You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slaqr4.c 42 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__13 = 13;
  487. static integer c__15 = 15;
  488. static integer c_n1 = -1;
  489. static integer c__12 = 12;
  490. static integer c__14 = 14;
  491. static integer c__16 = 16;
  492. static logical c_false = FALSE_;
  493. static integer c__1 = 1;
  494. static integer c__3 = 3;
  495. /* > \brief \b SLAQR4 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Sc
  496. hur decomposition. */
  497. /* =========== DOCUMENTATION =========== */
  498. /* Online html documentation available at */
  499. /* http://www.netlib.org/lapack/explore-html/ */
  500. /* > \htmlonly */
  501. /* > Download SLAQR4 + dependencies */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaqr4.
  503. f"> */
  504. /* > [TGZ]</a> */
  505. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaqr4.
  506. f"> */
  507. /* > [ZIP]</a> */
  508. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaqr4.
  509. f"> */
  510. /* > [TXT]</a> */
  511. /* > \endhtmlonly */
  512. /* Definition: */
  513. /* =========== */
  514. /* SUBROUTINE SLAQR4( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, */
  515. /* ILOZ, IHIZ, Z, LDZ, WORK, LWORK, INFO ) */
  516. /* INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N */
  517. /* LOGICAL WANTT, WANTZ */
  518. /* REAL H( LDH, * ), WI( * ), WORK( * ), WR( * ), */
  519. /* $ Z( LDZ, * ) */
  520. /* > \par Purpose: */
  521. /* ============= */
  522. /* > */
  523. /* > \verbatim */
  524. /* > */
  525. /* > SLAQR4 implements one level of recursion for SLAQR0. */
  526. /* > It is a complete implementation of the small bulge multi-shift */
  527. /* > QR algorithm. It may be called by SLAQR0 and, for large enough */
  528. /* > deflation window size, it may be called by SLAQR3. This */
  529. /* > subroutine is identical to SLAQR0 except that it calls SLAQR2 */
  530. /* > instead of SLAQR3. */
  531. /* > */
  532. /* > SLAQR4 computes the eigenvalues of a Hessenberg matrix H */
  533. /* > and, optionally, the matrices T and Z from the Schur decomposition */
  534. /* > H = Z T Z**T, where T is an upper quasi-triangular matrix (the */
  535. /* > Schur form), and Z is the orthogonal matrix of Schur vectors. */
  536. /* > */
  537. /* > Optionally Z may be postmultiplied into an input orthogonal */
  538. /* > matrix Q so that this routine can give the Schur factorization */
  539. /* > of a matrix A which has been reduced to the Hessenberg form H */
  540. /* > by the orthogonal matrix Q: A = Q*H*Q**T = (QZ)*T*(QZ)**T. */
  541. /* > \endverbatim */
  542. /* Arguments: */
  543. /* ========== */
  544. /* > \param[in] WANTT */
  545. /* > \verbatim */
  546. /* > WANTT is LOGICAL */
  547. /* > = .TRUE. : the full Schur form T is required; */
  548. /* > = .FALSE.: only eigenvalues are required. */
  549. /* > \endverbatim */
  550. /* > */
  551. /* > \param[in] WANTZ */
  552. /* > \verbatim */
  553. /* > WANTZ is LOGICAL */
  554. /* > = .TRUE. : the matrix of Schur vectors Z is required; */
  555. /* > = .FALSE.: Schur vectors are not required. */
  556. /* > \endverbatim */
  557. /* > */
  558. /* > \param[in] N */
  559. /* > \verbatim */
  560. /* > N is INTEGER */
  561. /* > The order of the matrix H. N >= 0. */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in] ILO */
  565. /* > \verbatim */
  566. /* > ILO is INTEGER */
  567. /* > \endverbatim */
  568. /* > */
  569. /* > \param[in] IHI */
  570. /* > \verbatim */
  571. /* > IHI is INTEGER */
