You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dggev3.c 37 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c_n1 = -1;
  487. static integer c__1 = 1;
  488. static integer c__0 = 0;
  489. static doublereal c_b38 = 0.;
  490. static doublereal c_b39 = 1.;
  491. /* > \brief <b> DGGEV3 computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE mat
  492. rices (blocked algorithm)</b> */
  493. /* =========== DOCUMENTATION =========== */
  494. /* Online html documentation available at */
  495. /* http://www.netlib.org/lapack/explore-html/ */
  496. /* > \htmlonly */
  497. /* > Download DGGEV3 + dependencies */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dggev3.
  499. f"> */
  500. /* > [TGZ]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dggev3.
  502. f"> */
  503. /* > [ZIP]</a> */
  504. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dggev3.
  505. f"> */
  506. /* > [TXT]</a> */
  507. /* > \endhtmlonly */
  508. /* Definition: */
  509. /* =========== */
  510. /* SUBROUTINE DGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, */
  511. /* $ ALPHAI, BETA, VL, LDVL, VR, LDVR, WORK, LWORK, */
  512. /* $ INFO ) */
  513. /* CHARACTER JOBVL, JOBVR */
  514. /* INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N */
  515. /* DOUBLE PRECISION A( LDA, * ), ALPHAI( * ), ALPHAR( * ), */
  516. /* $ B( LDB, * ), BETA( * ), VL( LDVL, * ), */
  517. /* $ VR( LDVR, * ), WORK( * ) */
  518. /* > \par Purpose: */
  519. /* ============= */
  520. /* > */
  521. /* > \verbatim */
  522. /* > */
  523. /* > DGGEV3 computes for a pair of N-by-N real nonsymmetric matrices (A,B) */
  524. /* > the generalized eigenvalues, and optionally, the left and/or right */
  525. /* > generalized eigenvectors. */
  526. /* > */
  527. /* > A generalized eigenvalue for a pair of matrices (A,B) is a scalar */
  528. /* > lambda or a ratio alpha/beta = lambda, such that A - lambda*B is */
  529. /* > singular. It is usually represented as the pair (alpha,beta), as */
  530. /* > there is a reasonable interpretation for beta=0, and even for both */
  531. /* > being zero. */
  532. /* > */
  533. /* > The right eigenvector v(j) corresponding to the eigenvalue lambda(j) */
  534. /* > of (A,B) satisfies */
  535. /* > */
  536. /* > A * v(j) = lambda(j) * B * v(j). */
  537. /* > */
  538. /* > The left eigenvector u(j) corresponding to the eigenvalue lambda(j) */
  539. /* > of (A,B) satisfies */
  540. /* > */
  541. /* > u(j)**H * A = lambda(j) * u(j)**H * B . */
  542. /* > */
  543. /* > where u(j)**H is the conjugate-transpose of u(j). */
  544. /* > */
  545. /* > \endverbatim */
  546. /* Arguments: */
  547. /* ========== */
  548. /* > \param[in] JOBVL */
  549. /* > \verbatim */
  550. /* > JOBVL is CHARACTER*1 */
  551. /* > = 'N': do not compute the left generalized eigenvectors; */
  552. /* > = 'V': compute the left generalized eigenvectors. */
  553. /* > \endverbatim */
  554. /* > */
  555. /* > \param[in] JOBVR */
  556. /* > \verbatim */
  557. /* > JOBVR is CHARACTER*1 */
  558. /* > = 'N': do not compute the right generalized eigenvectors; */
  559. /* > = 'V': compute the right generalized eigenvectors. */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in] N */
  563. /* > \verbatim */
  564. /* > N is INTEGER */
  565. /* > The order of the matrices A, B, VL, and VR. N >= 0. */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in,out] A */
  569. /* > \verbatim */
