You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slasyf_rk.c 46 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static real c_b9 = -1.f;
  488. static real c_b10 = 1.f;
  489. /* > \brief \b SLASYF_RK computes a partial factorization of a real symmetric indefinite matrix using bounded
  490. Bunch-Kaufman (rook) diagonal pivoting method. */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download SLASYF_RK + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasyf_
  497. rk.f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasyf_
  500. rk.f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasyf_
  503. rk.f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE SLASYF_RK( UPLO, N, NB, KB, A, LDA, E, IPIV, W, LDW, */
  509. /* INFO ) */
  510. /* CHARACTER UPLO */
  511. /* INTEGER INFO, KB, LDA, LDW, N, NB */
  512. /* INTEGER IPIV( * ) */
  513. /* REAL A( LDA, * ), E( * ), W( LDW, * ) */
  514. /* > \par Purpose: */
  515. /* ============= */
  516. /* > */
  517. /* > \verbatim */
  518. /* > SLASYF_RK computes a partial factorization of a real symmetric */
  519. /* > matrix A using the bounded Bunch-Kaufman (rook) diagonal */
  520. /* > pivoting method. The partial factorization has the form: */
  521. /* > */
  522. /* > A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or: */
  523. /* > ( 0 U22 ) ( 0 D ) ( U12**T U22**T ) */
  524. /* > */
  525. /* > A = ( L11 0 ) ( D 0 ) ( L11**T L21**T ) if UPLO = 'L', */
  526. /* > ( L21 I ) ( 0 A22 ) ( 0 I ) */
  527. /* > */
  528. /* > where the order of D is at most NB. The actual order is returned in */
  529. /* > the argument KB, and is either NB or NB-1, or N if N <= NB. */
  530. /* > */
  531. /* > SLASYF_RK is an auxiliary routine called by SSYTRF_RK. It uses */
  532. /* > blocked code (calling Level 3 BLAS) to update the submatrix */
  533. /* > A11 (if UPLO = 'U') or A22 (if UPLO = 'L'). */
  534. /* > \endverbatim */
  535. /* Arguments: */
  536. /* ========== */
  537. /* > \param[in] UPLO */
  538. /* > \verbatim */
  539. /* > UPLO is CHARACTER*1 */
  540. /* > Specifies whether the upper or lower triangular part of the */
  541. /* > symmetric matrix A is stored: */
  542. /* > = 'U': Upper triangular */
  543. /* > = 'L': Lower triangular */
  544. /* > \endverbatim */
  545. /* > */
  546. /* > \param[in] N */
  547. /* > \verbatim */
  548. /* > N is INTEGER */
  549. /* > The order of the matrix A. N >= 0. */
  550. /* > \endverbatim */
  551. /* > */
  552. /* > \param[in] NB */
  553. /* > \verbatim */
  554. /* > NB is INTEGER */
  555. /* > The maximum number of columns of the matrix A that should be */
  556. /* > factored. NB should be at least 2 to allow for 2-by-2 pivot */
  557. /* > blocks. */
  558. /* > \endverbatim */
  559. /* > */
  560. /* > \param[out] KB */
  561. /* > \verbatim */
  562. /* > KB is INTEGER */
  563. /* > The number of columns of A that were actually factored. */
  564. /* > KB is either NB-1 or NB, or N if N <= NB. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in,out] A */
  568. /* > \verbatim */
  569. /* > A is REAL array, dimension (LDA,N) */
  570. /* > On entry, the symmetric matrix A. */
  571. /* > If UPLO = 'U': the leading N-by-N upper triangular part */
  572. /* > of A contains the upper triangular part of the matrix A, */
  573. /* > and the strictly lower triangular part of A is not */
  574. /* > referenced. */
  575. /* > */
  576. /* > If UPLO = 'L': the leading N-by-N lower triangular part */
  577. /* > of A contains the lower triangular part of the matrix A, */
  578. /* > and the strictly upper triangular part of A is not */
  579. /* > referenced. */
  580. /* > */
  581. /* > On exit, contains: */
  582. /* > a) ONLY diagonal elements of the symmetric block diagonal */
  583. /* > matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); */
  584. /* > (superdiagonal (or subdiagonal) elements of D */
  585. /* > are stored on exit in array E), and */
  586. /* > b) If UPLO = 'U': factor U in the superdiagonal part of A. */
