You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dtgex2.c 40 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__4 = 4;
  487. static doublereal c_b5 = 0.;
  488. static integer c__1 = 1;
  489. static integer c__2 = 2;
  490. static doublereal c_b42 = 1.;
  491. static doublereal c_b48 = -1.;
  492. static integer c__0 = 0;
  493. /* > \brief \b DTGEX2 swaps adjacent diagonal blocks in an upper (quasi) triangular matrix pair by an orthogon
  494. al equivalence transformation. */
  495. /* =========== DOCUMENTATION =========== */
  496. /* Online html documentation available at */
  497. /* http://www.netlib.org/lapack/explore-html/ */
  498. /* > \htmlonly */
  499. /* > Download DTGEX2 + dependencies */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtgex2.
  501. f"> */
  502. /* > [TGZ]</a> */
  503. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtgex2.
  504. f"> */
  505. /* > [ZIP]</a> */
  506. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtgex2.
  507. f"> */
  508. /* > [TXT]</a> */
  509. /* > \endhtmlonly */
  510. /* Definition: */
  511. /* =========== */
  512. /* SUBROUTINE DTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, */
  513. /* LDZ, J1, N1, N2, WORK, LWORK, INFO ) */
  514. /* LOGICAL WANTQ, WANTZ */
  515. /* INTEGER INFO, J1, LDA, LDB, LDQ, LDZ, LWORK, N, N1, N2 */
  516. /* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), Q( LDQ, * ), */
  517. /* $ WORK( * ), Z( LDZ, * ) */
  518. /* > \par Purpose: */
  519. /* ============= */
  520. /* > */
  521. /* > \verbatim */
  522. /* > */
  523. /* > DTGEX2 swaps adjacent diagonal blocks (A11, B11) and (A22, B22) */
  524. /* > of size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix pair */
  525. /* > (A, B) by an orthogonal equivalence transformation. */
  526. /* > */
  527. /* > (A, B) must be in generalized real Schur canonical form (as returned */
  528. /* > by DGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2 */
  529. /* > diagonal blocks. B is upper triangular. */
  530. /* > */
  531. /* > Optionally, the matrices Q and Z of generalized Schur vectors are */
  532. /* > updated. */
  533. /* > */
  534. /* > Q(in) * A(in) * Z(in)**T = Q(out) * A(out) * Z(out)**T */
  535. /* > Q(in) * B(in) * Z(in)**T = Q(out) * B(out) * Z(out)**T */
  536. /* > */
  537. /* > \endverbatim */
  538. /* Arguments: */
  539. /* ========== */
  540. /* > \param[in] WANTQ */
  541. /* > \verbatim */
  542. /* > WANTQ is LOGICAL */
  543. /* > .TRUE. : update the left transformation matrix Q; */
  544. /* > .FALSE.: do not update Q. */
  545. /* > \endverbatim */
  546. /* > */
  547. /* > \param[in] WANTZ */
  548. /* > \verbatim */
  549. /* > WANTZ is LOGICAL */
  550. /* > .TRUE. : update the right transformation matrix Z; */
  551. /* > .FALSE.: do not update Z. */
  552. /* > \endverbatim */
  553. /* > */
  554. /* > \param[in] N */
  555. /* > \verbatim */
  556. /* > N is INTEGER */
  557. /* > The order of the matrices A and B. N >= 0. */
  558. /* > \endverbatim */
  559. /* > */
  560. /* > \param[in,out] A */
  561. /* > \verbatim */
  562. /* > A is DOUBLE PRECISION array, dimensions (LDA,N) */
  563. /* > On entry, the matrix A in the pair (A, B). */
  564. /* > On exit, the updated matrix A. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in] LDA */
  568. /* > \verbatim */
  569. /* > LDA is INTEGER */
  570. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  571. /* > \endverbatim */
  572. /* > */
  573. /* > \param[in,out] B */