  570. /* > A is DOUBLE PRECISION array, dimension (LDA, N) */
  571. /* > On entry, the matrix A in the pair (A,B). */
  572. /* > On exit, A has been overwritten. */
  573. /* > \endverbatim */
  574. /* > */
  575. /* > \param[in] LDA */
  576. /* > \verbatim */
  577. /* > LDA is INTEGER */
  578. /* > The leading dimension of A. LDA >= f2cmax(1,N). */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[in,out] B */
  582. /* > \verbatim */
  583. /* > B is DOUBLE PRECISION array, dimension (LDB, N) */
  584. /* > On entry, the matrix B in the pair (A,B). */
  585. /* > On exit, B has been overwritten. */
  586. /* > \endverbatim */
  587. /* > */
  588. /* > \param[in] LDB */
  589. /* > \verbatim */
  590. /* > LDB is INTEGER */
  591. /* > The leading dimension of B. LDB >= f2cmax(1,N). */
  592. /* > \endverbatim */
  593. /* > */
  594. /* > \param[out] ALPHAR */
  595. /* > \verbatim */
  596. /* > ALPHAR is DOUBLE PRECISION array, dimension (N) */
  597. /* > \endverbatim */
  598. /* > */
  599. /* > \param[out] ALPHAI */
  600. /* > \verbatim */
  601. /* > ALPHAI is DOUBLE PRECISION array, dimension (N) */
  602. /* > \endverbatim */
  603. /* > */
  604. /* > \param[out] BETA */
  605. /* > \verbatim */
  606. /* > BETA is DOUBLE PRECISION array, dimension (N) */
  607. /* > On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will */
  608. /* > be the generalized eigenvalues. If ALPHAI(j) is zero, then */
  609. /* > the j-th eigenvalue is real; if positive, then the j-th and */
  610. /* > (j+1)-st eigenvalues are a complex conjugate pair, with */
  611. /* > ALPHAI(j+1) negative. */
  612. /* > */
  613. /* > Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) */
  614. /* > may easily over- or underflow, and BETA(j) may even be zero. */
  615. /* > Thus, the user should avoid naively computing the ratio */
  616. /* > alpha/beta. However, ALPHAR and ALPHAI will be always less */
  617. /* > than and usually comparable with norm(A) in magnitude, and */
  618. /* > BETA always less than and usually comparable with norm(B). */
  619. /* > \endverbatim */
  620. /* > */
  621. /* > \param[out] VL */
  622. /* > \verbatim */
  623. /* > VL is DOUBLE PRECISION array, dimension (LDVL,N) */
  624. /* > If JOBVL = 'V', the left eigenvectors u(j) are stored one */
  625. /* > after another in the columns of VL, in the same order as */
  626. /* > their eigenvalues. If the j-th eigenvalue is real, then */
  627. /* > u(j) = VL(:,j), the j-th column of VL. If the j-th and */
  628. /* > (j+1)-th eigenvalues form a complex conjugate pair, then */
  629. /* > u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1). */
  630. /* > Each eigenvector is scaled so the largest component has */
  631. /* > abs(real part)+abs(imag. part)=1. */
  632. /* > Not referenced if JOBVL = 'N'. */
  633. /* > \endverbatim */
  634. /* > */
  635. /* > \param[in] LDVL */
  636. /* > \verbatim */
  637. /* > LDVL is INTEGER */
  638. /* > The leading dimension of the matrix VL. LDVL >= 1, and */
  639. /* > if JOBVL = 'V', LDVL >= N. */
  640. /* > \endverbatim */
  641. /* > */
  642. /* > \param[out] VR */
  643. /* > \verbatim */
  644. /* > VR is DOUBLE PRECISION array, dimension (LDVR,N) */
  645. /* > If JOBVR = 'V', the right eigenvectors v(j) are stored one */
  646. /* > after another in the columns of VR, in the same order as */
  647. /* > their eigenvalues. If the j-th eigenvalue is real, then */
  648. /* > v(j) = VR(:,j), the j-th column of VR. If the j-th and */