  587. /* > If UPLO = 'L': factor L in the subdiagonal part of A. */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[in] LDA */
  591. /* > \verbatim */
  592. /* > LDA is INTEGER */
  593. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  594. /* > \endverbatim */
  595. /* > */
  596. /* > \param[out] E */
  597. /* > \verbatim */
  598. /* > E is REAL array, dimension (N) */
  599. /* > On exit, contains the superdiagonal (or subdiagonal) */
  600. /* > elements of the symmetric block diagonal matrix D */
  601. /* > with 1-by-1 or 2-by-2 diagonal blocks, where */
  602. /* > If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0; */
  603. /* > If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0. */
  604. /* > */
  605. /* > NOTE: For 1-by-1 diagonal block D(k), where */
  606. /* > 1 <= k <= N, the element E(k) is set to 0 in both */
  607. /* > UPLO = 'U' or UPLO = 'L' cases. */
  608. /* > \endverbatim */
  609. /* > */
  610. /* > \param[out] IPIV */
  611. /* > \verbatim */
  612. /* > IPIV is INTEGER array, dimension (N) */
  613. /* > IPIV describes the permutation matrix P in the factorization */
  614. /* > of matrix A as follows. The absolute value of IPIV(k) */
  615. /* > represents the index of row and column that were */
  616. /* > interchanged with the k-th row and column. The value of UPLO */
  617. /* > describes the order in which the interchanges were applied. */
  618. /* > Also, the sign of IPIV represents the block structure of */
  619. /* > the symmetric block diagonal matrix D with 1-by-1 or 2-by-2 */
  620. /* > diagonal blocks which correspond to 1 or 2 interchanges */
  621. /* > at each factorization step. */
  622. /* > */
  623. /* > If UPLO = 'U', */
  624. /* > ( in factorization order, k decreases from N to 1 ): */
  625. /* > a) A single positive entry IPIV(k) > 0 means: */
  626. /* > D(k,k) is a 1-by-1 diagonal block. */
  627. /* > If IPIV(k) != k, rows and columns k and IPIV(k) were */
  628. /* > interchanged in the submatrix A(1:N,N-KB+1:N); */
  629. /* > If IPIV(k) = k, no interchange occurred. */
  630. /* > */
  631. /* > */
  632. /* > b) A pair of consecutive negative entries */
  633. /* > IPIV(k) < 0 and IPIV(k-1) < 0 means: */
  634. /* > D(k-1:k,k-1:k) is a 2-by-2 diagonal block. */
  635. /* > (NOTE: negative entries in IPIV appear ONLY in pairs). */
  636. /* > 1) If -IPIV(k) != k, rows and columns */
  637. /* > k and -IPIV(k) were interchanged */
  638. /* > in the matrix A(1:N,N-KB+1:N). */
  639. /* > If -IPIV(k) = k, no interchange occurred. */
  640. /* > 2) If -IPIV(k-1) != k-1, rows and columns */
  641. /* > k-1 and -IPIV(k-1) were interchanged */
  642. /* > in the submatrix A(1:N,N-KB+1:N). */
  643. /* > If -IPIV(k-1) = k-1, no interchange occurred. */
  644. /* > */
  645. /* > c) In both cases a) and b) is always ABS( IPIV(k) ) <= k. */
  646. /* > */
  647. /* > d) NOTE: Any entry IPIV(k) is always NONZERO on output. */
  648. /* > */
  649. /* > If UPLO = 'L', */
  650. /* > ( in factorization order, k increases from 1 to N ): */
  651. /* > a) A single positive entry IPIV(k) > 0 means: */
  652. /* > D(k,k) is a 1-by-1 diagonal block. */
  653. /* > If IPIV(k) != k, rows and columns k and IPIV(k) were */
  654. /* > interchanged in the submatrix A(1:N,1:KB). */
  655. /* > If IPIV(k) = k, no interchange occurred. */
  656. /* > */
  657. /* > b) A pair of consecutive negative entries */
  658. /* > IPIV(k) < 0 and IPIV(k+1) < 0 means: */
  659. /* > D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
  660. /* > (NOTE: negative entries in IPIV appear ONLY in pairs). */
  661. /* > 1) If -IPIV(k) != k, rows and columns */
  662. /* > k and -IPIV(k) were interchanged */
  663. /* > in the submatrix A(1:N,1:KB). */
  664. /* > If -IPIV(k) = k, no interchange occurred. */
  665. /* > 2) If -IPIV(k+1) != k+1, rows and columns */
  666. /* > k-1 and -IPIV(k-1) were interchanged */
  667. /* > in the submatrix A(1:N,1:KB). */
  668. /* > If -IPIV(k+1) = k+1, no interchange occurred. */