  574. /* > \verbatim */
  575. /* > B is DOUBLE PRECISION array, dimensions (LDB,N) */
  576. /* > On entry, the matrix B in the pair (A, B). */
  577. /* > On exit, the updated matrix B. */
  578. /* > \endverbatim */
  579. /* > */
  580. /* > \param[in] LDB */
  581. /* > \verbatim */
  582. /* > LDB is INTEGER */
  583. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[in,out] Q */
  587. /* > \verbatim */
  588. /* > Q is DOUBLE PRECISION array, dimension (LDQ,N) */
  589. /* > On entry, if WANTQ = .TRUE., the orthogonal matrix Q. */
  590. /* > On exit, the updated matrix Q. */
  591. /* > Not referenced if WANTQ = .FALSE.. */
  592. /* > \endverbatim */
  593. /* > */
  594. /* > \param[in] LDQ */
  595. /* > \verbatim */
  596. /* > LDQ is INTEGER */
  597. /* > The leading dimension of the array Q. LDQ >= 1. */
  598. /* > If WANTQ = .TRUE., LDQ >= N. */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[in,out] Z */
  602. /* > \verbatim */
  603. /* > Z is DOUBLE PRECISION array, dimension (LDZ,N) */
  604. /* > On entry, if WANTZ =.TRUE., the orthogonal matrix Z. */
  605. /* > On exit, the updated matrix Z. */
  606. /* > Not referenced if WANTZ = .FALSE.. */
  607. /* > \endverbatim */
  608. /* > */
  609. /* > \param[in] LDZ */
  610. /* > \verbatim */
  611. /* > LDZ is INTEGER */
  612. /* > The leading dimension of the array Z. LDZ >= 1. */
  613. /* > If WANTZ = .TRUE., LDZ >= N. */
  614. /* > \endverbatim */
  615. /* > */
  616. /* > \param[in] J1 */
  617. /* > \verbatim */
  618. /* > J1 is INTEGER */
  619. /* > The index to the first block (A11, B11). 1 <= J1 <= N. */
  620. /* > \endverbatim */
  621. /* > */
  622. /* > \param[in] N1 */
  623. /* > \verbatim */
  624. /* > N1 is INTEGER */
  625. /* > The order of the first block (A11, B11). N1 = 0, 1 or 2. */
  626. /* > \endverbatim */
  627. /* > */
  628. /* > \param[in] N2 */
  629. /* > \verbatim */
  630. /* > N2 is INTEGER */
  631. /* > The order of the second block (A22, B22). N2 = 0, 1 or 2. */
  632. /* > \endverbatim */
  633. /* > */
  634. /* > \param[out] WORK */
  635. /* > \verbatim */
  636. /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)). */
  637. /* > \endverbatim */
  638. /* > */
  639. /* > \param[in] LWORK */
  640. /* > \verbatim */
  641. /* > LWORK is INTEGER */
  642. /* > The dimension of the array WORK. */
  643. /* > LWORK >= MAX( 1, N*(N2+N1), (N2+N1)*(N2+N1)*2 ) */
  644. /* > \endverbatim */
  645. /* > */
  646. /* > \param[out] INFO */
  647. /* > \verbatim */
  648. /* > INFO is INTEGER */
  649. /* > =0: Successful exit */
  650. /* > >0: If INFO = 1, the transformed matrix (A, B) would be */
  651. /* > too far from generalized Schur form; the blocks are */
  652. /* > not swapped and (A, B) and (Q, Z) are unchanged. */
  653. /* > The problem of swapping is too ill-conditioned. */
  654. /* > <0: If INFO = -16: LWORK is too small. Appropriate value */
  655. /* > for LWORK is returned in WORK(1). */
  656. /* > \endverbatim */
  657. /* Authors: */
  658. /* ======== */
  659. /* > \author Univ. of Tennessee */
  660. /* > \author Univ. of California Berkeley */
  661. /* > \author Univ. of Colorado Denver */
  662. /* > \author NAG Ltd. */
  663. /* > \date December 2016 */
  664. /* > \ingroup doubleGEauxiliary */
  665. /* > \par Further Details: */
  666. /* ===================== */
  667. /* > */
  668. /* > In the current code both weak and strong stability tests are */
  669. /* > performed. The user can omit the strong stability test by changing */
