You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgtrfs.c 30 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static doublereal c_b18 = -1.;
  488. static doublereal c_b19 = 1.;
  489. /* > \brief \b DGTRFS */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download DGTRFS + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgtrfs.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgtrfs.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgtrfs.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE DGTRFS( TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2, */
  508. /* IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK, */
  509. /* INFO ) */
  510. /* CHARACTER TRANS */
  511. /* INTEGER INFO, LDB, LDX, N, NRHS */
  512. /* INTEGER IPIV( * ), IWORK( * ) */
  513. /* DOUBLE PRECISION B( LDB, * ), BERR( * ), D( * ), DF( * ), */
  514. /* $ DL( * ), DLF( * ), DU( * ), DU2( * ), DUF( * ), */
  515. /* $ FERR( * ), WORK( * ), X( LDX, * ) */
  516. /* > \par Purpose: */
  517. /* ============= */
  518. /* > */
  519. /* > \verbatim */
  520. /* > */
  521. /* > DGTRFS improves the computed solution to a system of linear */
  522. /* > equations when the coefficient matrix is tridiagonal, and provides */
  523. /* > error bounds and backward error estimates for the solution. */
  524. /* > \endverbatim */
  525. /* Arguments: */
  526. /* ========== */
  527. /* > \param[in] TRANS */
  528. /* > \verbatim */
  529. /* > TRANS is CHARACTER*1 */
  530. /* > Specifies the form of the system of equations: */
  531. /* > = 'N': A * X = B (No transpose) */
  532. /* > = 'T': A**T * X = B (Transpose) */
  533. /* > = 'C': A**H * X = B (Conjugate transpose = Transpose) */
  534. /* > \endverbatim */
  535. /* > */
  536. /* > \param[in] N */
  537. /* > \verbatim */
  538. /* > N is INTEGER */
  539. /* > The order of the matrix A. N >= 0. */
  540. /* > \endverbatim */
  541. /* > */
  542. /* > \param[in] NRHS */
  543. /* > \verbatim */
  544. /* > NRHS is INTEGER */
  545. /* > The number of right hand sides, i.e., the number of columns */
  546. /* > of the matrix B. NRHS >= 0. */
  547. /* > \endverbatim */
  548. /* > */
  549. /* > \param[in] DL */
  550. /* > \verbatim */
  551. /* > DL is DOUBLE PRECISION array, dimension (N-1) */
  552. /* > The (n-1) subdiagonal elements of A. */
  553. /* > \endverbatim */
  554. /* > */
  555. /* > \param[in] D */
  556. /* > \verbatim */
  557. /* > D is DOUBLE PRECISION array, dimension (N) */
  558. /* > The diagonal elements of A. */
  559. /* > \endverbatim */
  560. /* > */
  561. /* > \param[in] DU */
  562. /* > \verbatim */
  563. /* > DU is DOUBLE PRECISION array, dimension (N-1) */
  564. /* > The (n-1) superdiagonal elements of A. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in] DLF */
  568. /* > \verbatim */
  569. /* > DLF is DOUBLE PRECISION array, dimension (N-1) */
  570. /* > The (n-1) multipliers that define the matrix L from the */
  571. /* > LU factorization of A as computed by DGTTRF. */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[in] DF */
  575. /* > \verbatim */
  576. /* > DF is DOUBLE PRECISION array, dimension (N) */
  577. /* > The n diagonal elements of the upper triangular matrix U from */
  578. /* > the LU factorization of A. */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[in] DUF */
  582. /* > \verbatim */
  583. /* > DUF is DOUBLE PRECISION array, dimension (N-1) */