  669. /* > */
  670. /* > c) In both cases a) and b) is always ABS( IPIV(k) ) >= k. */
  671. /* > */
  672. /* > d) NOTE: Any entry IPIV(k) is always NONZERO on output. */
  673. /* > \endverbatim */
  674. /* > */
  675. /* > \param[out] W */
  676. /* > \verbatim */
  677. /* > W is REAL array, dimension (LDW,NB) */
  678. /* > \endverbatim */
  679. /* > */
  680. /* > \param[in] LDW */
  681. /* > \verbatim */
  682. /* > LDW is INTEGER */
  683. /* > The leading dimension of the array W. LDW >= f2cmax(1,N). */
  684. /* > \endverbatim */
  685. /* > */
  686. /* > \param[out] INFO */
  687. /* > \verbatim */
  688. /* > INFO is INTEGER */
  689. /* > = 0: successful exit */
  690. /* > */
  691. /* > < 0: If INFO = -k, the k-th argument had an illegal value */
  692. /* > */
  693. /* > > 0: If INFO = k, the matrix A is singular, because: */
  694. /* > If UPLO = 'U': column k in the upper */
  695. /* > triangular part of A contains all zeros. */
  696. /* > If UPLO = 'L': column k in the lower */
  697. /* > triangular part of A contains all zeros. */
  698. /* > */
  699. /* > Therefore D(k,k) is exactly zero, and superdiagonal */
  700. /* > elements of column k of U (or subdiagonal elements of */
  701. /* > column k of L ) are all zeros. The factorization has */
  702. /* > been completed, but the block diagonal matrix D is */
  703. /* > exactly singular, and division by zero will occur if */
  704. /* > it is used to solve a system of equations. */
  705. /* > */
  706. /* > NOTE: INFO only stores the first occurrence of */
  707. /* > a singularity, any subsequent occurrence of singularity */
  708. /* > is not stored in INFO even though the factorization */
  709. /* > always completes. */
  710. /* > \endverbatim */
  711. /* Authors: */
  712. /* ======== */
  713. /* > \author Univ. of Tennessee */
  714. /* > \author Univ. of California Berkeley */
  715. /* > \author Univ. of Colorado Denver */
  716. /* > \author NAG Ltd. */
  717. /* > \date December 2016 */
  718. /* > \ingroup singleSYcomputational */
  719. /* > \par Contributors: */
  720. /* ================== */
  721. /* > */
  722. /* > \verbatim */
  723. /* > */
  724. /* > December 2016, Igor Kozachenko, */
  725. /* > Computer Science Division, */
  726. /* > University of California, Berkeley */
  727. /* > */
  728. /* > September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, */
  729. /* > School of Mathematics, */
  730. /* > University of Manchester */
  731. /* > */
  732. /* > \endverbatim */
  733. /* ===================================================================== */
  734. /* Subroutine */ void slasyf_rk_(char *uplo, integer *n, integer *nb, integer
  735. *kb, real *a, integer *lda, real *e, integer *ipiv, real *w, integer *
  736. ldw, integer *info)
  737. {
  738. /* System generated locals */
  739. integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3, i__4, i__5;
  740. real r__1;
  741. /* Local variables */
  742. logical done;
  743. integer imax, jmax, j, k, p;
  744. real t, alpha;
  745. extern logical lsame_(char *, char *);
  746. extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *),
  747. sgemm_(char *, char *, integer *, integer *, integer *, real *,
  748. real *, integer *, real *, integer *, real *, real *, integer *);
  749. real sfmin;
  750. integer itemp;
  751. extern /* Subroutine */ void sgemv_(char *, integer *, integer *, real *,
  752. real *, integer *, real *, integer *, real *, real *, integer *);
  753. integer kstep;
  754. real stemp;
  755. extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *,
  756. integer *), sswap_(integer *, real *, integer *, real *, integer *
  757. );
  758. real r1, d11, d12, d21, d22;
  759. integer jb, ii, jj, kk, kp;
  760. real absakk;
  761. integer kw;
  762. extern real slamch_(char *);
  763. extern integer isamax_(integer *, real *, integer *);
  764. real colmax, rowmax;
  765. integer kkw;
  766. /* -- LAPACK computational routine (version 3.7.0) -- */