  670. /* > the internal logical parameter WANDS to .FALSE.. See ref. [2] for */
  671. /* > details. */
  672. /* > \par Contributors: */
  673. /* ================== */
  674. /* > */
  675. /* > Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
  676. /* > Umea University, S-901 87 Umea, Sweden. */
  677. /* > \par References: */
  678. /* ================ */
  679. /* > */
  680. /* > \verbatim */
  681. /* > */
  682. /* > [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the */
  683. /* > Generalized Real Schur Form of a Regular Matrix Pair (A, B), in */
  684. /* > M.S. Moonen et al (eds), Linear Algebra for Large Scale and */
  685. /* > Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. */
  686. /* > */
  687. /* > [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified */
  688. /* > Eigenvalues of a Regular Matrix Pair (A, B) and Condition */
  689. /* > Estimation: Theory, Algorithms and Software, */
  690. /* > Report UMINF - 94.04, Department of Computing Science, Umea */
  691. /* > University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working */
  692. /* > Note 87. To appear in Numerical Algorithms, 1996. */
  693. /* > \endverbatim */
  694. /* > */
  695. /* ===================================================================== */
  696. /* Subroutine */ void dtgex2_(logical *wantq, logical *wantz, integer *n,
  697. doublereal *a, integer *lda, doublereal *b, integer *ldb, doublereal *
  698. q, integer *ldq, doublereal *z__, integer *ldz, integer *j1, integer *
  699. n1, integer *n2, doublereal *work, integer *lwork, integer *info)
  700. {
  701. /* System generated locals */
  702. integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1,
  703. z_offset, i__1, i__2;
  704. doublereal d__1;
  705. /* Local variables */
  706. logical weak;
  707. doublereal ddum;
  708. integer idum;
  709. doublereal taul[4], dsum;
  710. extern /* Subroutine */ void drot_(integer *, doublereal *, integer *,
  711. doublereal *, integer *, doublereal *, doublereal *);
  712. doublereal taur[4], scpy[16] /* was [4][4] */, tcpy[16] /*
  713. was [4][4] */, f, g;
  714. integer i__, m;
  715. doublereal s[16] /* was [4][4] */, t[16] /* was [4][4] */;
  716. extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *,
  717. integer *);
  718. doublereal scale, bqra21, brqa21;
  719. extern /* Subroutine */ void dgemm_(char *, char *, integer *, integer *,
  720. integer *, doublereal *, doublereal *, integer *, doublereal *,
  721. integer *, doublereal *, doublereal *, integer *);
  722. doublereal licop[16] /* was [4][4] */;
  723. integer linfo;
  724. doublereal ircop[16] /* was [4][4] */, dnorm;
  725. integer iwork[4];
  726. extern /* Subroutine */ void dlagv2_(doublereal *, integer *, doublereal *,
  727. integer *, doublereal *, doublereal *, doublereal *, doublereal *
  728. , doublereal *, doublereal *, doublereal *), dgeqr2_(integer *,
  729. integer *, doublereal *, integer *, doublereal *, doublereal *,
  730. integer *), dgerq2_(integer *, integer *, doublereal *, integer *,
  731. doublereal *, doublereal *, integer *), dorg2r_(integer *,
  732. integer *, integer *, doublereal *, integer *, doublereal *,
  733. doublereal *, integer *), dorgr2_(integer *, integer *, integer *,
  734. doublereal *, integer *, doublereal *, doublereal *, integer *),
  735. dorm2r_(char *, char *, integer *, integer *, integer *,
  736. doublereal *, integer *, doublereal *, doublereal *, integer *,
  737. doublereal *, integer *), dormr2_(char *, char *,