  572. /* > It is assumed that H is already upper triangular in rows */
  573. /* > and columns 1:ILO-1 and IHI+1:N and, if ILO > 1, */
  574. /* > H(ILO,ILO-1) is zero. ILO and IHI are normally set by a */
  575. /* > previous call to SGEBAL, and then passed to SGEHRD when the */
  576. /* > matrix output by SGEBAL is reduced to Hessenberg form. */
  577. /* > Otherwise, ILO and IHI should be set to 1 and N, */
  578. /* > respectively. If N > 0, then 1 <= ILO <= IHI <= N. */
  579. /* > If N = 0, then ILO = 1 and IHI = 0. */
  580. /* > \endverbatim */
  581. /* > */
  582. /* > \param[in,out] H */
  583. /* > \verbatim */
  584. /* > H is REAL array, dimension (LDH,N) */
  585. /* > On entry, the upper Hessenberg matrix H. */
  586. /* > On exit, if INFO = 0 and WANTT is .TRUE., then H contains */
  587. /* > the upper quasi-triangular matrix T from the Schur */
  588. /* > decomposition (the Schur form); 2-by-2 diagonal blocks */
  589. /* > (corresponding to complex conjugate pairs of eigenvalues) */
  590. /* > are returned in standard form, with H(i,i) = H(i+1,i+1) */
  591. /* > and H(i+1,i)*H(i,i+1) < 0. If INFO = 0 and WANTT is */
  592. /* > .FALSE., then the contents of H are unspecified on exit. */
  593. /* > (The output value of H when INFO > 0 is given under the */
  594. /* > description of INFO below.) */
  595. /* > */
  596. /* > This subroutine may explicitly set H(i,j) = 0 for i > j and */
  597. /* > j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N. */
  598. /* > \endverbatim */
  599. /* > */
  600. /* > \param[in] LDH */
  601. /* > \verbatim */
  602. /* > LDH is INTEGER */
  603. /* > The leading dimension of the array H. LDH >= f2cmax(1,N). */
  604. /* > \endverbatim */
  605. /* > */
  606. /* > \param[out] WR */
  607. /* > \verbatim */
  608. /* > WR is REAL array, dimension (IHI) */
  609. /* > \endverbatim */
  610. /* > */
  611. /* > \param[out] WI */
  612. /* > \verbatim */
  613. /* > WI is REAL array, dimension (IHI) */
  614. /* > The real and imaginary parts, respectively, of the computed */
  615. /* > eigenvalues of H(ILO:IHI,ILO:IHI) are stored in WR(ILO:IHI) */
  616. /* > and WI(ILO:IHI). If two eigenvalues are computed as a */
  617. /* > complex conjugate pair, they are stored in consecutive */
  618. /* > elements of WR and WI, say the i-th and (i+1)th, with */
  619. /* > WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., then */
  620. /* > the eigenvalues are stored in the same order as on the */
  621. /* > diagonal of the Schur form returned in H, with */
  622. /* > WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal */
  623. /* > block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and */
  624. /* > WI(i+1) = -WI(i). */
  625. /* > \endverbatim */
  626. /* > */
  627. /* > \param[in] ILOZ */
  628. /* > \verbatim */
  629. /* > ILOZ is INTEGER */
  630. /* > \endverbatim */
  631. /* > */
  632. /* > \param[in] IHIZ */
  633. /* > \verbatim */
  634. /* > IHIZ is INTEGER */
  635. /* > Specify the rows of Z to which transformations must be */
  636. /* > applied if WANTZ is .TRUE.. */
  637. /* > 1 <= ILOZ <= ILO; IHI <= IHIZ <= N. */
  638. /* > \endverbatim */
  639. /* > */
  640. /* > \param[in,out] Z */
  641. /* > \verbatim */
  642. /* > Z is REAL array, dimension (LDZ,IHI) */
  643. /* > If WANTZ is .FALSE., then Z is not referenced. */
  644. /* > If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is */
  645. /* > replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the */
  646. /* > orthogonal Schur factor of H(ILO:IHI,ILO:IHI). */
  647. /* > (The output value of Z when INFO > 0 is given under */