  767. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  768. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  769. /* December 2016 */
  770. /* ===================================================================== */
  771. /* Parameter adjustments */
  772. a_dim1 = *lda;
  773. a_offset = 1 + a_dim1 * 1;
  774. a -= a_offset;
  775. --e;
  776. --ipiv;
  777. w_dim1 = *ldw;
  778. w_offset = 1 + w_dim1 * 1;
  779. w -= w_offset;
  780. /* Function Body */
  781. *info = 0;
  782. /* Initialize ALPHA for use in choosing pivot block size. */
  783. alpha = (sqrt(17.f) + 1.f) / 8.f;
  784. /* Compute machine safe minimum */
  785. sfmin = slamch_("S");
  786. if (lsame_(uplo, "U")) {
  787. /* Factorize the trailing columns of A using the upper triangle */
  788. /* of A and working backwards, and compute the matrix W = U12*D */
  789. /* for use in updating A11 */
  790. /* Initialize the first entry of array E, where superdiagonal */
  791. /* elements of D are stored */
  792. e[1] = 0.f;
  793. /* K is the main loop index, decreasing from N in steps of 1 or 2 */
  794. k = *n;
  795. L10:
  796. /* KW is the column of W which corresponds to column K of A */
  797. kw = *nb + k - *n;
  798. /* Exit from loop */
  799. if (k <= *n - *nb + 1 && *nb < *n || k < 1) {
  800. goto L30;
  801. }
  802. kstep = 1;
  803. p = k;
  804. /* Copy column K of A to column KW of W and update it */
  805. scopy_(&k, &a[k * a_dim1 + 1], &c__1, &w[kw * w_dim1 + 1], &c__1);
  806. if (k < *n) {
  807. i__1 = *n - k;
  808. sgemv_("No transpose", &k, &i__1, &c_b9, &a[(k + 1) * a_dim1 + 1],
  809. lda, &w[k + (kw + 1) * w_dim1], ldw, &c_b10, &w[kw *
  810. w_dim1 + 1], &c__1);
  811. }
  812. /* Determine rows and columns to be interchanged and whether */
  813. /* a 1-by-1 or 2-by-2 pivot block will be used */
  814. absakk = (r__1 = w[k + kw * w_dim1], abs(r__1));
  815. /* IMAX is the row-index of the largest off-diagonal element in */
  816. /* column K, and COLMAX is its absolute value. */
  817. /* Determine both COLMAX and IMAX. */
  818. if (k > 1) {
  819. i__1 = k - 1;
  820. imax = isamax_(&i__1, &w[kw * w_dim1 + 1], &c__1);
  821. colmax = (r__1 = w[imax + kw * w_dim1], abs(r__1));
  822. } else {
  823. colmax = 0.f;
  824. }
  825. if (f2cmax(absakk,colmax) == 0.f) {
  826. /* Column K is zero or underflow: set INFO and continue */
  827. if (*info == 0) {
  828. *info = k;
  829. }
  830. kp = k;
  831. scopy_(&k, &w[kw * w_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &c__1);
  832. /* Set E( K ) to zero */
  833. if (k > 1) {
  834. e[k] = 0.f;
  835. }
  836. } else {
  837. /* ============================================================ */
  838. /* Test for interchange */
  839. /* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX */
  840. /* (used to handle NaN and Inf) */
  841. if (! (absakk < alpha * colmax)) {
  842. /* no interchange, use 1-by-1 pivot block */
  843. kp = k;
  844. } else {
  845. done = FALSE_;
  846. /* Loop until pivot found */
  847. L12:
  848. /* Begin pivot search loop body */
  849. /* Copy column IMAX to column KW-1 of W and update it */
  850. scopy_(&imax, &a[imax * a_dim1 + 1], &c__1, &w[(kw - 1) *
  851. w_dim1 + 1], &c__1);
  852. i__1 = k - imax;
  853. scopy_(&i__1, &a[imax + (imax + 1) * a_dim1], lda, &w[imax +
  854. 1 + (kw - 1) * w_dim1], &c__1);
  855. if (k < *n) {
  856. i__1 = *n - k;
  857. sgemv_("No transpose", &k, &i__1, &c_b9, &a[(k + 1) *
  858. a_dim1 + 1], lda, &w[imax + (kw + 1) * w_dim1],
  859. ldw, &c_b10, &w[(kw - 1) * w_dim1 + 1], &c__1);
  860. }
  861. /* JMAX is the column-index of the largest off-diagonal */
  862. /* element in row IMAX, and ROWMAX is its absolute value. */
  863. /* Determine both ROWMAX and JMAX. */
  864. if (imax != k) {
  865. i__1 = k - imax;
  866. jmax = imax + isamax_(&i__1, &w[imax + 1 + (kw - 1) *
  867. w_dim1], &c__1);
  868. rowmax = (r__1 = w[jmax + (kw - 1) * w_dim1], abs(r__1));
  869. } else {
  870. rowmax = 0.f;
  871. }
  872. if (imax > 1) {
  873. i__1 = imax - 1;
