You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dggbal.c 32 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static doublereal c_b35 = 10.;
  488. static doublereal c_b71 = .5;
  489. /* > \brief \b DGGBAL */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download DGGBAL + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dggbal.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dggbal.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dggbal.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE DGGBAL( JOB, N, A, LDA, B, LDB, ILO, IHI, LSCALE, */
  508. /* RSCALE, WORK, INFO ) */
  509. /* CHARACTER JOB */
  510. /* INTEGER IHI, ILO, INFO, LDA, LDB, N */
  511. /* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), LSCALE( * ), */
  512. /* $ RSCALE( * ), WORK( * ) */
  513. /* > \par Purpose: */
  514. /* ============= */
  515. /* > */
  516. /* > \verbatim */
  517. /* > */
  518. /* > DGGBAL balances a pair of general real matrices (A,B). This */
  519. /* > involves, first, permuting A and B by similarity transformations to */
  520. /* > isolate eigenvalues in the first 1 to ILO$-$1 and last IHI+1 to N */
  521. /* > elements on the diagonal; and second, applying a diagonal similarity */
  522. /* > transformation to rows and columns ILO to IHI to make the rows */
  523. /* > and columns as close in norm as possible. Both steps are optional. */
  524. /* > */
  525. /* > Balancing may reduce the 1-norm of the matrices, and improve the */
  526. /* > accuracy of the computed eigenvalues and/or eigenvectors in the */
  527. /* > generalized eigenvalue problem A*x = lambda*B*x. */
  528. /* > \endverbatim */
  529. /* Arguments: */
  530. /* ========== */
  531. /* > \param[in] JOB */
  532. /* > \verbatim */
  533. /* > JOB is CHARACTER*1 */
  534. /* > Specifies the operations to be performed on A and B: */
  535. /* > = 'N': none: simply set ILO = 1, IHI = N, LSCALE(I) = 1.0 */
  536. /* > and RSCALE(I) = 1.0 for i = 1,...,N. */
  537. /* > = 'P': permute only; */
  538. /* > = 'S': scale only; */
  539. /* > = 'B': both permute and scale. */
  540. /* > \endverbatim */
  541. /* > */
  542. /* > \param[in] N */
  543. /* > \verbatim */
  544. /* > N is INTEGER */
  545. /* > The order of the matrices A and B. N >= 0. */
  546. /* > \endverbatim */
  547. /* > */
  548. /* > \param[in,out] A */
  549. /* > \verbatim */
  550. /* > A is DOUBLE PRECISION array, dimension (LDA,N) */
  551. /* > On entry, the input matrix A. */
  552. /* > On exit, A is overwritten by the balanced matrix. */
  553. /* > If JOB = 'N', A is not referenced. */
  554. /* > \endverbatim */
  555. /* > */
  556. /* > \param[in] LDA */
  557. /* > \verbatim */
  558. /* > LDA is INTEGER */
  559. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in,out] B */
  563. /* > \verbatim */
  564. /* > B is DOUBLE PRECISION array, dimension (LDB,N) */
  565. /* > On entry, the input matrix B. */
  566. /* > On exit, B is overwritten by the balanced matrix. */
  567. /* > If JOB = 'N', B is not referenced. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in] LDB */
  571. /* > \verbatim */
  572. /* > LDB is INTEGER */
  573. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  574. /* > \endverbatim */
  575. /* > */
  576. /* > \param[out] ILO */
  577. /* > \verbatim */
  578. /* > ILO is INTEGER */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[out] IHI */
  582. /* > \verbatim */
  583. /* > IHI is INTEGER */
  584. /* > ILO and IHI are set to integers such that on exit */
  585. /* > A(i,j) = 0 and B(i,j) = 0 if i > j and */
  586. /* > j = 1,...,ILO-1 or i = IHI+1,...,N. */
  587. /* > If JOB = 'N' or 'S', ILO = 1 and IHI = N. */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[out] LSCALE */