  738. integer *, integer *, integer *, doublereal *, integer *,
  739. doublereal *, doublereal *, integer *, doublereal *, integer *);
  740. doublereal be[2], ai[2];
  741. extern /* Subroutine */ void dtgsy2_(char *, integer *, integer *, integer
  742. *, doublereal *, integer *, doublereal *, integer *, doublereal *,
  743. integer *, doublereal *, integer *, doublereal *, integer *,
  744. doublereal *, integer *, doublereal *, doublereal *, doublereal *,
  745. integer *, integer *, integer *);
  746. doublereal ar[2], sa, sb, li[16] /* was [4][4] */;
  747. extern doublereal dlamch_(char *);
  748. doublereal dscale, ir[16] /* was [4][4] */, ss, ws;
  749. extern /* Subroutine */ void dlacpy_(char *, integer *, integer *,
  750. doublereal *, integer *, doublereal *, integer *),
  751. dlartg_(doublereal *, doublereal *, doublereal *, doublereal *,
  752. doublereal *), dlaset_(char *, integer *, integer *, doublereal *,
  753. doublereal *, doublereal *, integer *), dlassq_(integer *
  754. , doublereal *, integer *, doublereal *, doublereal *);
  755. logical dtrong;
  756. doublereal thresh, smlnum, eps;
  757. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  758. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  759. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  760. /* December 2016 */
  761. /* ===================================================================== */
  762. /* Replaced various illegal calls to DCOPY by calls to DLASET, or by DO */
  763. /* loops. Sven Hammarling, 1/5/02. */
  764. /* Parameter adjustments */
  765. a_dim1 = *lda;
  766. a_offset = 1 + a_dim1 * 1;
  767. a -= a_offset;
  768. b_dim1 = *ldb;
  769. b_offset = 1 + b_dim1 * 1;
  770. b -= b_offset;
  771. q_dim1 = *ldq;
  772. q_offset = 1 + q_dim1 * 1;
  773. q -= q_offset;
  774. z_dim1 = *ldz;
  775. z_offset = 1 + z_dim1 * 1;
  776. z__ -= z_offset;
  777. --work;
  778. /* Function Body */
  779. *info = 0;
  780. /* Quick return if possible */
  781. if (*n <= 1 || *n1 <= 0 || *n2 <= 0) {
  782. return;
  783. }
  784. if (*n1 > *n || *j1 + *n1 > *n) {
  785. return;
  786. }
  787. m = *n1 + *n2;
  788. /* Computing MAX */
  789. i__1 = 1, i__2 = *n * m, i__1 = f2cmax(i__1,i__2), i__2 = m * m << 1;
  790. if (*lwork < f2cmax(i__1,i__2)) {
  791. *info = -16;
  792. /* Computing MAX */
  793. i__1 = 1, i__2 = *n * m, i__1 = f2cmax(i__1,i__2), i__2 = m * m << 1;
  794. work[1] = (doublereal) f2cmax(i__1,i__2);
  795. return;
  796. }
  797. weak = FALSE_;
  798. dtrong = FALSE_;
  799. /* Make a local copy of selected block */
  800. dlaset_("Full", &c__4, &c__4, &c_b5, &c_b5, li, &c__4);
  801. dlaset_("Full", &c__4, &c__4, &c_b5, &c_b5, ir, &c__4);
  802. dlacpy_("Full", &m, &m, &a[*j1 + *j1 * a_dim1], lda, s, &c__4);
  803. dlacpy_("Full", &m, &m, &b[*j1 + *j1 * b_dim1], ldb, t, &c__4);
  804. /* Compute threshold for testing acceptance of swapping. */
  805. eps = dlamch_("P");
  806. smlnum = dlamch_("S") / eps;
  807. dscale = 0.;
  808. dsum = 1.;
  809. dlacpy_("Full", &m, &m, s, &c__4, &work[1], &m);
  810. i__1 = m * m;
  811. dlassq_(&i__1, &work[1], &c__1, &dscale, &dsum);
  812. dlacpy_("Full", &m, &m, t, &c__4, &work[1], &m);
  813. i__1 = m * m;
  814. dlassq_(&i__1, &work[1], &c__1, &dscale, &dsum);
  815. dnorm = dscale * sqrt(dsum);
  816. /* THRES has been changed from */
  817. /* THRESH = MAX( TEN*EPS*SA, SMLNUM ) */
  818. /* to */
  819. /* THRESH = MAX( TWENTY*EPS*SA, SMLNUM ) */
  820. /* on 04/01/10. */