  874. itemp = isamax_(&i__1, &w[(kw - 1) * w_dim1 + 1], &c__1);
  875. stemp = (r__1 = w[itemp + (kw - 1) * w_dim1], abs(r__1));
  876. if (stemp > rowmax) {
  877. rowmax = stemp;
  878. jmax = itemp;
  879. }
  880. }
  881. /* Equivalent to testing for */
  882. /* ABS( W( IMAX, KW-1 ) ).GE.ALPHA*ROWMAX */
  883. /* (used to handle NaN and Inf) */
  884. if (! ((r__1 = w[imax + (kw - 1) * w_dim1], abs(r__1)) <
  885. alpha * rowmax)) {
  886. /* interchange rows and columns K and IMAX, */
  887. /* use 1-by-1 pivot block */
  888. kp = imax;
  889. /* copy column KW-1 of W to column KW of W */
  890. scopy_(&k, &w[(kw - 1) * w_dim1 + 1], &c__1, &w[kw *
  891. w_dim1 + 1], &c__1);
  892. done = TRUE_;
  893. /* Equivalent to testing for ROWMAX.EQ.COLMAX, */
  894. /* (used to handle NaN and Inf) */
  895. } else if (p == jmax || rowmax <= colmax) {
  896. /* interchange rows and columns K-1 and IMAX, */
  897. /* use 2-by-2 pivot block */
  898. kp = imax;
  899. kstep = 2;
  900. done = TRUE_;
  901. } else {
  902. /* Pivot not found: set params and repeat */
  903. p = imax;
  904. colmax = rowmax;
  905. imax = jmax;
  906. /* Copy updated JMAXth (next IMAXth) column to Kth of W */
  907. scopy_(&k, &w[(kw - 1) * w_dim1 + 1], &c__1, &w[kw *
  908. w_dim1 + 1], &c__1);
  909. }
  910. /* End pivot search loop body */
  911. if (! done) {
  912. goto L12;
  913. }
  914. }
  915. /* ============================================================ */
  916. kk = k - kstep + 1;
  917. /* KKW is the column of W which corresponds to column KK of A */
  918. kkw = *nb + kk - *n;
  919. if (kstep == 2 && p != k) {
  920. /* Copy non-updated column K to column P */
  921. i__1 = k - p;
  922. scopy_(&i__1, &a[p + 1 + k * a_dim1], &c__1, &a[p + (p + 1) *
  923. a_dim1], lda);
  924. scopy_(&p, &a[k * a_dim1 + 1], &c__1, &a[p * a_dim1 + 1], &
  925. c__1);
  926. /* Interchange rows K and P in last N-K+1 columns of A */
  927. /* and last N-K+2 columns of W */
  928. i__1 = *n - k + 1;
  929. sswap_(&i__1, &a[k + k * a_dim1], lda, &a[p + k * a_dim1],
  930. lda);
  931. i__1 = *n - kk + 1;
  932. sswap_(&i__1, &w[k + kkw * w_dim1], ldw, &w[p + kkw * w_dim1],
  933. ldw);
  934. }
  935. /* Updated column KP is already stored in column KKW of W */
  936. if (kp != kk) {
  937. /* Copy non-updated column KK to column KP */
  938. a[kp + k * a_dim1] = a[kk + k * a_dim1];
  939. i__1 = k - 1 - kp;
  940. scopy_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + (kp +
  941. 1) * a_dim1], lda);
  942. scopy_(&kp, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1 + 1], &
  943. c__1);
  944. /* Interchange rows KK and KP in last N-KK+1 columns */
  945. /* of A and W */
  946. i__1 = *n - kk + 1;
  947. sswap_(&i__1, &a[kk + kk * a_dim1], lda, &a[kp + kk * a_dim1],
  948. lda);
  949. i__1 = *n - kk + 1;
  950. sswap_(&i__1, &w[kk + kkw * w_dim1], ldw, &w[kp + kkw *
  951. w_dim1], ldw);
  952. }
  953. if (kstep == 1) {
  954. /* 1-by-1 pivot block D(k): column KW of W now holds */
  955. /* W(k) = U(k)*D(k) */
  956. /* where U(k) is the k-th column of U */
  957. /* Store U(k) in column k of A */
  958. scopy_(&k, &w[kw * w_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &
  959. c__1);
  960. if (k > 1) {
  961. if ((r__1 = a[k + k * a_dim1], abs(r__1)) >= sfmin) {
  962. r1 = 1.f / a[k + k * a_dim1];
  963. i__1 = k - 1;
  964. sscal_(&i__1, &r1, &a[k * a_dim1 + 1], &c__1);
  965. } else if (a[k + k * a_dim1] != 0.f) {
  966. i__1 = k - 1;
  967. for (ii = 1; ii <= i__1; ++ii) {
  968. a[ii + k * a_dim1] /= a[k + k * a_dim1];
  969. /* L14: */
  970. }
  971. }
  972. /* Store the superdiagonal element of D in array E */
  973. e[k] = 0.f;
  974. }
  975. } else {
  976. /* 2-by-2 pivot block D(k): columns KW and KW-1 of W now */
  977. /* hold */
  978. /* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */
  979. /* where U(k) and U(k-1) are the k-th and (k-1)-th columns */
  980. /* of U */
  981. if (k > 2) {
  982. /* Store U(k) and U(k-1) in columns k and k-1 of A */
  983. d12 = w[k - 1 + kw * w_dim1];