  584. /* > The (n-1) elements of the first superdiagonal of U. */
  585. /* > \endverbatim */
  586. /* > */
  587. /* > \param[in] DU2 */
  588. /* > \verbatim */
  589. /* > DU2 is DOUBLE PRECISION array, dimension (N-2) */
  590. /* > The (n-2) elements of the second superdiagonal of U. */
  591. /* > \endverbatim */
  592. /* > */
  593. /* > \param[in] IPIV */
  594. /* > \verbatim */
  595. /* > IPIV is INTEGER array, dimension (N) */
  596. /* > The pivot indices; for 1 <= i <= n, row i of the matrix was */
  597. /* > interchanged with row IPIV(i). IPIV(i) will always be either */
  598. /* > i or i+1; IPIV(i) = i indicates a row interchange was not */
  599. /* > required. */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[in] B */
  603. /* > \verbatim */
  604. /* > B is DOUBLE PRECISION array, dimension (LDB,NRHS) */
  605. /* > The right hand side matrix B. */
  606. /* > \endverbatim */
  607. /* > */
  608. /* > \param[in] LDB */
  609. /* > \verbatim */
  610. /* > LDB is INTEGER */
  611. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  612. /* > \endverbatim */
  613. /* > */
  614. /* > \param[in,out] X */
  615. /* > \verbatim */
  616. /* > X is DOUBLE PRECISION array, dimension (LDX,NRHS) */
  617. /* > On entry, the solution matrix X, as computed by DGTTRS. */
  618. /* > On exit, the improved solution matrix X. */
  619. /* > \endverbatim */
  620. /* > */
  621. /* > \param[in] LDX */
  622. /* > \verbatim */
  623. /* > LDX is INTEGER */
  624. /* > The leading dimension of the array X. LDX >= f2cmax(1,N). */
  625. /* > \endverbatim */
  626. /* > */
  627. /* > \param[out] FERR */
  628. /* > \verbatim */
  629. /* > FERR is DOUBLE PRECISION array, dimension (NRHS) */
  630. /* > The estimated forward error bound for each solution vector */
  631. /* > X(j) (the j-th column of the solution matrix X). */
  632. /* > If XTRUE is the true solution corresponding to X(j), FERR(j) */
  633. /* > is an estimated upper bound for the magnitude of the largest */
  634. /* > element in (X(j) - XTRUE) divided by the magnitude of the */
  635. /* > largest element in X(j). The estimate is as reliable as */
  636. /* > the estimate for RCOND, and is almost always a slight */
  637. /* > overestimate of the true error. */
  638. /* > \endverbatim */
  639. /* > */
  640. /* > \param[out] BERR */
  641. /* > \verbatim */
  642. /* > BERR is DOUBLE PRECISION array, dimension (NRHS) */
  643. /* > The componentwise relative backward error of each solution */
  644. /* > vector X(j) (i.e., the smallest relative change in */
  645. /* > any element of A or B that makes X(j) an exact solution). */
  646. /* > \endverbatim */
  647. /* > */
  648. /* > \param[out] WORK */
  649. /* > \verbatim */
  650. /* > WORK is DOUBLE PRECISION array, dimension (3*N) */
  651. /* > \endverbatim */
  652. /* > */
  653. /* > \param[out] IWORK */
  654. /* > \verbatim */
  655. /* > IWORK is INTEGER array, dimension (N) */
  656. /* > \endverbatim */
  657. /* > */
  658. /* > \param[out] INFO */
  659. /* > \verbatim */
  660. /* > INFO is INTEGER */
  661. /* > = 0: successful exit */
  662. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  663. /* > \endverbatim */
  664. /* > \par Internal Parameters: */
  665. /* ========================= */
  666. /* > */
  667. /* > \verbatim */
  668. /* > ITMAX is the maximum number of steps of iterative refinement. */
  669. /* > \endverbatim */
  670. /* Authors: */