  649. /* > (j+1)-th eigenvalues form a complex conjugate pair, then */
  650. /* > v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1). */
  651. /* > Each eigenvector is scaled so the largest component has */
  652. /* > abs(real part)+abs(imag. part)=1. */
  653. /* > Not referenced if JOBVR = 'N'. */
  654. /* > \endverbatim */
  655. /* > */
  656. /* > \param[in] LDVR */
  657. /* > \verbatim */
  658. /* > LDVR is INTEGER */
  659. /* > The leading dimension of the matrix VR. LDVR >= 1, and */
  660. /* > if JOBVR = 'V', LDVR >= N. */
  661. /* > \endverbatim */
  662. /* > */
  663. /* > \param[out] WORK */
  664. /* > \verbatim */
  665. /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
  666. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  667. /* > \endverbatim */
  668. /* > */
  669. /* > \param[in] LWORK */
  670. /* > \verbatim */
  671. /* > LWORK is INTEGER */
  672. /* > */
  673. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  674. /* > only calculates the optimal size of the WORK array, returns */
  675. /* > this value as the first entry of the WORK array, and no error */
  676. /* > message related to LWORK is issued by XERBLA. */
  677. /* > \endverbatim */
  678. /* > */
  679. /* > \param[out] INFO */
  680. /* > \verbatim */
  681. /* > INFO is INTEGER */
  682. /* > = 0: successful exit */
  683. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  684. /* > = 1,...,N: */
  685. /* > The QZ iteration failed. No eigenvectors have been */
  686. /* > calculated, but ALPHAR(j), ALPHAI(j), and BETA(j) */
  687. /* > should be correct for j=INFO+1,...,N. */
  688. /* > > N: =N+1: other than QZ iteration failed in DHGEQZ. */
  689. /* > =N+2: error return from DTGEVC. */
  690. /* > \endverbatim */
  691. /* Authors: */
  692. /* ======== */
  693. /* > \author Univ. of Tennessee */
  694. /* > \author Univ. of California Berkeley */
  695. /* > \author Univ. of Colorado Denver */
  696. /* > \author NAG Ltd. */
  697. /* > \date January 2015 */
  698. /* > \ingroup doubleGEeigen */
  699. /* ===================================================================== */
  700. /* Subroutine */ void dggev3_(char *jobvl, char *jobvr, integer *n, doublereal
  701. *a, integer *lda, doublereal *b, integer *ldb, doublereal *alphar,
  702. doublereal *alphai, doublereal *beta, doublereal *vl, integer *ldvl,
  703. doublereal *vr, integer *ldvr, doublereal *work, integer *lwork,
  704. integer *info)
  705. {
  706. /* System generated locals */
  707. integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1,
  708. vr_offset, i__1, i__2;
  709. doublereal d__1, d__2, d__3, d__4;
  710. /* Local variables */
  711. doublereal anrm, bnrm;
  712. integer ierr, itau;
  713. doublereal temp;
  714. logical ilvl, ilvr;
  715. integer iwrk;
  716. extern logical lsame_(char *, char *);
  717. integer ileft, icols;
  718. extern /* Subroutine */ void dgghd3_(char *, char *, integer *, integer *,
  719. integer *, doublereal *, integer *, doublereal *, integer *,
  720. doublereal *, integer *, doublereal *, integer *, doublereal *,
  721. integer *, integer *);
  722. integer irows;
  723. extern /* Subroutine */ void dlabad_(doublereal *, doublereal *);
  724. integer jc;
  725. extern /* Subroutine */ void dggbak_(char *, char *, integer *, integer *,
  726. integer *, doublereal *, doublereal *, integer *, doublereal *,
  727. integer *, integer *), dggbal_(char *, integer *,
  728. doublereal *, integer *, doublereal *, integer *, integer *,
