *info = -10;
  804. } else if (*ldd < f2cmax(1,*m)) {
  805. *info = -12;
  806. } else if (*lde < f2cmax(1,*n)) {
  807. *info = -14;
  808. } else if (*ldf < f2cmax(1,*m)) {
  809. *info = -16;
  810. }
  811. }
  812. if (*info != 0) {
  813. i__1 = -(*info);
  814. xerbla_("ZTGSY2", &i__1, (ftnlen)6);
  815. return;
  816. }
  817. if (notran) {
  818. /* Solve (I, J) - system */
  819. /* A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J) */
  820. /* D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J) */
  821. /* for I = M, M - 1, ..., 1; J = 1, 2, ..., N */
  822. *scale = 1.;
  823. scaloc = 1.;
  824. i__1 = *n;
  825. for (j = 1; j <= i__1; ++j) {
  826. for (i__ = *m; i__ >= 1; --i__) {
  827. /* Build 2 by 2 system */
  828. i__2 = i__ + i__ * a_dim1;
  829. z__[0].r = a[i__2].r, z__[0].i = a[i__2].i;
  830. i__2 = i__ + i__ * d_dim1;
  831. z__[1].r = d__[i__2].r, z__[1].i = d__[i__2].i;
  832. i__2 = j + j * b_dim1;
  833. z__1.r = -b[i__2].r, z__1.i = -b[i__2].i;
  834. z__[2].r = z__1.r, z__[2].i = z__1.i;
  835. i__2 = j + j * e_dim1;
  836. z__1.r = -e[i__2].r, z__1.i = -e[i__2].i;
  837. z__[3].r = z__1.r, z__[3].i = z__1.i;
  838. /* Set up right hand side(s) */
  839. i__2 = i__ + j * c_dim1;
  840. rhs[0].r = c__[i__2].r, rhs[0].i = c__[i__2].i;
  841. i__2 = i__ + j * f_dim1;
  842. rhs[1].r = f[i__2].r, rhs[1].i = f[i__2].i;
  843. /* Solve Z * x = RHS */
  844. zgetc2_(&c__2, z__, &c__2, ipiv, jpiv, &ierr);
  845. if (ierr > 0) {
  846. *info = ierr;
  847. }
  848. if (*ijob == 0) {
  849. zgesc2_(&c__2, z__, &c__2, rhs, ipiv, jpiv, &scaloc);
  850. if (scaloc != 1.) {
  851. i__2 = *n;
  852. for (k = 1; k <= i__2; ++k) {
  853. z__1.r = scaloc, z__1.i = 0.;
  854. zscal_(m, &z__1, &c__[k * c_dim1 + 1], &c__1);
  855. z__1.r = scaloc, z__1.i = 0.;
  856. zscal_(m, &z__1, &f[k * f_dim1 + 1], &c__1);
  857. /* L10: */
  858. }
  859. *scale *= scaloc;
  860. }
  861. } else {
  862. zlatdf_(ijob, &c__2, z__, &c__2, rhs, rdsum, rdscal, ipiv,
  863. jpiv);
  864. }
  865. /* Unpack solution vector(s) */
  866. i__2 = i__ + j * c_dim1;
  867. c__[i__2].r = rhs[0].r, c__[i__2].i = rhs[0].i;
  868. i__2 = i__ + j * f_dim1;
  869. f[i__2].r = rhs[1].r, f[i__2].i = rhs[1].i;
  870. /* Substitute R(I, J) and L(I, J) into remaining equation. */
  871. if (i__ > 1) {
  872. z__1.r = -rhs[0].r, z__1.i = -rhs[0].i;
  873. alpha.r = z__1.r, alpha.i = z__1.i;
  874. i__2 = i__ - 1;
  875. zaxpy_(&i__2, &alpha, &a[i__ * a_dim1 + 1], &c__1, &c__[j
  876. * c_dim1 + 1], &c__1);
  877. i__2 = i__ - 1;
  878. zaxpy_(&i__2, &alpha, &d__[i__ * d_dim1 + 1], &c__1, &f[j
  879. * f_dim1 + 1], &c__1);
  880. }
  881. if (j < *n) {
  882. i__2 = *n - j;
  883. zaxpy_(&i__2, &rhs[1], &b[j + (j + 1) * b_dim1], ldb, &
  884. c__[i__ + (j + 1) * c_dim1], ldc);
  885. i__2 = *n - j;
  886. zaxpy_(&i__2, &rhs[1], &e[j + (j + 1) * e_dim1], lde, &f[
  887. i__ + (j + 1) * f_dim1], ldf);
  888. }
  889. /* L20: */
  890. }
  891. /* L30: */
  892. }
  893. } else {
  894. /* Solve transposed (I, J) - system: */
  895. /* A(I, I)**H * R(I, J) + D(I, I)**H * L(J, J) = C(I, J) */