  648. /* > the description of INFO below.) */
  649. /* > \endverbatim */
  650. /* > */
  651. /* > \param[in] LDZ */
  652. /* > \verbatim */
  653. /* > LDZ is INTEGER */
  654. /* > The leading dimension of the array Z. if WANTZ is .TRUE. */
  655. /* > then LDZ >= MAX(1,IHIZ). Otherwise, LDZ >= 1. */
  656. /* > \endverbatim */
  657. /* > */
  658. /* > \param[out] WORK */
  659. /* > \verbatim */
  660. /* > WORK is REAL array, dimension LWORK */
  661. /* > On exit, if LWORK = -1, WORK(1) returns an estimate of */
  662. /* > the optimal value for LWORK. */
  663. /* > \endverbatim */
  664. /* > */
  665. /* > \param[in] LWORK */
  666. /* > \verbatim */
  667. /* > LWORK is INTEGER */
  668. /* > The dimension of the array WORK. LWORK >= f2cmax(1,N) */
  669. /* > is sufficient, but LWORK typically as large as 6*N may */
  670. /* > be required for optimal performance. A workspace query */
  671. /* > to determine the optimal workspace size is recommended. */
  672. /* > */
  673. /* > If LWORK = -1, then SLAQR4 does a workspace query. */
  674. /* > In this case, SLAQR4 checks the input parameters and */
  675. /* > estimates the optimal workspace size for the given */
  676. /* > values of N, ILO and IHI. The estimate is returned */
  677. /* > in WORK(1). No error message related to LWORK is */
  678. /* > issued by XERBLA. Neither H nor Z are accessed. */
  679. /* > \endverbatim */
  680. /* > */
  681. /* > \param[out] INFO */
  682. /* > \verbatim */
  683. /* > INFO is INTEGER */
  684. /* > \verbatim */
  685. /* > INFO is INTEGER */
  686. /* > = 0: successful exit */
  687. /* > > 0: if INFO = i, SLAQR4 failed to compute all of */
  688. /* > the eigenvalues. Elements 1:ilo-1 and i+1:n of WR */
  689. /* > and WI contain those eigenvalues which have been */
  690. /* > successfully computed. (Failures are rare.) */
  691. /* > */
  692. /* > If INFO > 0 and WANT is .FALSE., then on exit, */
  693. /* > the remaining unconverged eigenvalues are the eigen- */
  694. /* > values of the upper Hessenberg matrix rows and */
  695. /* > columns ILO through INFO of the final, output */
  696. /* > value of H. */
  697. /* > */
  698. /* > If INFO > 0 and WANTT is .TRUE., then on exit */
  699. /* > */
  700. /* > (*) (initial value of H)*U = U*(final value of H) */
  701. /* > */
  702. /* > where U is a orthogonal matrix. The final */
  703. /* > value of H is upper Hessenberg and triangular in */
  704. /* > rows and columns INFO+1 through IHI. */
  705. /* > */
  706. /* > If INFO > 0 and WANTZ is .TRUE., then on exit */
  707. /* > */
  708. /* > (final value of Z(ILO:IHI,ILOZ:IHIZ) */
  709. /* > = (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U */
  710. /* > */
  711. /* > where U is the orthogonal matrix in (*) (regard- */
  712. /* > less of the value of WANTT.) */
  713. /* > */
  714. /* > If INFO > 0 and WANTZ is .FALSE., then Z is not */
  715. /* > accessed. */
  716. /* > \endverbatim */
  717. /* Authors: */
  718. /* ======== */
  719. /* > \author Univ. of Tennessee */
  720. /* > \author Univ. of California Berkeley */
  721. /* > \author Univ. of Colorado Denver */
  722. /* > \author NAG Ltd. */
  723. /* > \date December 2016 */
  724. /* > \ingroup realOTHERauxiliary */
  725. /* > \par Contributors: */
  726. /* ================== */
  727. /* > */
  728. /* > Karen Braman and Ralph Byers, Department of Mathematics, */
  729. /* > University of Kansas, USA */
  730. /* > \par References: */
  731. /* ================ */
  732. /* > */
  733. /* > K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */
  734. /* > Algorithm Part I: Maintaining Well Focused Shifts, and Level 3 */
  735. /* > Performance, SIAM Journal of Matrix Analysis, volume 23, pages */
  736. /* > 929--947, 2002. */
  737. /* > \n */
  738. /* > K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */
  739. /* > Algorithm Part II: Aggressive Early Deflation, SIAM Journal */
  740. /* > of Matrix Analysis, volume 23, pages 948--973, 2002. */
  741. /* > */
  742. /* ===================================================================== */
  743. /* Subroutine */ void slaqr4_(logical *wantt, logical *wantz, integer *n,
  744. integer *ilo, integer *ihi, real *h__, integer *ldh, real *wr, real *
  745. wi, integer *iloz, integer *ihiz, real *z__, integer *ldz, real *work,
  746. integer *lwork, integer *info)
  747. {
  748. /* System generated locals */
  749. integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5;
  750. real r__1, r__2, r__3, r__4;
  751. /* Local variables */
  752. integer ndec, ndfl, kbot, nmin;
  753. real swap;
  754. integer ktop;
  755. real zdum[1] /* was [1][1] */;
  756. integer kacc22, i__, k, itmax, nsmax, nwmax, kwtop;
  757. real aa, bb;
  758. extern /* Subroutine */ void slanv2_(real *, real *, real *, real *, real *
  759. , real *, real *, real *, real *, real *);
  760. real cc, dd;
  761. extern /* Subroutine */ void slaqr2_(logical *, logical *, integer *,
  762. integer *, integer *, integer *, real *, integer *, integer *,
  763. integer *, real *, integer *, integer *, integer *, real *, real *
  764. , real *, integer *, integer *, real *, integer *, integer *,
  765. real *, integer *, real *, integer *), slaqr5_(logical *, logical
  766. *, integer *, integer *, integer *, integer *, integer *, real *,
  767. real *, real *, integer *, integer *, integer *, real *, integer *
  768. , real *, integer *, real *, integer *, integer *, real *,
  769. integer *, integer *, real *, integer *);
  770. integer ld;
  771. real cs;
  772. integer nh, nibble, it, ks, kt;
  773. real sn;
  774. integer ku, kv, ls, ns;
  775. real ss;
  776. integer nw;
  777. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  778. integer *, integer *, ftnlen, ftnlen);
  779. char jbcmpz[2];
  780. extern /* Subroutine */ void slahqr_(logical *, logical *, integer *,
  781. integer *, integer *, real *, integer *, real *, real *, integer *
  782. , integer *, real *, integer *, integer *), slacpy_(char *,
  783. integer *, integer *, real *, integer *, real *, integer *);
  784. integer nwupbd;
  785. logical sorted;
  786. integer lwkopt, inf, kdu, nho, nve, kwh, nsr, nwr, kwv;
  787. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  788. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  789. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  790. /* December 2016 */
  791. /* ================================================================ */
  792. /* ==== Matrices of order NTINY or smaller must be processed by */
  793. /* . SLAHQR because of insufficient subdiagonal scratch space. */
  794. /* . (This is a hard limit.) ==== */
  795. /* ==== Exceptional deflation windows: try to cure rare */
  796. /* . slow convergence by varying the size of the */
  797. /* . deflation window after KEXNW iterations. ==== */
  798. /* ==== Exceptional shifts: try to cure rare slow convergence */
  799. /* . with ad-hoc exceptional shifts every KEXSH iterations. */
  800. /* . ==== */
  801. /* ==== The constants WILK1 and WILK2 are used to form the */
  802. /* . exceptional shifts. ==== */
  803. /* Parameter adjustments */
  804. h_dim1 = *ldh;