  821. /* "Bug" reported by Ondra Kamenik, confirmed by Julie Langou, fixed by */
  822. /* Jim Demmel and Guillaume Revy. See forum post 1783. */
  823. /* Computing MAX */
  824. d__1 = eps * 20. * dnorm;
  825. thresh = f2cmax(d__1,smlnum);
  826. if (m == 2) {
  827. /* CASE 1: Swap 1-by-1 and 1-by-1 blocks. */
  828. /* Compute orthogonal QL and RQ that swap 1-by-1 and 1-by-1 blocks */
  829. /* using Givens rotations and perform the swap tentatively. */
  830. f = s[5] * t[0] - t[5] * s[0];
  831. g = s[5] * t[4] - t[5] * s[4];
  832. sb = abs(t[5]);
  833. sa = abs(s[5]);
  834. dlartg_(&f, &g, &ir[4], ir, &ddum);
  835. ir[1] = -ir[4];
  836. ir[5] = ir[0];
  837. drot_(&c__2, s, &c__1, &s[4], &c__1, ir, &ir[1]);
  838. drot_(&c__2, t, &c__1, &t[4], &c__1, ir, &ir[1]);
  839. if (sa >= sb) {
  840. dlartg_(s, &s[1], li, &li[1], &ddum);
  841. } else {
  842. dlartg_(t, &t[1], li, &li[1], &ddum);
  843. }
  844. drot_(&c__2, s, &c__4, &s[1], &c__4, li, &li[1]);
  845. drot_(&c__2, t, &c__4, &t[1], &c__4, li, &li[1]);
  846. li[5] = li[0];
  847. li[4] = -li[1];
  848. /* Weak stability test: */
  849. /* |S21| + |T21| <= O(EPS * F-norm((S, T))) */
  850. ws = abs(s[1]) + abs(t[1]);
  851. weak = ws <= thresh;
  852. if (! weak) {
  853. goto L70;
  854. }
  855. if (TRUE_) {
  856. /* Strong stability test: */
  857. /* F-norm((A-QL**T*S*QR, B-QL**T*T*QR)) <= O(EPS*F-norm((A,B))) */
  858. dlacpy_("Full", &m, &m, &a[*j1 + *j1 * a_dim1], lda, &work[m * m
  859. + 1], &m);
  860. dgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, s, &c__4, &c_b5, &
  861. work[1], &m);
  862. dgemm_("N", "T", &m, &m, &m, &c_b48, &work[1], &m, ir, &c__4, &
  863. c_b42, &work[m * m + 1], &m);
  864. dscale = 0.;
  865. dsum = 1.;
  866. i__1 = m * m;
  867. dlassq_(&i__1, &work[m * m + 1], &c__1, &dscale, &dsum);
  868. dlacpy_("Full", &m, &m, &b[*j1 + *j1 * b_dim1], ldb, &work[m * m
  869. + 1], &m);
  870. dgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, t, &c__4, &c_b5, &
  871. work[1], &m);
  872. dgemm_("N", "T", &m, &m, &m, &c_b48, &work[1], &m, ir, &c__4, &
  873. c_b42, &work[m * m + 1], &m);
  874. i__1 = m * m;
  875. dlassq_(&i__1, &work[m * m + 1], &c__1, &dscale, &dsum);
  876. ss = dscale * sqrt(dsum);
  877. dtrong = ss <= thresh;
  878. if (! dtrong) {
  879. goto L70;
  880. }
  881. }
  882. /* Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and */
  883. /* (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)). */
  884. i__1 = *j1 + 1;
  885. drot_(&i__1, &a[*j1 * a_dim1 + 1], &c__1, &a[(*j1 + 1) * a_dim1 + 1],
  886. &c__1, ir, &ir[1]);
  887. i__1 = *j1 + 1;
  888. drot_(&i__1, &b[*j1 * b_dim1 + 1], &c__1, &b[(*j1 + 1) * b_dim1 + 1],
  889. &c__1, ir, &ir[1]);
  890. i__1 = *n - *j1 + 1;
  891. drot_(&i__1, &a[*j1 + *j1 * a_dim1], lda, &a[*j1 + 1 + *j1 * a_dim1],
  892. lda, li, &li[1]);
  893. i__1 = *n - *j1 + 1;
  894. drot_(&i__1, &b[*j1 + *j1 * b_dim1], ldb, &b[*j1 + 1 + *j1 * b_dim1],
  895. ldb, li, &li[1]);
  896. /* Set N1-by-N2 (2,1) - blocks to ZERO. */
  897. a[*j1 + 1 + *j1 * a_dim1] = 0.;
  898. b[*j1 + 1 + *j1 * b_dim1] = 0.;
  899. /* Accumulate transformations into Q and Z if requested. */
  900. if (*wantz) {
  901. drot_(n, &z__[*j1 * z_dim1 + 1], &c__1, &z__[(*j1 + 1) * z_dim1 +
  902. 1], &c__1, ir, &ir[1]);
  903. }
  904. if (*wantq) {
  905. drot_(n, &q[*j1 * q_dim1 + 1], &c__1, &q[(*j1 + 1) * q_dim1 + 1],
  906. &c__1, li, &li[1]);
  907. }
  908. /* Exit with INFO = 0 if swap was successfully performed. */
  909. return;
  910. } else {