  729. integer *, doublereal *, doublereal *, doublereal *, integer *);
  730. integer in;
  731. extern doublereal dlamch_(char *), dlange_(char *, integer *,
  732. integer *, doublereal *, integer *, doublereal *);
  733. integer jr;
  734. extern /* Subroutine */ void dlascl_(char *, integer *, integer *,
  735. doublereal *, doublereal *, integer *, integer *, doublereal *,
  736. integer *, integer *);
  737. logical ilascl, ilbscl;
  738. extern /* Subroutine */ void dgeqrf_(integer *, integer *, doublereal *,
  739. integer *, doublereal *, doublereal *, integer *, integer *),
  740. dlacpy_(char *, integer *, integer *, doublereal *, integer *,
  741. doublereal *, integer *), dlaset_(char *, integer *,
  742. integer *, doublereal *, doublereal *, doublereal *, integer *), dtgevc_(char *, char *, logical *, integer *, doublereal
  743. *, integer *, doublereal *, integer *, doublereal *, integer *,
  744. doublereal *, integer *, integer *, integer *, doublereal *,
  745. integer *);
  746. logical ldumma[1];
  747. char chtemp[1];
  748. doublereal bignum;
  749. extern /* Subroutine */ void dhgeqz_(char *, char *, char *, integer *,
  750. integer *, integer *, doublereal *, integer *, doublereal *,
  751. integer *, doublereal *, doublereal *, doublereal *, doublereal *,
  752. integer *, doublereal *, integer *, doublereal *, integer *,
  753. integer *);
  754. extern int xerbla_(char *, integer *, ftnlen);
  755. integer ijobvl, iright, ijobvr;
  756. extern /* Subroutine */ void dorgqr_(integer *, integer *, integer *,
  757. doublereal *, integer *, doublereal *, doublereal *, integer *,
  758. integer *);
  759. doublereal anrmto, bnrmto;
  760. extern /* Subroutine */ void dormqr_(char *, char *, integer *, integer *,
  761. integer *, doublereal *, integer *, doublereal *, doublereal *,
  762. integer *, doublereal *, integer *, integer *);
  763. doublereal smlnum;
  764. integer lwkopt;
  765. logical lquery;
  766. integer ihi, ilo;
  767. doublereal eps;
  768. logical ilv;
  769. /* -- LAPACK driver routine (version 3.6.0) -- */
  770. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  771. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  772. /* January 2015 */
  773. /* ===================================================================== */
  774. /* Decode the input arguments */
  775. /* Parameter adjustments */
  776. a_dim1 = *lda;
  777. a_offset = 1 + a_dim1 * 1;
  778. a -= a_offset;
  779. b_dim1 = *ldb;
  780. b_offset = 1 + b_dim1 * 1;
  781. b -= b_offset;
  782. --alphar;
  783. --alphai;
  784. --beta;
  785. vl_dim1 = *ldvl;
  786. vl_offset = 1 + vl_dim1 * 1;
  787. vl -= vl_offset;
  788. vr_dim1 = *ldvr;
  789. vr_offset = 1 + vr_dim1 * 1;
  790. vr -= vr_offset;
  791. --work;
  792. /* Function Body */
  793. if (lsame_(jobvl, "N")) {
  794. ijobvl = 1;
  795. ilvl = FALSE_;
  796. } else if (lsame_(jobvl, "V")) {
  797. ijobvl = 2;
  798. ilvl = TRUE_;
  799. } else {
  800. ijobvl = -1;
  801. ilvl = FALSE_;
  802. }
  803. if (lsame_(jobvr, "N")) {
  804. ijobvr = 1;
  805. ilvr = FALSE_;
  806. } else if (lsame_(jobvr, "V")) {
  807. ijobvr = 2;
  808. ilvr = TRUE_;
  809. } else {
  810. ijobvr = -1;
  811. ilvr = FALSE_;
  812. }
  813. ilv = ilvl || ilvr;
  814. /* Test the input arguments */
  815. *info = 0;
  816. lquery = *lwork == -1;
  817. if (ijobvl <= 0) {
  818. *info = -1;
  819. } else if (ijobvr <= 0) {
  820. *info = -2;