  805. h_offset = 1 + h_dim1 * 1;
  806. h__ -= h_offset;
  807. --wr;
  808. --wi;
  809. z_dim1 = *ldz;
  810. z_offset = 1 + z_dim1 * 1;
  811. z__ -= z_offset;
  812. --work;
  813. /* Function Body */
  814. *info = 0;
  815. /* ==== Quick return for N = 0: nothing to do. ==== */
  816. if (*n == 0) {
  817. work[1] = 1.f;
  818. return;
  819. }
  820. if (*n <= 15) {
  821. /* ==== Tiny matrices must use SLAHQR. ==== */
  822. lwkopt = 1;
  823. if (*lwork != -1) {
  824. slahqr_(wantt, wantz, n, ilo, ihi, &h__[h_offset], ldh, &wr[1], &
  825. wi[1], iloz, ihiz, &z__[z_offset], ldz, info);
  826. }
  827. } else {
  828. /* ==== Use small bulge multi-shift QR with aggressive early */
  829. /* . deflation on larger-than-tiny matrices. ==== */
  830. /* ==== Hope for the best. ==== */
  831. *info = 0;
  832. /* ==== Set up job flags for ILAENV. ==== */
  833. if (*wantt) {
  834. *(unsigned char *)jbcmpz = 'S';
  835. } else {
  836. *(unsigned char *)jbcmpz = 'E';
  837. }
  838. if (*wantz) {
  839. *(unsigned char *)&jbcmpz[1] = 'V';
  840. } else {
  841. *(unsigned char *)&jbcmpz[1] = 'N';
  842. }
  843. /* ==== NWR = recommended deflation window size. At this */
  844. /* . point, N .GT. NTINY = 15, so there is enough */
  845. /* . subdiagonal workspace for NWR.GE.2 as required. */
  846. /* . (In fact, there is enough subdiagonal space for */
  847. /* . NWR.GE.4.) ==== */
  848. nwr = ilaenv_(&c__13, "SLAQR4", jbcmpz, n, ilo, ihi, lwork, (ftnlen)6,
  849. (ftnlen)2);
  850. nwr = f2cmax(2,nwr);
  851. /* Computing MIN */
  852. i__1 = *ihi - *ilo + 1, i__2 = (*n - 1) / 3, i__1 = f2cmin(i__1,i__2);
  853. nwr = f2cmin(i__1,nwr);
  854. /* ==== NSR = recommended number of simultaneous shifts. */
  855. /* . At this point N .GT. NTINY = 15, so there is at */
  856. /* . enough subdiagonal workspace for NSR to be even */
  857. /* . and greater than or equal to two as required. ==== */
  858. nsr = ilaenv_(&c__15, "SLAQR4", jbcmpz, n, ilo, ihi, lwork, (ftnlen)6,
  859. (ftnlen)2);
  860. /* Computing MIN */
  861. i__1 = nsr, i__2 = (*n - 3) / 6, i__1 = f2cmin(i__1,i__2), i__2 = *ihi -
  862. *ilo;
  863. nsr = f2cmin(i__1,i__2);
  864. /* Computing MAX */
  865. i__1 = 2, i__2 = nsr - nsr % 2;
  866. nsr = f2cmax(i__1,i__2);
  867. /* ==== Estimate optimal workspace ==== */
  868. /* ==== Workspace query call to SLAQR2 ==== */
  869. i__1 = nwr + 1;
  870. slaqr2_(wantt, wantz, n, ilo, ihi, &i__1, &h__[h_offset], ldh, iloz,
  871. ihiz, &z__[z_offset], ldz, &ls, &ld, &wr[1], &wi[1], &h__[
  872. h_offset], ldh, n, &h__[h_offset], ldh, n, &h__[h_offset],
  873. ldh, &work[1], &c_n1);
  874. /* ==== Optimal workspace = MAX(SLAQR5, SLAQR2) ==== */
  875. /* Computing MAX */
  876. i__1 = nsr * 3 / 2, i__2 = (integer) work[1];
  877. lwkopt = f2cmax(i__1,i__2);
  878. /* ==== Quick return in case of workspace query. ==== */
  879. if (*lwork == -1) {
  880. work[1] = (real) lwkopt;
  881. return;
  882. }
  883. /* ==== SLAHQR/SLAQR0 crossover point ==== */
  884. nmin = ilaenv_(&c__12, "SLAQR4", jbcmpz, n, ilo, ihi, lwork, (ftnlen)
  885. 6, (ftnlen)2);
  886. nmin = f2cmax(15,nmin);
  887. /* ==== Nibble crossover point ==== */
  888. nibble = ilaenv_(&c__14, "SLAQR4", jbcmpz, n, ilo, ihi, lwork, (
  889. ftnlen)6, (ftnlen)2);
  890. nibble = f2cmax(0,nibble);
  891. /* ==== Accumulate reflections during ttswp? Use block */
  892. /* . 2-by-2 structure during matrix-matrix multiply? ==== */
  893. kacc22 = ilaenv_(&c__16, "SLAQR4", jbcmpz, n, ilo, ihi, lwork, (
  894. ftnlen)6, (ftnlen)2);
  895. kacc22 = f2cmax(0,kacc22);
  896. kacc22 = f2cmin(2,kacc22);