  911. /* CASE 2: Swap 1-by-1 and 2-by-2 blocks, or 2-by-2 */
  912. /* and 2-by-2 blocks. */
  913. /* Solve the generalized Sylvester equation */
  914. /* S11 * R - L * S22 = SCALE * S12 */
  915. /* T11 * R - L * T22 = SCALE * T12 */
  916. /* for R and L. Solutions in LI and IR. */
  917. dlacpy_("Full", n1, n2, &t[(*n1 + 1 << 2) - 4], &c__4, li, &c__4);
  918. dlacpy_("Full", n1, n2, &s[(*n1 + 1 << 2) - 4], &c__4, &ir[*n2 + 1 + (
  919. *n1 + 1 << 2) - 5], &c__4);
  920. dtgsy2_("N", &c__0, n1, n2, s, &c__4, &s[*n1 + 1 + (*n1 + 1 << 2) - 5]
  921. , &c__4, &ir[*n2 + 1 + (*n1 + 1 << 2) - 5], &c__4, t, &c__4, &
  922. t[*n1 + 1 + (*n1 + 1 << 2) - 5], &c__4, li, &c__4, &scale, &
  923. dsum, &dscale, iwork, &idum, &linfo);
  924. /* Compute orthogonal matrix QL: */
  925. /* QL**T * LI = [ TL ] */
  926. /* [ 0 ] */
  927. /* where */
  928. /* LI = [ -L ] */
  929. /* [ SCALE * identity(N2) ] */
  930. i__1 = *n2;
  931. for (i__ = 1; i__ <= i__1; ++i__) {
  932. dscal_(n1, &c_b48, &li[(i__ << 2) - 4], &c__1);
  933. li[*n1 + i__ + (i__ << 2) - 5] = scale;
  934. /* L10: */
  935. }
  936. dgeqr2_(&m, n2, li, &c__4, taul, &work[1], &linfo);
  937. if (linfo != 0) {
  938. goto L70;
  939. }
  940. dorg2r_(&m, &m, n2, li, &c__4, taul, &work[1], &linfo);
  941. if (linfo != 0) {
  942. goto L70;
  943. }
  944. /* Compute orthogonal matrix RQ: */
  945. /* IR * RQ**T = [ 0 TR], */
  946. /* where IR = [ SCALE * identity(N1), R ] */
  947. i__1 = *n1;
  948. for (i__ = 1; i__ <= i__1; ++i__) {
  949. ir[*n2 + i__ + (i__ << 2) - 5] = scale;
  950. /* L20: */
  951. }
  952. dgerq2_(n1, &m, &ir[*n2], &c__4, taur, &work[1], &linfo);
  953. if (linfo != 0) {
  954. goto L70;
  955. }
  956. dorgr2_(&m, &m, n1, ir, &c__4, taur, &work[1], &linfo);
  957. if (linfo != 0) {
  958. goto L70;
  959. }
  960. /* Perform the swapping tentatively: */
  961. dgemm_("T", "N", &m, &m, &m, &c_b42, li, &c__4, s, &c__4, &c_b5, &
  962. work[1], &m);
  963. dgemm_("N", "T", &m, &m, &m, &c_b42, &work[1], &m, ir, &c__4, &c_b5,
  964. s, &c__4);
  965. dgemm_("T", "N", &m, &m, &m, &c_b42, li, &c__4, t, &c__4, &c_b5, &
  966. work[1], &m);
  967. dgemm_("N", "T", &m, &m, &m, &c_b42, &work[1], &m, ir, &c__4, &c_b5,
  968. t, &c__4);
  969. dlacpy_("F", &m, &m, s, &c__4, scpy, &c__4);
  970. dlacpy_("F", &m, &m, t, &c__4, tcpy, &c__4);
  971. dlacpy_("F", &m, &m, ir, &c__4, ircop, &c__4);
  972. dlacpy_("F", &m, &m, li, &c__4, licop, &c__4);
  973. /* Triangularize the B-part by an RQ factorization. */
  974. /* Apply transformation (from left) to A-part, giving S. */
  975. dgerq2_(&m, &m, t, &c__4, taur, &work[1], &linfo);
  976. if (linfo != 0) {
  977. goto L70;
  978. }
  979. dormr2_("R", "T", &m, &m, &m, t, &c__4, taur, s, &c__4, &work[1], &
  980. linfo);
  981. if (linfo != 0) {
  982. goto L70;
  983. }
  984. dormr2_("L", "N", &m, &m, &m, t, &c__4, taur, ir, &c__4, &work[1], &
  985. linfo);
  986. if (linfo != 0) {
  987. goto L70;
  988. }
  989. /* Compute F-norm(S21) in BRQA21. (T21 is 0.) */
  990. dscale = 0.;
  991. dsum = 1.;
  992. i__1 = *n2;
  993. for (i__ = 1; i__ <= i__1; ++i__) {
  994. dlassq_(n1, &s[*n2 + 1 + (i__ << 2) - 5], &c__1, &dscale, &dsum);
  995. /* L30: */
  996. }
  997. brqa21 = dscale * sqrt(dsum);
  998. /* Triangularize the B-part by a QR factorization. */
  999. /* Apply transformation (from right) to A-part, giving S. */
  1000. dgeqr2_(&m, &m, tcpy, &c__4, taul, &work[1], &linfo);
  1001. if (linfo != 0) {
  1002. goto L70;
  1003. }