  984. d11 = w[k + kw * w_dim1] / d12;
  985. d22 = w[k - 1 + (kw - 1) * w_dim1] / d12;
  986. t = 1.f / (d11 * d22 - 1.f);
  987. i__1 = k - 2;
  988. for (j = 1; j <= i__1; ++j) {
  989. a[j + (k - 1) * a_dim1] = t * ((d11 * w[j + (kw - 1) *
  990. w_dim1] - w[j + kw * w_dim1]) / d12);
  991. a[j + k * a_dim1] = t * ((d22 * w[j + kw * w_dim1] -
  992. w[j + (kw - 1) * w_dim1]) / d12);
  993. /* L20: */
  994. }
  995. }
  996. /* Copy diagonal elements of D(K) to A, */
  997. /* copy superdiagonal element of D(K) to E(K) and */
  998. /* ZERO out superdiagonal entry of A */
  999. a[k - 1 + (k - 1) * a_dim1] = w[k - 1 + (kw - 1) * w_dim1];
  1000. a[k - 1 + k * a_dim1] = 0.f;
  1001. a[k + k * a_dim1] = w[k + kw * w_dim1];
  1002. e[k] = w[k - 1 + kw * w_dim1];
  1003. e[k - 1] = 0.f;
  1004. }
  1005. /* End column K is nonsingular */
  1006. }
  1007. /* Store details of the interchanges in IPIV */
  1008. if (kstep == 1) {
  1009. ipiv[k] = kp;
  1010. } else {
  1011. ipiv[k] = -p;
  1012. ipiv[k - 1] = -kp;
  1013. }
  1014. /* Decrease K and return to the start of the main loop */
  1015. k -= kstep;
  1016. goto L10;
  1017. L30:
  1018. /* Update the upper triangle of A11 (= A(1:k,1:k)) as */
  1019. /* A11 := A11 - U12*D*U12**T = A11 - U12*W**T */
  1020. /* computing blocks of NB columns at a time */
  1021. i__1 = -(*nb);
  1022. for (j = (k - 1) / *nb * *nb + 1; i__1 < 0 ? j >= 1 : j <= 1; j +=
  1023. i__1) {
  1024. /* Computing MIN */
  1025. i__2 = *nb, i__3 = k - j + 1;
  1026. jb = f2cmin(i__2,i__3);
  1027. /* Update the upper triangle of the diagonal block */
  1028. i__2 = j + jb - 1;
  1029. for (jj = j; jj <= i__2; ++jj) {
  1030. i__3 = jj - j + 1;
  1031. i__4 = *n - k;
  1032. sgemv_("No transpose", &i__3, &i__4, &c_b9, &a[j + (k + 1) *
  1033. a_dim1], lda, &w[jj + (kw + 1) * w_dim1], ldw, &c_b10,
  1034. &a[j + jj * a_dim1], &c__1);
  1035. /* L40: */
  1036. }
  1037. /* Update the rectangular superdiagonal block */
  1038. if (j >= 2) {
  1039. i__2 = j - 1;
  1040. i__3 = *n - k;
  1041. sgemm_("No transpose", "Transpose", &i__2, &jb, &i__3, &c_b9,
  1042. &a[(k + 1) * a_dim1 + 1], lda, &w[j + (kw + 1) *
  1043. w_dim1], ldw, &c_b10, &a[j * a_dim1 + 1], lda);
  1044. }
  1045. /* L50: */
  1046. }
  1047. /* Set KB to the number of columns factorized */
  1048. *kb = *n - k;
  1049. } else {
  1050. /* Factorize the leading columns of A using the lower triangle */
  1051. /* of A and working forwards, and compute the matrix W = L21*D */
  1052. /* for use in updating A22 */
  1053. /* Initialize the unused last entry of the subdiagonal array E. */
  1054. e[*n] = 0.f;
  1055. /* K is the main loop index, increasing from 1 in steps of 1 or 2 */
  1056. k = 1;
  1057. L70:
  1058. /* Exit from loop */
  1059. if (k >= *nb && *nb < *n || k > *n) {
  1060. goto L90;
  1061. }
  1062. kstep = 1;
  1063. p = k;
  1064. /* Copy column K of A to column K of W and update it */
  1065. i__1 = *n - k + 1;
  1066. scopy_(&i__1, &a[k + k * a_dim1], &c__1, &w[k + k * w_dim1], &c__1);
  1067. if (k > 1) {
  1068. i__1 = *n - k + 1;
  1069. i__2 = k - 1;
  1070. sgemv_("No transpose", &i__1, &i__2, &c_b9, &a[k + a_dim1], lda, &
  1071. w[k + w_dim1], ldw, &c_b10, &w[k + k * w_dim1], &c__1);
  1072. }
  1073. /* Determine rows and columns to be interchanged and whether */
  1074. /* a 1-by-1 or 2-by-2 pivot block will be used */
  1075. absakk = (r__1 = w[k + k * w_dim1], abs(r__1));
  1076. /* IMAX is the row-index of the largest off-diagonal element in */
  1077. /* column K, and COLMAX is its absolute value. */
  1078. /* Determine both COLMAX and IMAX. */
  1079. if (k < *n) {
  1080. i__1 = *n - k;
  1081. imax = k + isamax_(&i__1, &w[k + 1 + k * w_dim1], &c__1);
  1082. colmax = (r__1 = w[imax + k * w_dim1], abs(r__1));
  1083. } else {
  1084. colmax = 0.f;
  1085. }
  1086. if (f2cmax(absakk,colmax) == 0.f) {
  1087. /* Column K is zero or underflow: set INFO and continue */
  1088. if (*info == 0) {
  1089. *info = k;
  1090. }
  1091. kp = k;