  821. } else if (*n < 0) {
  822. *info = -3;
  823. } else if (*lda < f2cmax(1,*n)) {
  824. *info = -5;
  825. } else if (*ldb < f2cmax(1,*n)) {
  826. *info = -7;
  827. } else if (*ldvl < 1 || ilvl && *ldvl < *n) {
  828. *info = -12;
  829. } else if (*ldvr < 1 || ilvr && *ldvr < *n) {
  830. *info = -14;
  831. } else /* if(complicated condition) */ {
  832. /* Computing MAX */
  833. i__1 = 1, i__2 = *n << 3;
  834. if (*lwork < f2cmax(i__1,i__2) && ! lquery) {
  835. *info = -16;
  836. }
  837. }
  838. /* Compute workspace */
  839. if (*info == 0) {
  840. dgeqrf_(n, n, &b[b_offset], ldb, &work[1], &work[1], &c_n1, &ierr);
  841. /* Computing MAX */
  842. i__1 = 1, i__2 = *n << 3, i__1 = f2cmax(i__1,i__2), i__2 = *n * 3 + (
  843. integer) work[1];
  844. lwkopt = f2cmax(i__1,i__2);
  845. dormqr_("L", "T", n, n, n, &b[b_offset], ldb, &work[1], &a[a_offset],
  846. lda, &work[1], &c_n1, &ierr);
  847. /* Computing MAX */
  848. i__1 = lwkopt, i__2 = *n * 3 + (integer) work[1];
  849. lwkopt = f2cmax(i__1,i__2);
  850. if (ilvl) {
  851. dorgqr_(n, n, n, &vl[vl_offset], ldvl, &work[1], &work[1], &c_n1,
  852. &ierr);
  853. /* Computing MAX */
  854. i__1 = lwkopt, i__2 = *n * 3 + (integer) work[1];
  855. lwkopt = f2cmax(i__1,i__2);
  856. }
  857. if (ilv) {
  858. dgghd3_(jobvl, jobvr, n, &c__1, n, &a[a_offset], lda, &b[b_offset]
  859. , ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &work[
  860. 1], &c_n1, &ierr);
  861. /* Computing MAX */
  862. i__1 = lwkopt, i__2 = *n * 3 + (integer) work[1];
  863. lwkopt = f2cmax(i__1,i__2);
  864. dhgeqz_("S", jobvl, jobvr, n, &c__1, n, &a[a_offset], lda, &b[
  865. b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vl[
  866. vl_offset], ldvl, &vr[vr_offset], ldvr, &work[1], &c_n1, &
  867. ierr);
  868. /* Computing MAX */
  869. i__1 = lwkopt, i__2 = (*n << 1) + (integer) work[1];
  870. lwkopt = f2cmax(i__1,i__2);
  871. } else {
  872. dgghd3_("N", "N", n, &c__1, n, &a[a_offset], lda, &b[b_offset],
  873. ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &work[1],
  874. &c_n1, &ierr);
  875. /* Computing MAX */
  876. i__1 = lwkopt, i__2 = *n * 3 + (integer) work[1];
  877. lwkopt = f2cmax(i__1,i__2);
  878. dhgeqz_("E", jobvl, jobvr, n, &c__1, n, &a[a_offset], lda, &b[
  879. b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vl[
  880. vl_offset], ldvl, &vr[vr_offset], ldvr, &work[1], &c_n1, &
  881. ierr);
  882. /* Computing MAX */
  883. i__1 = lwkopt, i__2 = (*n << 1) + (integer) work[1];
  884. lwkopt = f2cmax(i__1,i__2);
  885. }
  886. work[1] = (doublereal) lwkopt;
  887. }
  888. if (*info != 0) {
  889. i__1 = -(*info);
  890. xerbla_("DGGEV3 ", &i__1, (ftnlen)6);
  891. return;
  892. } else if (lquery) {
  893. return;
  894. }
  895. /* Quick return if possible */
  896. if (*n == 0) {
  897. return;
  898. }
  899. /* Get machine constants */
  900. eps = dlamch_("P");
  901. smlnum = dlamch_("S");
  902. bignum = 1. / smlnum;
  903. dlabad_(&smlnum, &bignum);
  904. smlnum = sqrt(smlnum) / eps;
  905. bignum = 1. / smlnum;
  906. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  907. anrm = dlange_("M", n, n, &a[a_offset], lda, &work[1]);
  908. ilascl = FALSE_;
  909. if (anrm > 0. && anrm < smlnum) {
  910. anrmto = smlnum;
  911. ilascl = TRUE_;
  912. } else if (anrm > bignum) {
  913. anrmto = bignum;
  914. ilascl = TRUE_;
  915. }
  916. if (ilascl) {
  917. dlascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &
  918. ierr);
  919. }