  671. /* ======== */
  672. /* > \author Univ. of Tennessee */
  673. /* > \author Univ. of California Berkeley */
  674. /* > \author Univ. of Colorado Denver */
  675. /* > \author NAG Ltd. */
  676. /* > \date December 2016 */
  677. /* > \ingroup doubleGTcomputational */
  678. /* ===================================================================== */
  679. /* Subroutine */ void dgtrfs_(char *trans, integer *n, integer *nrhs,
  680. doublereal *dl, doublereal *d__, doublereal *du, doublereal *dlf,
  681. doublereal *df, doublereal *duf, doublereal *du2, integer *ipiv,
  682. doublereal *b, integer *ldb, doublereal *x, integer *ldx, doublereal *
  683. ferr, doublereal *berr, doublereal *work, integer *iwork, integer *
  684. info)
  685. {
  686. /* System generated locals */
  687. integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2;
  688. doublereal d__1, d__2, d__3, d__4;
  689. /* Local variables */
  690. integer kase;
  691. doublereal safe1, safe2;
  692. integer i__, j;
  693. doublereal s;
  694. extern logical lsame_(char *, char *);
  695. integer isave[3];
  696. extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
  697. doublereal *, integer *), daxpy_(integer *, doublereal *,
  698. doublereal *, integer *, doublereal *, integer *);
  699. integer count;
  700. extern /* Subroutine */ void dlacn2_(integer *, doublereal *, doublereal *,
  701. integer *, doublereal *, integer *, integer *);
  702. extern doublereal dlamch_(char *);
  703. integer nz;
  704. extern /* Subroutine */ void dlagtm_(char *, integer *, integer *,
  705. doublereal *, doublereal *, doublereal *, doublereal *,
  706. doublereal *, integer *, doublereal *, doublereal *, integer *);
  707. doublereal safmin;
  708. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  709. logical notran;
  710. char transn[1];
  711. extern /* Subroutine */ void dgttrs_(char *, integer *, integer *,
  712. doublereal *, doublereal *, doublereal *, doublereal *, integer *,
  713. doublereal *, integer *, integer *);
  714. char transt[1];
  715. doublereal lstres, eps;
  716. /* -- LAPACK computational routine (version 3.7.0) -- */
  717. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  718. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  719. /* December 2016 */
  720. /* ===================================================================== */
  721. /* Test the input parameters. */
  722. /* Parameter adjustments */
  723. --dl;
  724. --d__;
  725. --du;
  726. --dlf;
  727. --df;
  728. --duf;
  729. --du2;
  730. --ipiv;
  731. b_dim1 = *ldb;
  732. b_offset = 1 + b_dim1 * 1;
  733. b -= b_offset;
  734. x_dim1 = *ldx;
  735. x_offset = 1 + x_dim1 * 1;
  736. x -= x_offset;
  737. --ferr;
  738. --berr;
  739. --work;
  740. --iwork;
  741. /* Function Body */
  742. *info = 0;
  743. notran = lsame_(trans, "N");
  744. if (! notran && ! lsame_(trans, "T") && ! lsame_(
  745. trans, "C")) {
  746. *info = -1;
  747. } else if (*n < 0) {
  748. *info = -2;
  749. } else if (*nrhs < 0) {
  750. *info = -3;
  751. } else if (*ldb < f2cmax(1,*n)) {
  752. *info = -13;
  753. } else if (*ldx < f2cmax(1,*n)) {
  754. *info = -15;
  755. }
  756. if (*info != 0) {
  757. i__1 = -(*info);
  758. xerbla_("DGTRFS", &i__1, (ftnlen)6);
  759. return;
  760. }
  761. /* Quick return if possible */
  762. if (*n == 0 || *nrhs == 0) {
  763. i__1 = *nrhs;
  764. for (j = 1; j <= i__1; ++j) {