  1092. i__1 = *n - k + 1;
  1093. scopy_(&i__1, &w[k + k * w_dim1], &c__1, &a[k + k * a_dim1], &
  1094. c__1);
  1095. /* Set E( K ) to zero */
  1096. if (k < *n) {
  1097. e[k] = 0.f;
  1098. }
  1099. } else {
  1100. /* ============================================================ */
  1101. /* Test for interchange */
  1102. /* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX */
  1103. /* (used to handle NaN and Inf) */
  1104. if (! (absakk < alpha * colmax)) {
  1105. /* no interchange, use 1-by-1 pivot block */
  1106. kp = k;
  1107. } else {
  1108. done = FALSE_;
  1109. /* Loop until pivot found */
  1110. L72:
  1111. /* Begin pivot search loop body */
  1112. /* Copy column IMAX to column K+1 of W and update it */
  1113. i__1 = imax - k;
  1114. scopy_(&i__1, &a[imax + k * a_dim1], lda, &w[k + (k + 1) *
  1115. w_dim1], &c__1);
  1116. i__1 = *n - imax + 1;
  1117. scopy_(&i__1, &a[imax + imax * a_dim1], &c__1, &w[imax + (k +
  1118. 1) * w_dim1], &c__1);
  1119. if (k > 1) {
  1120. i__1 = *n - k + 1;
  1121. i__2 = k - 1;
  1122. sgemv_("No transpose", &i__1, &i__2, &c_b9, &a[k + a_dim1]
  1123. , lda, &w[imax + w_dim1], ldw, &c_b10, &w[k + (k
  1124. + 1) * w_dim1], &c__1);
  1125. }
  1126. /* JMAX is the column-index of the largest off-diagonal */
  1127. /* element in row IMAX, and ROWMAX is its absolute value. */
  1128. /* Determine both ROWMAX and JMAX. */
  1129. if (imax != k) {
  1130. i__1 = imax - k;
  1131. jmax = k - 1 + isamax_(&i__1, &w[k + (k + 1) * w_dim1], &
  1132. c__1);
  1133. rowmax = (r__1 = w[jmax + (k + 1) * w_dim1], abs(r__1));
  1134. } else {
  1135. rowmax = 0.f;
  1136. }
  1137. if (imax < *n) {
  1138. i__1 = *n - imax;
  1139. itemp = imax + isamax_(&i__1, &w[imax + 1 + (k + 1) *
  1140. w_dim1], &c__1);
  1141. stemp = (r__1 = w[itemp + (k + 1) * w_dim1], abs(r__1));
  1142. if (stemp > rowmax) {
  1143. rowmax = stemp;
  1144. jmax = itemp;
  1145. }
  1146. }
  1147. /* Equivalent to testing for */
  1148. /* ABS( W( IMAX, K+1 ) ).GE.ALPHA*ROWMAX */
  1149. /* (used to handle NaN and Inf) */
  1150. if (! ((r__1 = w[imax + (k + 1) * w_dim1], abs(r__1)) < alpha
  1151. * rowmax)) {
  1152. /* interchange rows and columns K and IMAX, */
  1153. /* use 1-by-1 pivot block */
  1154. kp = imax;
  1155. /* copy column K+1 of W to column K of W */
  1156. i__1 = *n - k + 1;
  1157. scopy_(&i__1, &w[k + (k + 1) * w_dim1], &c__1, &w[k + k *
  1158. w_dim1], &c__1);
  1159. done = TRUE_;
  1160. /* Equivalent to testing for ROWMAX.EQ.COLMAX, */
  1161. /* (used to handle NaN and Inf) */
  1162. } else if (p == jmax || rowmax <= colmax) {
  1163. /* interchange rows and columns K+1 and IMAX, */
  1164. /* use 2-by-2 pivot block */
  1165. kp = imax;
  1166. kstep = 2;
  1167. done = TRUE_;
  1168. } else {
  1169. /* Pivot not found: set params and repeat */
  1170. p = imax;
  1171. colmax = rowmax;
  1172. imax = jmax;
  1173. /* Copy updated JMAXth (next IMAXth) column to Kth of W */
  1174. i__1 = *n - k + 1;
  1175. scopy_(&i__1, &w[k + (k + 1) * w_dim1], &c__1, &w[k + k *
  1176. w_dim1], &c__1);
  1177. }
  1178. /* End pivot search loop body */
  1179. if (! done) {
  1180. goto L72;
  1181. }
  1182. }
  1183. /* ============================================================ */
  1184. kk = k + kstep - 1;
  1185. if (kstep == 2 && p != k) {
  1186. /* Copy non-updated column K to column P */
  1187. i__1 = p - k;
  1188. scopy_(&i__1, &a[k + k * a_dim1], &c__1, &a[p + k * a_dim1],
  1189. lda);
  1190. i__1 = *n - p + 1;
  1191. scopy_(&i__1, &a[p + k * a_dim1], &c__1, &a[p + p * a_dim1], &
  1192. c__1);
  1193. /* Interchange rows K and P in first K columns of A */
  1194. /* and first K+1 columns of W */
  1195. sswap_(&k, &a[k + a_dim1], lda, &a[p + a_dim1], lda);
  1196. sswap_(&kk, &w[k + w_dim1], ldw, &w[p + w_dim1], ldw);
  1197. }
  1198. /* Updated column KP is already stored in column KK of W */
  1199. if (kp != kk) {
  1200. /* Copy non-updated column KK to column KP */
  1201. a[kp + k * a_dim1] = a[kk + k * a_dim1];