  920. /* Scale B if f2cmax element outside range [SMLNUM,BIGNUM] */
  921. bnrm = dlange_("M", n, n, &b[b_offset], ldb, &work[1]);
  922. ilbscl = FALSE_;
  923. if (bnrm > 0. && bnrm < smlnum) {
  924. bnrmto = smlnum;
  925. ilbscl = TRUE_;
  926. } else if (bnrm > bignum) {
  927. bnrmto = bignum;
  928. ilbscl = TRUE_;
  929. }
  930. if (ilbscl) {
  931. dlascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
  932. ierr);
  933. }
  934. /* Permute the matrices A, B to isolate eigenvalues if possible */
  935. ileft = 1;
  936. iright = *n + 1;
  937. iwrk = iright + *n;
  938. dggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[
  939. ileft], &work[iright], &work[iwrk], &ierr);
  940. /* Reduce B to triangular form (QR decomposition of B) */
  941. irows = ihi + 1 - ilo;
  942. if (ilv) {
  943. icols = *n + 1 - ilo;
  944. } else {
  945. icols = irows;
  946. }
  947. itau = iwrk;
  948. iwrk = itau + irows;
  949. i__1 = *lwork + 1 - iwrk;
  950. dgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
  951. iwrk], &i__1, &ierr);
  952. /* Apply the orthogonal transformation to matrix A */
  953. i__1 = *lwork + 1 - iwrk;
  954. dormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
  955. work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwrk], &i__1, &
  956. ierr);
  957. /* Initialize VL */
  958. if (ilvl) {
  959. dlaset_("Full", n, n, &c_b38, &c_b39, &vl[vl_offset], ldvl)
  960. ;
  961. if (irows > 1) {
  962. i__1 = irows - 1;
  963. i__2 = irows - 1;
  964. dlacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vl[
  965. ilo + 1 + ilo * vl_dim1], ldvl);
  966. }
  967. i__1 = *lwork + 1 - iwrk;
  968. dorgqr_(&irows, &irows, &irows, &vl[ilo + ilo * vl_dim1], ldvl, &work[
  969. itau], &work[iwrk], &i__1, &ierr);
  970. }
  971. /* Initialize VR */
  972. if (ilvr) {
  973. dlaset_("Full", n, n, &c_b38, &c_b39, &vr[vr_offset], ldvr)
  974. ;
  975. }
  976. /* Reduce to generalized Hessenberg form */
  977. if (ilv) {
  978. /* Eigenvectors requested -- work on whole matrix. */
  979. i__1 = *lwork + 1 - iwrk;
  980. dgghd3_(jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset],
  981. ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &work[iwrk],
  982. &i__1, &ierr);
  983. } else {
  984. i__1 = *lwork + 1 - iwrk;
  985. dgghd3_("N", "N", &irows, &c__1, &irows, &a[ilo + ilo * a_dim1], lda,
  986. &b[ilo + ilo * b_dim1], ldb, &vl[vl_offset], ldvl, &vr[
  987. vr_offset], ldvr, &work[iwrk], &i__1, &ierr);
  988. }
  989. /* Perform QZ algorithm (Compute eigenvalues, and optionally, the */
  990. /* Schur forms and Schur vectors) */
  991. iwrk = itau;
  992. if (ilv) {
  993. *(unsigned char *)chtemp = 'S';
  994. } else {
  995. *(unsigned char *)chtemp = 'E';
  996. }
  997. i__1 = *lwork + 1 - iwrk;
  998. dhgeqz_(chtemp, jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[
  999. b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vl[vl_offset],
  1000. ldvl, &vr[vr_offset], ldvr, &work[iwrk], &i__1, &ierr);
  1001. if (ierr != 0) {
  1002. if (ierr > 0 && ierr <= *n) {
  1003. *info = ierr;
  1004. } else if (ierr > *n && ierr <= *n << 1) {
  1005. *info = ierr - *n;
  1006. } else {
  1007. *info = *n + 1;
  1008. }
  1009. goto L110;
  1010. }
  1011. /* Compute Eigenvectors */
  1012. if (ilv) {
  1013. if (ilvl) {
  1014. if (ilvr) {
  1015. *(unsigned char *)chtemp = 'B';
  1016. } else {
  1017. *(unsigned char *)chtemp = 'L';
  1018. }
  1019. } else {
  1020. *(unsigned char *)chtemp = 'R';