  1004. dorm2r_("L", "T", &m, &m, &m, tcpy, &c__4, taul, scpy, &c__4, &work[1]
  1005. , info);
  1006. dorm2r_("R", "N", &m, &m, &m, tcpy, &c__4, taul, licop, &c__4, &work[
  1007. 1], info);
  1008. if (linfo != 0) {
  1009. goto L70;
  1010. }
  1011. /* Compute F-norm(S21) in BQRA21. (T21 is 0.) */
  1012. dscale = 0.;
  1013. dsum = 1.;
  1014. i__1 = *n2;
  1015. for (i__ = 1; i__ <= i__1; ++i__) {
  1016. dlassq_(n1, &scpy[*n2 + 1 + (i__ << 2) - 5], &c__1, &dscale, &
  1017. dsum);
  1018. /* L40: */
  1019. }
  1020. bqra21 = dscale * sqrt(dsum);
  1021. /* Decide which method to use. */
  1022. /* Weak stability test: */
  1023. /* F-norm(S21) <= O(EPS * F-norm((S, T))) */
  1024. if (bqra21 <= brqa21 && bqra21 <= thresh) {
  1025. dlacpy_("F", &m, &m, scpy, &c__4, s, &c__4);
  1026. dlacpy_("F", &m, &m, tcpy, &c__4, t, &c__4);
  1027. dlacpy_("F", &m, &m, ircop, &c__4, ir, &c__4);
  1028. dlacpy_("F", &m, &m, licop, &c__4, li, &c__4);
  1029. } else if (brqa21 >= thresh) {
  1030. goto L70;
  1031. }
  1032. /* Set lower triangle of B-part to zero */
  1033. i__1 = m - 1;
  1034. i__2 = m - 1;
  1035. dlaset_("Lower", &i__1, &i__2, &c_b5, &c_b5, &t[1], &c__4);
  1036. if (TRUE_) {
  1037. /* Strong stability test: */
  1038. /* F-norm((A-QL*S*QR**T, B-QL*T*QR**T)) <= O(EPS*F-norm((A,B))) */
  1039. dlacpy_("Full", &m, &m, &a[*j1 + *j1 * a_dim1], lda, &work[m * m
  1040. + 1], &m);
  1041. dgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, s, &c__4, &c_b5, &
  1042. work[1], &m);
  1043. dgemm_("N", "N", &m, &m, &m, &c_b48, &work[1], &m, ir, &c__4, &
  1044. c_b42, &work[m * m + 1], &m);
  1045. dscale = 0.;
  1046. dsum = 1.;
  1047. i__1 = m * m;
  1048. dlassq_(&i__1, &work[m * m + 1], &c__1, &dscale, &dsum);
  1049. dlacpy_("Full", &m, &m, &b[*j1 + *j1 * b_dim1], ldb, &work[m * m
  1050. + 1], &m);
  1051. dgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, t, &c__4, &c_b5, &
  1052. work[1], &m);
  1053. dgemm_("N", "N", &m, &m, &m, &c_b48, &work[1], &m, ir, &c__4, &
  1054. c_b42, &work[m * m + 1], &m);
  1055. i__1 = m * m;
  1056. dlassq_(&i__1, &work[m * m + 1], &c__1, &dscale, &dsum);
  1057. ss = dscale * sqrt(dsum);
  1058. dtrong = ss <= thresh;
  1059. if (! dtrong) {
  1060. goto L70;
  1061. }
  1062. }
  1063. /* If the swap is accepted ("weakly" and "strongly"), apply the */
  1064. /* transformations and set N1-by-N2 (2,1)-block to zero. */
  1065. dlaset_("Full", n1, n2, &c_b5, &c_b5, &s[*n2], &c__4);
  1066. /* copy back M-by-M diagonal block starting at index J1 of (A, B) */
  1067. dlacpy_("F", &m, &m, s, &c__4, &a[*j1 + *j1 * a_dim1], lda)
  1068. ;
  1069. dlacpy_("F", &m, &m, t, &c__4, &b[*j1 + *j1 * b_dim1], ldb)
  1070. ;
  1071. dlaset_("Full", &c__4, &c__4, &c_b5, &c_b5, t, &c__4);
  1072. /* Standardize existing 2-by-2 blocks. */
  1073. dlaset_("Full", &m, &m, &c_b5, &c_b5, &work[1], &m);
  1074. work[1] = 1.;
  1075. t[0] = 1.;
  1076. idum = *lwork - m * m - 2;
  1077. if (*n2 > 1) {
  1078. dlagv2_(&a[*j1 + *j1 * a_dim1], lda, &b[*j1 + *j1 * b_dim1], ldb,
  1079. ar, ai, be, &work[1], &work[2], t, &t[1]);
  1080. work[m + 1] = -work[2];
  1081. work[m + 2] = work[1];
  1082. t[*n2 + (*n2 << 2) - 5] = t[0];
  1083. t[4] = -t[1];
  1084. }
  1085. work[m * m] = 1.;
  1086. t[m + (m << 2) - 5] = 1.;
  1087. if (*n1 > 1) {
  1088. dlagv2_(&a[*j1 + *n2 + (*j1 + *n2) * a_dim1], lda, &b[*j1 + *n2 +
  1089. (*j1 + *n2) * b_dim1], ldb, taur, taul, &work[m * m + 1],
  1090. &work[*n2 * m + *n2 + 1], &work[*n2 * m + *n2 + 2], &t[*