  897. /* ==== NWMAX = the largest possible deflation window for */
  898. /* . which there is sufficient workspace. ==== */
  899. /* Computing MIN */
  900. i__1 = (*n - 1) / 3, i__2 = *lwork / 2;
  901. nwmax = f2cmin(i__1,i__2);
  902. nw = nwmax;
  903. /* ==== NSMAX = the Largest number of simultaneous shifts */
  904. /* . for which there is sufficient workspace. ==== */
  905. /* Computing MIN */
  906. i__1 = (*n - 3) / 6, i__2 = (*lwork << 1) / 3;
  907. nsmax = f2cmin(i__1,i__2);
  908. nsmax -= nsmax % 2;
  909. /* ==== NDFL: an iteration count restarted at deflation. ==== */
  910. ndfl = 1;
  911. /* ==== ITMAX = iteration limit ==== */
  912. /* Computing MAX */
  913. i__1 = 10, i__2 = *ihi - *ilo + 1;
  914. itmax = 30 * f2cmax(i__1,i__2);
  915. /* ==== Last row and column in the active block ==== */
  916. kbot = *ihi;
  917. /* ==== Main Loop ==== */
  918. i__1 = itmax;
  919. for (it = 1; it <= i__1; ++it) {
  920. /* ==== Done when KBOT falls below ILO ==== */
  921. if (kbot < *ilo) {
  922. goto L90;
  923. }
  924. /* ==== Locate active block ==== */
  925. i__2 = *ilo + 1;
  926. for (k = kbot; k >= i__2; --k) {
  927. if (h__[k + (k - 1) * h_dim1] == 0.f) {
  928. goto L20;
  929. }
  930. /* L10: */
  931. }
  932. k = *ilo;
  933. L20:
  934. ktop = k;
  935. /* ==== Select deflation window size: */
  936. /* . Typical Case: */
  937. /* . If possible and advisable, nibble the entire */
  938. /* . active block. If not, use size MIN(NWR,NWMAX) */
  939. /* . or MIN(NWR+1,NWMAX) depending upon which has */
  940. /* . the smaller corresponding subdiagonal entry */
  941. /* . (a heuristic). */
  942. /* . */
  943. /* . Exceptional Case: */
  944. /* . If there have been no deflations in KEXNW or */
  945. /* . more iterations, then vary the deflation window */
  946. /* . size. At first, because, larger windows are, */
  947. /* . in general, more powerful than smaller ones, */
  948. /* . rapidly increase the window to the maximum possible. */
  949. /* . Then, gradually reduce the window size. ==== */
  950. nh = kbot - ktop + 1;
  951. nwupbd = f2cmin(nh,nwmax);
  952. if (ndfl < 5) {
  953. nw = f2cmin(nwupbd,nwr);
  954. } else {
  955. /* Computing MIN */
  956. i__2 = nwupbd, i__3 = nw << 1;
  957. nw = f2cmin(i__2,i__3);
  958. }
  959. if (nw < nwmax) {
  960. if (nw >= nh - 1) {
  961. nw = nh;
  962. } else {
  963. kwtop = kbot - nw + 1;
  964. if ((r__1 = h__[kwtop + (kwtop - 1) * h_dim1], abs(r__1))
  965. > (r__2 = h__[kwtop - 1 + (kwtop - 2) * h_dim1],
  966. abs(r__2))) {
  967. ++nw;
  968. }
  969. }
  970. }
  971. if (ndfl < 5) {
  972. ndec = -1;
  973. } else if (ndec >= 0 || nw >= nwupbd) {
  974. ++ndec;
  975. if (nw - ndec < 2) {
  976. ndec = 0;
  977. }
  978. nw -= ndec;
  979. }
  980. /* ==== Aggressive early deflation: */
  981. /* . split workspace under the subdiagonal into */
  982. /* . - an nw-by-nw work array V in the lower */
  983. /* . left-hand-corner, */
  984. /* . - an NW-by-at-least-NW-but-more-is-better */
  985. /* . (NW-by-NHO) horizontal work array along */
  986. /* . the bottom edge, */
  987. /* . - an at-least-NW-but-more-is-better (NHV-by-NW) */
  988. /* . vertical work array along the left-hand-edge. */
  989. /* . ==== */
  990. kv = *n - nw + 1;
  991. kt = nw + 1;
  992. nho = *n - nw - 1 - kt + 1;
  993. kwv = nw + 2;
  994. nve = *n - nw - kwv + 1;
  995. /* ==== Aggressive early deflation ==== */
  996. slaqr2_(wantt, wantz, n, &ktop, &kbot, &nw, &h__[h_offset], ldh,
  997. iloz, ihiz, &z__[z_offset], ldz, &ls, &ld, &wr[1], &wi[1],