  1021. }
  1022. dtgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset], ldb,
  1023. &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &work[
  1024. iwrk], &ierr);
  1025. if (ierr != 0) {
  1026. *info = *n + 2;
  1027. goto L110;
  1028. }
  1029. /* Undo balancing on VL and VR and normalization */
  1030. if (ilvl) {
  1031. dggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &
  1032. vl[vl_offset], ldvl, &ierr);
  1033. i__1 = *n;
  1034. for (jc = 1; jc <= i__1; ++jc) {
  1035. if (alphai[jc] < 0.) {
  1036. goto L50;
  1037. }
  1038. temp = 0.;
  1039. if (alphai[jc] == 0.) {
  1040. i__2 = *n;
  1041. for (jr = 1; jr <= i__2; ++jr) {
  1042. /* Computing MAX */
  1043. d__2 = temp, d__3 = (d__1 = vl[jr + jc * vl_dim1],
  1044. abs(d__1));
  1045. temp = f2cmax(d__2,d__3);
  1046. /* L10: */
  1047. }
  1048. } else {
  1049. i__2 = *n;
  1050. for (jr = 1; jr <= i__2; ++jr) {
  1051. /* Computing MAX */
  1052. d__3 = temp, d__4 = (d__1 = vl[jr + jc * vl_dim1],
  1053. abs(d__1)) + (d__2 = vl[jr + (jc + 1) *
  1054. vl_dim1], abs(d__2));
  1055. temp = f2cmax(d__3,d__4);
  1056. /* L20: */
  1057. }
  1058. }
  1059. if (temp < smlnum) {
  1060. goto L50;
  1061. }
  1062. temp = 1. / temp;
  1063. if (alphai[jc] == 0.) {
  1064. i__2 = *n;
  1065. for (jr = 1; jr <= i__2; ++jr) {
  1066. vl[jr + jc * vl_dim1] *= temp;
  1067. /* L30: */
  1068. }
  1069. } else {
  1070. i__2 = *n;
  1071. for (jr = 1; jr <= i__2; ++jr) {
  1072. vl[jr + jc * vl_dim1] *= temp;
  1073. vl[jr + (jc + 1) * vl_dim1] *= temp;
  1074. /* L40: */
  1075. }
  1076. }
  1077. L50:
  1078. ;
  1079. }
  1080. }
  1081. if (ilvr) {
  1082. dggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &
  1083. vr[vr_offset], ldvr, &ierr);
  1084. i__1 = *n;
  1085. for (jc = 1; jc <= i__1; ++jc) {
  1086. if (alphai[jc] < 0.) {
  1087. goto L100;
  1088. }
  1089. temp = 0.;
  1090. if (alphai[jc] == 0.) {
  1091. i__2 = *n;
  1092. for (jr = 1; jr <= i__2; ++jr) {
  1093. /* Computing MAX */
  1094. d__2 = temp, d__3 = (d__1 = vr[jr + jc * vr_dim1],
  1095. abs(d__1));
  1096. temp = f2cmax(d__2,d__3);
  1097. /* L60: */
  1098. }
  1099. } else {
  1100. i__2 = *n;
  1101. for (jr = 1; jr <= i__2; ++jr) {
  1102. /* Computing MAX */
  1103. d__3 = temp, d__4 = (d__1 = vr[jr + jc * vr_dim1],
  1104. abs(d__1)) + (d__2 = vr[jr + (jc + 1) *
  1105. vr_dim1], abs(d__2));
  1106. temp = f2cmax(d__3,d__4);
  1107. /* L70: */
  1108. }
  1109. }
  1110. if (temp < smlnum) {
  1111. goto L100;
  1112. }
  1113. temp = 1. / temp;
  1114. if (alphai[jc] == 0.) {
  1115. i__2 = *n;
  1116. for (jr = 1; jr <= i__2; ++jr) {
  1117. vr[jr + jc * vr_dim1] *= temp;
  1118. /* L80: */
  1119. }
  1120. } else {
  1121. i__2 = *n;
  1122. for (jr = 1; jr <= i__2; ++jr) {
  1123. vr[jr + jc * vr_dim1] *= temp;
  1124. vr[jr + (jc + 1) * vr_dim1] *= temp;
  1125. /* L90: */
  1126. }
  1127. }
  1128. L100:
  1129. ;
  1130. }
  1131. }
  1132. /* End of eigenvector calculation */
  1133. }
  1134. /* Undo scaling if necessary */
  1135. L110:
  1136. if (ilascl) {
  1137. dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, &
  1138. ierr);
  1139. dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, &
  1140. ierr);
  1141. }
  1142. if (ilbscl) {
  1143. dlascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
  1144. ierr);
  1145. }
  1146. work[1] = (doublereal) lwkopt;
  1147. return;
  1148. /* End of DGGEV3 */
  1149. } /* dggev3_ */