  1091. n2 + 1 + (*n2 + 1 << 2) - 5], &t[m + (m - 1 << 2) - 5]);
  1092. work[m * m] = work[*n2 * m + *n2 + 1];
  1093. work[m * m - 1] = -work[*n2 * m + *n2 + 2];
  1094. t[m + (m << 2) - 5] = t[*n2 + 1 + (*n2 + 1 << 2) - 5];
  1095. t[m - 1 + (m << 2) - 5] = -t[m + (m - 1 << 2) - 5];
  1096. }
  1097. dgemm_("T", "N", n2, n1, n2, &c_b42, &work[1], &m, &a[*j1 + (*j1 + *
  1098. n2) * a_dim1], lda, &c_b5, &work[m * m + 1], n2);
  1099. dlacpy_("Full", n2, n1, &work[m * m + 1], n2, &a[*j1 + (*j1 + *n2) *
  1100. a_dim1], lda);
  1101. dgemm_("T", "N", n2, n1, n2, &c_b42, &work[1], &m, &b[*j1 + (*j1 + *
  1102. n2) * b_dim1], ldb, &c_b5, &work[m * m + 1], n2);
  1103. dlacpy_("Full", n2, n1, &work[m * m + 1], n2, &b[*j1 + (*j1 + *n2) *
  1104. b_dim1], ldb);
  1105. dgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, &work[1], &m, &c_b5, &
  1106. work[m * m + 1], &m);
  1107. dlacpy_("Full", &m, &m, &work[m * m + 1], &m, li, &c__4);
  1108. dgemm_("N", "N", n2, n1, n1, &c_b42, &a[*j1 + (*j1 + *n2) * a_dim1],
  1109. lda, &t[*n2 + 1 + (*n2 + 1 << 2) - 5], &c__4, &c_b5, &work[1],
  1110. n2);
  1111. dlacpy_("Full", n2, n1, &work[1], n2, &a[*j1 + (*j1 + *n2) * a_dim1],
  1112. lda);
  1113. dgemm_("N", "N", n2, n1, n1, &c_b42, &b[*j1 + (*j1 + *n2) * b_dim1],
  1114. ldb, &t[*n2 + 1 + (*n2 + 1 << 2) - 5], &c__4, &c_b5, &work[1],
  1115. n2);
  1116. dlacpy_("Full", n2, n1, &work[1], n2, &b[*j1 + (*j1 + *n2) * b_dim1],
  1117. ldb);
  1118. dgemm_("T", "N", &m, &m, &m, &c_b42, ir, &c__4, t, &c__4, &c_b5, &
  1119. work[1], &m);
  1120. dlacpy_("Full", &m, &m, &work[1], &m, ir, &c__4);
  1121. /* Accumulate transformations into Q and Z if requested. */
  1122. if (*wantq) {
  1123. dgemm_("N", "N", n, &m, &m, &c_b42, &q[*j1 * q_dim1 + 1], ldq, li,
  1124. &c__4, &c_b5, &work[1], n);
  1125. dlacpy_("Full", n, &m, &work[1], n, &q[*j1 * q_dim1 + 1], ldq);
  1126. }
  1127. if (*wantz) {
  1128. dgemm_("N", "N", n, &m, &m, &c_b42, &z__[*j1 * z_dim1 + 1], ldz,
  1129. ir, &c__4, &c_b5, &work[1], n);
  1130. dlacpy_("Full", n, &m, &work[1], n, &z__[*j1 * z_dim1 + 1], ldz);
  1131. }
  1132. /* Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and */
  1133. /* (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)). */
  1134. i__ = *j1 + m;
  1135. if (i__ <= *n) {
  1136. i__1 = *n - i__ + 1;
  1137. dgemm_("T", "N", &m, &i__1, &m, &c_b42, li, &c__4, &a[*j1 + i__ *
  1138. a_dim1], lda, &c_b5, &work[1], &m);
  1139. i__1 = *n - i__ + 1;
  1140. dlacpy_("Full", &m, &i__1, &work[1], &m, &a[*j1 + i__ * a_dim1],
  1141. lda);
  1142. i__1 = *n - i__ + 1;
  1143. dgemm_("T", "N", &m, &i__1, &m, &c_b42, li, &c__4, &b[*j1 + i__ *
  1144. b_dim1], ldb, &c_b5, &work[1], &m);
  1145. i__1 = *n - i__ + 1;
  1146. dlacpy_("Full", &m, &i__1, &work[1], &m, &b[*j1 + i__ * b_dim1],
  1147. ldb);
  1148. }
  1149. i__ = *j1 - 1;
  1150. if (i__ > 0) {
  1151. dgemm_("N", "N", &i__, &m, &m, &c_b42, &a[*j1 * a_dim1 + 1], lda,
  1152. ir, &c__4, &c_b5, &work[1], &i__);
  1153. dlacpy_("Full", &i__, &m, &work[1], &i__, &a[*j1 * a_dim1 + 1],
  1154. lda);
  1155. dgemm_("N", "N", &i__, &m, &m, &c_b42, &b[*j1 * b_dim1 + 1], ldb,
  1156. ir, &c__4, &c_b5, &work[1], &i__);
  1157. dlacpy_("Full", &i__, &m, &work[1], &i__, &b[*j1 * b_dim1 + 1],
  1158. ldb);
  1159. }
  1160. /* Exit with INFO = 0 if swap was successfully performed. */
  1161. return;
  1162. }
  1163. /* Exit with INFO = 1 if swap was rejected. */
  1164. L70:
  1165. *info = 1;
  1166. return;
  1167. /* End of DTGEX2 */
  1168. } /* dtgex2_ */