  998. &h__[kv + h_dim1], ldh, &nho, &h__[kv + kt * h_dim1],
  999. ldh, &nve, &h__[kwv + h_dim1], ldh, &work[1], lwork);
  1000. /* ==== Adjust KBOT accounting for new deflations. ==== */
  1001. kbot -= ld;
  1002. /* ==== KS points to the shifts. ==== */
  1003. ks = kbot - ls + 1;
  1004. /* ==== Skip an expensive QR sweep if there is a (partly */
  1005. /* . heuristic) reason to expect that many eigenvalues */
  1006. /* . will deflate without it. Here, the QR sweep is */
  1007. /* . skipped if many eigenvalues have just been deflated */
  1008. /* . or if the remaining active block is small. */
  1009. if (ld == 0 || ld * 100 <= nw * nibble && kbot - ktop + 1 > f2cmin(
  1010. nmin,nwmax)) {
  1011. /* ==== NS = nominal number of simultaneous shifts. */
  1012. /* . This may be lowered (slightly) if SLAQR2 */
  1013. /* . did not provide that many shifts. ==== */
  1014. /* Computing MIN */
  1015. /* Computing MAX */
  1016. i__4 = 2, i__5 = kbot - ktop;
  1017. i__2 = f2cmin(nsmax,nsr), i__3 = f2cmax(i__4,i__5);
  1018. ns = f2cmin(i__2,i__3);
  1019. ns -= ns % 2;
  1020. /* ==== If there have been no deflations */
  1021. /* . in a multiple of KEXSH iterations, */
  1022. /* . then try exceptional shifts. */
  1023. /* . Otherwise use shifts provided by */
  1024. /* . SLAQR2 above or from the eigenvalues */
  1025. /* . of a trailing principal submatrix. ==== */
  1026. if (ndfl % 6 == 0) {
  1027. ks = kbot - ns + 1;
  1028. /* Computing MAX */
  1029. i__3 = ks + 1, i__4 = ktop + 2;
  1030. i__2 = f2cmax(i__3,i__4);
  1031. for (i__ = kbot; i__ >= i__2; i__ += -2) {
  1032. ss = (r__1 = h__[i__ + (i__ - 1) * h_dim1], abs(r__1))
  1033. + (r__2 = h__[i__ - 1 + (i__ - 2) * h_dim1],
  1034. abs(r__2));
  1035. aa = ss * .75f + h__[i__ + i__ * h_dim1];
  1036. bb = ss;
  1037. cc = ss * -.4375f;
  1038. dd = aa;
  1039. slanv2_(&aa, &bb, &cc, &dd, &wr[i__ - 1], &wi[i__ - 1]
  1040. , &wr[i__], &wi[i__], &cs, &sn);
  1041. /* L30: */
  1042. }
  1043. if (ks == ktop) {
  1044. wr[ks + 1] = h__[ks + 1 + (ks + 1) * h_dim1];
  1045. wi[ks + 1] = 0.f;
  1046. wr[ks] = wr[ks + 1];
  1047. wi[ks] = wi[ks + 1];
  1048. }
  1049. } else {
  1050. /* ==== Got NS/2 or fewer shifts? Use SLAHQR */
  1051. /* . on a trailing principal submatrix to */
  1052. /* . get more. (Since NS.LE.NSMAX.LE.(N-3)/6, */
  1053. /* . there is enough space below the subdiagonal */
  1054. /* . to fit an NS-by-NS scratch array.) ==== */
  1055. if (kbot - ks + 1 <= ns / 2) {
  1056. ks = kbot - ns + 1;
  1057. kt = *n - ns + 1;
  1058. slacpy_("A", &ns, &ns, &h__[ks + ks * h_dim1], ldh, &
  1059. h__[kt + h_dim1], ldh);
  1060. slahqr_(&c_false, &c_false, &ns, &c__1, &ns, &h__[kt
  1061. + h_dim1], ldh, &wr[ks], &wi[ks], &c__1, &
  1062. c__1, zdum, &c__1, &inf);
  1063. ks += inf;
  1064. /* ==== In case of a rare QR failure use */
  1065. /* . eigenvalues of the trailing 2-by-2 */
  1066. /* . principal submatrix. ==== */
  1067. if (ks >= kbot) {
  1068. aa = h__[kbot - 1 + (kbot - 1) * h_dim1];
  1069. cc = h__[kbot + (kbot - 1) * h_dim1];
  1070. bb = h__[kbot - 1 + kbot * h_dim1];
  1071. dd = h__[kbot + kbot * h_dim1];
  1072. slanv2_(&aa, &bb, &cc, &dd, &wr[kbot - 1], &wi[
  1073. kbot - 1], &wr[kbot], &wi[kbot], &cs, &sn)
  1074. ;
  1075. ks = kbot - 1;
  1076. }
  1077. }
  1078. if (kbot - ks + 1 > ns) {
  1079. /* ==== Sort the shifts (Helps a little) */
  1080. /* . Bubble sort keeps complex conjugate */
  1081. /* . pairs together. ==== */
  1082. sorted = FALSE_;
  1083. i__2 = ks + 1;
  1084. for (k = kbot; k >= i__2; --k) {
  1085. if (sorted) {
  1086. goto L60;
  1087. }