  1202. i__1 = kp - k - 1;
  1203. scopy_(&i__1, &a[k + 1 + kk * a_dim1], &c__1, &a[kp + (k + 1)
  1204. * a_dim1], lda);
  1205. i__1 = *n - kp + 1;
  1206. scopy_(&i__1, &a[kp + kk * a_dim1], &c__1, &a[kp + kp *
  1207. a_dim1], &c__1);
  1208. /* Interchange rows KK and KP in first KK columns of A and W */
  1209. sswap_(&kk, &a[kk + a_dim1], lda, &a[kp + a_dim1], lda);
  1210. sswap_(&kk, &w[kk + w_dim1], ldw, &w[kp + w_dim1], ldw);
  1211. }
  1212. if (kstep == 1) {
  1213. /* 1-by-1 pivot block D(k): column k of W now holds */
  1214. /* W(k) = L(k)*D(k) */
  1215. /* where L(k) is the k-th column of L */
  1216. /* Store L(k) in column k of A */
  1217. i__1 = *n - k + 1;
  1218. scopy_(&i__1, &w[k + k * w_dim1], &c__1, &a[k + k * a_dim1], &
  1219. c__1);
  1220. if (k < *n) {
  1221. if ((r__1 = a[k + k * a_dim1], abs(r__1)) >= sfmin) {
  1222. r1 = 1.f / a[k + k * a_dim1];
  1223. i__1 = *n - k;
  1224. sscal_(&i__1, &r1, &a[k + 1 + k * a_dim1], &c__1);
  1225. } else if (a[k + k * a_dim1] != 0.f) {
  1226. i__1 = *n;
  1227. for (ii = k + 1; ii <= i__1; ++ii) {
  1228. a[ii + k * a_dim1] /= a[k + k * a_dim1];
  1229. /* L74: */
  1230. }
  1231. }
  1232. /* Store the subdiagonal element of D in array E */
  1233. e[k] = 0.f;
  1234. }
  1235. } else {
  1236. /* 2-by-2 pivot block D(k): columns k and k+1 of W now hold */
  1237. /* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */
  1238. /* where L(k) and L(k+1) are the k-th and (k+1)-th columns */
  1239. /* of L */
  1240. if (k < *n - 1) {
  1241. /* Store L(k) and L(k+1) in columns k and k+1 of A */
  1242. d21 = w[k + 1 + k * w_dim1];
  1243. d11 = w[k + 1 + (k + 1) * w_dim1] / d21;
  1244. d22 = w[k + k * w_dim1] / d21;
  1245. t = 1.f / (d11 * d22 - 1.f);
  1246. i__1 = *n;
  1247. for (j = k + 2; j <= i__1; ++j) {
  1248. a[j + k * a_dim1] = t * ((d11 * w[j + k * w_dim1] - w[
  1249. j + (k + 1) * w_dim1]) / d21);
  1250. a[j + (k + 1) * a_dim1] = t * ((d22 * w[j + (k + 1) *
  1251. w_dim1] - w[j + k * w_dim1]) / d21);
  1252. /* L80: */
  1253. }
  1254. }
  1255. /* Copy diagonal elements of D(K) to A, */
  1256. /* copy subdiagonal element of D(K) to E(K) and */
  1257. /* ZERO out subdiagonal entry of A */
  1258. a[k + k * a_dim1] = w[k + k * w_dim1];
  1259. a[k + 1 + k * a_dim1] = 0.f;
  1260. a[k + 1 + (k + 1) * a_dim1] = w[k + 1 + (k + 1) * w_dim1];
  1261. e[k] = w[k + 1 + k * w_dim1];
  1262. e[k + 1] = 0.f;
  1263. }
  1264. /* End column K is nonsingular */
  1265. }
  1266. /* Store details of the interchanges in IPIV */
  1267. if (kstep == 1) {
  1268. ipiv[k] = kp;
  1269. } else {
  1270. ipiv[k] = -p;
  1271. ipiv[k + 1] = -kp;
  1272. }
  1273. /* Increase K and return to the start of the main loop */
  1274. k += kstep;
  1275. goto L70;
  1276. L90:
  1277. /* Update the lower triangle of A22 (= A(k:n,k:n)) as */
  1278. /* A22 := A22 - L21*D*L21**T = A22 - L21*W**T */
  1279. /* computing blocks of NB columns at a time */
  1280. i__1 = *n;
  1281. i__2 = *nb;
  1282. for (j = k; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
  1283. /* Computing MIN */
  1284. i__3 = *nb, i__4 = *n - j + 1;
  1285. jb = f2cmin(i__3,i__4);
  1286. /* Update the lower triangle of the diagonal block */
  1287. i__3 = j + jb - 1;
  1288. for (jj = j; jj <= i__3; ++jj) {
  1289. i__4 = j + jb - jj;
  1290. i__5 = k - 1;
  1291. sgemv_("No transpose", &i__4, &i__5, &c_b9, &a[jj + a_dim1],
  1292. lda, &w[jj + w_dim1], ldw, &c_b10, &a[jj + jj *
  1293. a_dim1], &c__1);
  1294. /* L100: */
  1295. }
  1296. /* Update the rectangular subdiagonal block */
  1297. if (j + jb <= *n) {
  1298. i__3 = *n - j - jb + 1;
  1299. i__4 = k - 1;
  1300. sgemm_("No transpose", "Transpose", &i__3, &jb, &i__4, &c_b9,
  1301. &a[j + jb + a_dim1], lda, &w[j + w_dim1], ldw, &c_b10,
  1302. &a[j + jb + j * a_dim1], lda);
  1303. }
  1304. /* L110: */
  1305. }
  1306. /* Set KB to the number of columns factorized */
  1307. *kb = k - 1;
  1308. }
  1309. return;
  1310. /* End of SLASYF_RK */
  1311. } /* slasyf_rk__ */