  765. ferr[j] = 0.;
  766. berr[j] = 0.;
  767. /* L10: */
  768. }
  769. return;
  770. }
  771. if (notran) {
  772. *(unsigned char *)transn = 'N';
  773. *(unsigned char *)transt = 'T';
  774. } else {
  775. *(unsigned char *)transn = 'T';
  776. *(unsigned char *)transt = 'N';
  777. }
  778. /* NZ = maximum number of nonzero elements in each row of A, plus 1 */
  779. nz = 4;
  780. eps = dlamch_("Epsilon");
  781. safmin = dlamch_("Safe minimum");
  782. safe1 = nz * safmin;
  783. safe2 = safe1 / eps;
  784. /* Do for each right hand side */
  785. i__1 = *nrhs;
  786. for (j = 1; j <= i__1; ++j) {
  787. count = 1;
  788. lstres = 3.;
  789. L20:
  790. /* Loop until stopping criterion is satisfied. */
  791. /* Compute residual R = B - op(A) * X, */
  792. /* where op(A) = A, A**T, or A**H, depending on TRANS. */
  793. dcopy_(n, &b[j * b_dim1 + 1], &c__1, &work[*n + 1], &c__1);
  794. dlagtm_(trans, n, &c__1, &c_b18, &dl[1], &d__[1], &du[1], &x[j *
  795. x_dim1 + 1], ldx, &c_b19, &work[*n + 1], n);
  796. /* Compute abs(op(A))*abs(x) + abs(b) for use in the backward */
  797. /* error bound. */
  798. if (notran) {
  799. if (*n == 1) {
  800. work[1] = (d__1 = b[j * b_dim1 + 1], abs(d__1)) + (d__2 = d__[
  801. 1] * x[j * x_dim1 + 1], abs(d__2));
  802. } else {
  803. work[1] = (d__1 = b[j * b_dim1 + 1], abs(d__1)) + (d__2 = d__[
  804. 1] * x[j * x_dim1 + 1], abs(d__2)) + (d__3 = du[1] *
  805. x[j * x_dim1 + 2], abs(d__3));
  806. i__2 = *n - 1;
  807. for (i__ = 2; i__ <= i__2; ++i__) {
  808. work[i__] = (d__1 = b[i__ + j * b_dim1], abs(d__1)) + (
  809. d__2 = dl[i__ - 1] * x[i__ - 1 + j * x_dim1], abs(
  810. d__2)) + (d__3 = d__[i__] * x[i__ + j * x_dim1],
  811. abs(d__3)) + (d__4 = du[i__] * x[i__ + 1 + j *
  812. x_dim1], abs(d__4));
  813. /* L30: */
  814. }
  815. work[*n] = (d__1 = b[*n + j * b_dim1], abs(d__1)) + (d__2 =
  816. dl[*n - 1] * x[*n - 1 + j * x_dim1], abs(d__2)) + (
  817. d__3 = d__[*n] * x[*n + j * x_dim1], abs(d__3));
  818. }
  819. } else {
  820. if (*n == 1) {
  821. work[1] = (d__1 = b[j * b_dim1 + 1], abs(d__1)) + (d__2 = d__[
  822. 1] * x[j * x_dim1 + 1], abs(d__2));
  823. } else {
  824. work[1] = (d__1 = b[j * b_dim1 + 1], abs(d__1)) + (d__2 = d__[
  825. 1] * x[j * x_dim1 + 1], abs(d__2)) + (d__3 = dl[1] *
  826. x[j * x_dim1 + 2], abs(d__3));
  827. i__2 = *n - 1;
  828. for (i__ = 2; i__ <= i__2; ++i__) {
  829. work[i__] = (d__1 = b[i__ + j * b_dim1], abs(d__1)) + (
  830. d__2 = du[i__ - 1] * x[i__ - 1 + j * x_dim1], abs(
  831. d__2)) + (d__3 = d__[i__] * x[i__ + j * x_dim1],
  832. abs(d__3)) + (d__4 = dl[i__] * x[i__ + 1 + j *
  833. x_dim1], abs(d__4));
  834. /* L40: */
  835. }
  836. work[*n] = (d__1 = b[*n + j * b_dim1], abs(d__1)) + (d__2 =
  837. du[*n - 1] * x[*n - 1 + j * x_dim1], abs(d__2)) + (
  838. d__3 = d__[*n] * x[*n + j * x_dim1], abs(d__3));
  839. }
  840. }
  841. /* Compute componentwise relative backward error from formula */
  842. /* f2cmax(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) ) */
  843. /* where abs(Z) is the componentwise absolute value of the matrix */
  844. /* or vector Z. If the i-th component of the denominator is less */
  845. /* than SAFE2, then SAFE1 is added to the i-th components of the */
  846. /* numerator and denominator before dividing. */
  847. s = 0.;
  848. i__2 = *n;
  849. for (i__ = 1; i__ <= i__2; ++i__) {
  850. if (work[i__] > safe2) {
  851. /* Computing MAX */