  1088. sorted = TRUE_;
  1089. i__3 = k - 1;
  1090. for (i__ = ks; i__ <= i__3; ++i__) {
  1091. if ((r__1 = wr[i__], abs(r__1)) + (r__2 = wi[
  1092. i__], abs(r__2)) < (r__3 = wr[i__ + 1]
  1093. , abs(r__3)) + (r__4 = wi[i__ + 1],
  1094. abs(r__4))) {
  1095. sorted = FALSE_;
  1096. swap = wr[i__];
  1097. wr[i__] = wr[i__ + 1];
  1098. wr[i__ + 1] = swap;
  1099. swap = wi[i__];
  1100. wi[i__] = wi[i__ + 1];
  1101. wi[i__ + 1] = swap;
  1102. }
  1103. /* L40: */
  1104. }
  1105. /* L50: */
  1106. }
  1107. L60:
  1108. ;
  1109. }
  1110. /* ==== Shuffle shifts into pairs of real shifts */
  1111. /* . and pairs of complex conjugate shifts */
  1112. /* . assuming complex conjugate shifts are */
  1113. /* . already adjacent to one another. (Yes, */
  1114. /* . they are.) ==== */
  1115. i__2 = ks + 2;
  1116. for (i__ = kbot; i__ >= i__2; i__ += -2) {
  1117. if (wi[i__] != -wi[i__ - 1]) {
  1118. swap = wr[i__];
  1119. wr[i__] = wr[i__ - 1];
  1120. wr[i__ - 1] = wr[i__ - 2];
  1121. wr[i__ - 2] = swap;
  1122. swap = wi[i__];
  1123. wi[i__] = wi[i__ - 1];
  1124. wi[i__ - 1] = wi[i__ - 2];
  1125. wi[i__ - 2] = swap;
  1126. }
  1127. /* L70: */
  1128. }
  1129. }
  1130. /* ==== If there are only two shifts and both are */
  1131. /* . real, then use only one. ==== */
  1132. if (kbot - ks + 1 == 2) {
  1133. if (wi[kbot] == 0.f) {
  1134. if ((r__1 = wr[kbot] - h__[kbot + kbot * h_dim1], abs(
  1135. r__1)) < (r__2 = wr[kbot - 1] - h__[kbot +
  1136. kbot * h_dim1], abs(r__2))) {
  1137. wr[kbot - 1] = wr[kbot];
  1138. } else {
  1139. wr[kbot] = wr[kbot - 1];
  1140. }
  1141. }
  1142. }
  1143. /* ==== Use up to NS of the the smallest magnitude */
  1144. /* . shifts. If there aren't NS shifts available, */
  1145. /* . then use them all, possibly dropping one to */
  1146. /* . make the number of shifts even. ==== */
  1147. /* Computing MIN */
  1148. i__2 = ns, i__3 = kbot - ks + 1;
  1149. ns = f2cmin(i__2,i__3);
  1150. ns -= ns % 2;
  1151. ks = kbot - ns + 1;
  1152. /* ==== Small-bulge multi-shift QR sweep: */
  1153. /* . split workspace under the subdiagonal into */
  1154. /* . - a KDU-by-KDU work array U in the lower */
  1155. /* . left-hand-corner, */
  1156. /* . - a KDU-by-at-least-KDU-but-more-is-better */
  1157. /* . (KDU-by-NHo) horizontal work array WH along */
  1158. /* . the bottom edge, */
  1159. /* . - and an at-least-KDU-but-more-is-better-by-KDU */
  1160. /* . (NVE-by-KDU) vertical work WV arrow along */
  1161. /* . the left-hand-edge. ==== */
  1162. kdu = ns << 1;
  1163. ku = *n - kdu + 1;
  1164. kwh = kdu + 1;
  1165. nho = *n - kdu - 3 - (kdu + 1) + 1;
  1166. kwv = kdu + 4;
  1167. nve = *n - kdu - kwv + 1;
  1168. /* ==== Small-bulge multi-shift QR sweep ==== */
  1169. slaqr5_(wantt, wantz, &kacc22, n, &ktop, &kbot, &ns, &wr[ks],
  1170. &wi[ks], &h__[h_offset], ldh, iloz, ihiz, &z__[
  1171. z_offset], ldz, &work[1], &c__3, &h__[ku + h_dim1],
  1172. ldh, &nve, &h__[kwv + h_dim1], ldh, &nho, &h__[ku +
  1173. kwh * h_dim1], ldh);
  1174. }
  1175. /* ==== Note progress (or the lack of it). ==== */
  1176. if (ld > 0) {
  1177. ndfl = 1;
  1178. } else {
  1179. ++ndfl;
  1180. }
  1181. /* ==== End of main loop ==== */
  1182. /* L80: */
  1183. }
  1184. /* ==== Iteration limit exceeded. Set INFO to show where */
  1185. /* . the problem occurred and exit. ==== */
  1186. *info = kbot;
  1187. L90:
  1188. ;
  1189. }
  1190. /* ==== Return the optimal value of LWORK. ==== */
  1191. work[1] = (real) lwkopt;
  1192. /* ==== End of SLAQR4 ==== */
  1193. return;
  1194. } /* slaqr4_ */