  896. /* R(I, I) * B(J, J) + L(I, J) * E(J, J) = -F(I, J) */
  897. /* for I = 1, 2, ..., M, J = N, N - 1, ..., 1 */
  898. *scale = 1.;
  899. scaloc = 1.;
  900. i__1 = *m;
  901. for (i__ = 1; i__ <= i__1; ++i__) {
  902. for (j = *n; j >= 1; --j) {
  903. /* Build 2 by 2 system Z**H */
  904. d_cnjg(&z__1, &a[i__ + i__ * a_dim1]);
  905. z__[0].r = z__1.r, z__[0].i = z__1.i;
  906. d_cnjg(&z__2, &b[j + j * b_dim1]);
  907. z__1.r = -z__2.r, z__1.i = -z__2.i;
  908. z__[1].r = z__1.r, z__[1].i = z__1.i;
  909. d_cnjg(&z__1, &d__[i__ + i__ * d_dim1]);
  910. z__[2].r = z__1.r, z__[2].i = z__1.i;
  911. d_cnjg(&z__2, &e[j + j * e_dim1]);
  912. z__1.r = -z__2.r, z__1.i = -z__2.i;
  913. z__[3].r = z__1.r, z__[3].i = z__1.i;
  914. /* Set up right hand side(s) */
  915. i__2 = i__ + j * c_dim1;
  916. rhs[0].r = c__[i__2].r, rhs[0].i = c__[i__2].i;
  917. i__2 = i__ + j * f_dim1;
  918. rhs[1].r = f[i__2].r, rhs[1].i = f[i__2].i;
  919. /* Solve Z**H * x = RHS */
  920. zgetc2_(&c__2, z__, &c__2, ipiv, jpiv, &ierr);
  921. if (ierr > 0) {
  922. *info = ierr;
  923. }
  924. zgesc2_(&c__2, z__, &c__2, rhs, ipiv, jpiv, &scaloc);
  925. if (scaloc != 1.) {
  926. i__2 = *n;
  927. for (k = 1; k <= i__2; ++k) {
  928. z__1.r = scaloc, z__1.i = 0.;
  929. zscal_(m, &z__1, &c__[k * c_dim1 + 1], &c__1);
  930. z__1.r = scaloc, z__1.i = 0.;
  931. zscal_(m, &z__1, &f[k * f_dim1 + 1], &c__1);
  932. /* L40: */
  933. }
  934. *scale *= scaloc;
  935. }
  936. /* Unpack solution vector(s) */
  937. i__2 = i__ + j * c_dim1;
  938. c__[i__2].r = rhs[0].r, c__[i__2].i = rhs[0].i;
  939. i__2 = i__ + j * f_dim1;
  940. f[i__2].r = rhs[1].r, f[i__2].i = rhs[1].i;
  941. /* Substitute R(I, J) and L(I, J) into remaining equation. */
  942. i__2 = j - 1;
  943. for (k = 1; k <= i__2; ++k) {
  944. i__3 = i__ + k * f_dim1;
  945. i__4 = i__ + k * f_dim1;
  946. d_cnjg(&z__4, &b[k + j * b_dim1]);
  947. z__3.r = rhs[0].r * z__4.r - rhs[0].i * z__4.i, z__3.i =
  948. rhs[0].r * z__4.i + rhs[0].i * z__4.r;
  949. z__2.r = f[i__4].r + z__3.r, z__2.i = f[i__4].i + z__3.i;
  950. d_cnjg(&z__6, &e[k + j * e_dim1]);
  951. z__5.r = rhs[1].r * z__6.r - rhs[1].i * z__6.i, z__5.i =
  952. rhs[1].r * z__6.i + rhs[1].i * z__6.r;
  953. z__1.r = z__2.r + z__5.r, z__1.i = z__2.i + z__5.i;
  954. f[i__3].r = z__1.r, f[i__3].i = z__1.i;
  955. /* L50: */
  956. }
  957. i__2 = *m;
  958. for (k = i__ + 1; k <= i__2; ++k) {
  959. i__3 = k + j * c_dim1;
  960. i__4 = k + j * c_dim1;
  961. d_cnjg(&z__4, &a[i__ + k * a_dim1]);
  962. z__3.r = z__4.r * rhs[0].r - z__4.i * rhs[0].i, z__3.i =
  963. z__4.r * rhs[0].i + z__4.i * rhs[0].r;
  964. z__2.r = c__[i__4].r - z__3.r, z__2.i = c__[i__4].i -
  965. z__3.i;
  966. d_cnjg(&z__6, &d__[i__ + k * d_dim1]);
  967. z__5.r = z__6.r * rhs[1].r - z__6.i * rhs[1].i, z__5.i =
  968. z__6.r * rhs[1].i + z__6.i * rhs[1].r;
  969. z__1.r = z__2.r - z__5.r, z__1.i = z__2.i - z__5.i;
  970. c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
  971. /* L60: */
  972. }
  973. /* L70: */
  974. }
  975. /* L80: */
  976. }
  977. }
  978. return;
  979. /* End of ZTGSY2 */
  980. } /* ztgsy2_ */