  852. d__2 = s, d__3 = (d__1 = work[*n + i__], abs(d__1)) / work[
  853. i__];
  854. s = f2cmax(d__2,d__3);
  855. } else {
  856. /* Computing MAX */
  857. d__2 = s, d__3 = ((d__1 = work[*n + i__], abs(d__1)) + safe1)
  858. / (work[i__] + safe1);
  859. s = f2cmax(d__2,d__3);
  860. }
  861. /* L50: */
  862. }
  863. berr[j] = s;
  864. /* Test stopping criterion. Continue iterating if */
  865. /* 1) The residual BERR(J) is larger than machine epsilon, and */
  866. /* 2) BERR(J) decreased by at least a factor of 2 during the */
  867. /* last iteration, and */
  868. /* 3) At most ITMAX iterations tried. */
  869. if (berr[j] > eps && berr[j] * 2. <= lstres && count <= 5) {
  870. /* Update solution and try again. */
  871. dgttrs_(trans, n, &c__1, &dlf[1], &df[1], &duf[1], &du2[1], &ipiv[
  872. 1], &work[*n + 1], n, info);
  873. daxpy_(n, &c_b19, &work[*n + 1], &c__1, &x[j * x_dim1 + 1], &c__1)
  874. ;
  875. lstres = berr[j];
  876. ++count;
  877. goto L20;
  878. }
  879. /* Bound error from formula */
  880. /* norm(X - XTRUE) / norm(X) .le. FERR = */
  881. /* norm( abs(inv(op(A)))* */
  882. /* ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X) */
  883. /* where */
  884. /* norm(Z) is the magnitude of the largest component of Z */
  885. /* inv(op(A)) is the inverse of op(A) */
  886. /* abs(Z) is the componentwise absolute value of the matrix or */
  887. /* vector Z */
  888. /* NZ is the maximum number of nonzeros in any row of A, plus 1 */
  889. /* EPS is machine epsilon */
  890. /* The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B)) */
  891. /* is incremented by SAFE1 if the i-th component of */
  892. /* abs(op(A))*abs(X) + abs(B) is less than SAFE2. */
  893. /* Use DLACN2 to estimate the infinity-norm of the matrix */
  894. /* inv(op(A)) * diag(W), */
  895. /* where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) */
  896. i__2 = *n;
  897. for (i__ = 1; i__ <= i__2; ++i__) {
  898. if (work[i__] > safe2) {
  899. work[i__] = (d__1 = work[*n + i__], abs(d__1)) + nz * eps *
  900. work[i__];
  901. } else {
  902. work[i__] = (d__1 = work[*n + i__], abs(d__1)) + nz * eps *
  903. work[i__] + safe1;
  904. }
  905. /* L60: */
  906. }
  907. kase = 0;
  908. L70:
  909. dlacn2_(n, &work[(*n << 1) + 1], &work[*n + 1], &iwork[1], &ferr[j], &
  910. kase, isave);
  911. if (kase != 0) {
  912. if (kase == 1) {
  913. /* Multiply by diag(W)*inv(op(A)**T). */
  914. dgttrs_(transt, n, &c__1, &dlf[1], &df[1], &duf[1], &du2[1], &
  915. ipiv[1], &work[*n + 1], n, info);
  916. i__2 = *n;
  917. for (i__ = 1; i__ <= i__2; ++i__) {
  918. work[*n + i__] = work[i__] * work[*n + i__];
  919. /* L80: */
  920. }
  921. } else {
  922. /* Multiply by inv(op(A))*diag(W). */
  923. i__2 = *n;
  924. for (i__ = 1; i__ <= i__2; ++i__) {
  925. work[*n + i__] = work[i__] * work[*n + i__];
  926. /* L90: */
  927. }
  928. dgttrs_(transn, n, &c__1, &dlf[1], &df[1], &duf[1], &du2[1], &
  929. ipiv[1], &work[*n + 1], n, info);
  930. }
  931. goto L70;
  932. }
  933. /* Normalize error. */
  934. lstres = 0.;
  935. i__2 = *n;
  936. for (i__ = 1; i__ <= i__2; ++i__) {
  937. /* Computing MAX */
  938. d__2 = lstres, d__3 = (d__1 = x[i__ + j * x_dim1], abs(d__1));
  939. lstres = f2cmax(d__2,d__3);
  940. /* L100: */
  941. }
  942. if (lstres != 0.) {
  943. ferr[j] /= lstres;
  944. }
  945. /* L110: */
  946. }
  947. return;
  948. /* End of DGTRFS */
  949. } /* dgtrfs_ */