  591. /* > \verbatim */
  592. /* > LSCALE is DOUBLE PRECISION array, dimension (N) */
  593. /* > Details of the permutations and scaling factors applied */
  594. /* > to the left side of A and B. If P(j) is the index of the */
  595. /* > row interchanged with row j, and D(j) */
  596. /* > is the scaling factor applied to row j, then */
  597. /* > LSCALE(j) = P(j) for J = 1,...,ILO-1 */
  598. /* > = D(j) for J = ILO,...,IHI */
  599. /* > = P(j) for J = IHI+1,...,N. */
  600. /* > The order in which the interchanges are made is N to IHI+1, */
  601. /* > then 1 to ILO-1. */
  602. /* > \endverbatim */
  603. /* > */
  604. /* > \param[out] RSCALE */
  605. /* > \verbatim */
  606. /* > RSCALE is DOUBLE PRECISION array, dimension (N) */
  607. /* > Details of the permutations and scaling factors applied */
  608. /* > to the right side of A and B. If P(j) is the index of the */
  609. /* > column interchanged with column j, and D(j) */
  610. /* > is the scaling factor applied to column j, then */
  611. /* > LSCALE(j) = P(j) for J = 1,...,ILO-1 */
  612. /* > = D(j) for J = ILO,...,IHI */
  613. /* > = P(j) for J = IHI+1,...,N. */
  614. /* > The order in which the interchanges are made is N to IHI+1, */
  615. /* > then 1 to ILO-1. */
  616. /* > \endverbatim */
  617. /* > */
  618. /* > \param[out] WORK */
  619. /* > \verbatim */
  620. /* > WORK is DOUBLE PRECISION array, dimension (lwork) */
  621. /* > lwork must be at least f2cmax(1,6*N) when JOB = 'S' or 'B', and */
  622. /* > at least 1 when JOB = 'N' or 'P'. */
  623. /* > \endverbatim */
  624. /* > */
  625. /* > \param[out] INFO */
  626. /* > \verbatim */
  627. /* > INFO is INTEGER */
  628. /* > = 0: successful exit */
  629. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  630. /* > \endverbatim */
  631. /* Authors: */
  632. /* ======== */
  633. /* > \author Univ. of Tennessee */
  634. /* > \author Univ. of California Berkeley */
  635. /* > \author Univ. of Colorado Denver */
  636. /* > \author NAG Ltd. */
  637. /* > \date December 2016 */
  638. /* > \ingroup doubleGBcomputational */
  639. /* > \par Further Details: */
  640. /* ===================== */
  641. /* > */
  642. /* > \verbatim */
  643. /* > */
  644. /* > See R.C. WARD, Balancing the generalized eigenvalue problem, */
  645. /* > SIAM J. Sci. Stat. Comp. 2 (1981), 141-152. */
  646. /* > \endverbatim */
  647. /* > */
  648. /* ===================================================================== */
  649. /* Subroutine */ void dggbal_(char *job, integer *n, doublereal *a, integer *
  650. lda, doublereal *b, integer *ldb, integer *ilo, integer *ihi,
  651. doublereal *lscale, doublereal *rscale, doublereal *work, integer *
  652. info)
  653. {
  654. /* System generated locals */
  655. integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;
  656. doublereal d__1, d__2, d__3;
  657. /* Local variables */
  658. integer lcab;
  659. doublereal beta, coef;
  660. integer irab, lrab;
  661. doublereal basl, cmax;
  662. extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *,
  663. integer *);
  664. doublereal coef2, coef5;
  665. integer i__, j, k, l, m;
  666. doublereal gamma, t, alpha;
  667. extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *,
  668. integer *);
  669. extern logical lsame_(char *, char *);
  670. doublereal sfmin, sfmax;
  671. extern /* Subroutine */ void dswap_(integer *, doublereal *, integer *,
  672. doublereal *, integer *);
  673. integer iflow;
  674. extern /* Subroutine */ void daxpy_(integer *, doublereal *, doublereal *,
  675. integer *, doublereal *, integer *);
  676. integer kount, jc;
  677. doublereal ta, tb, tc;
  678. extern doublereal dlamch_(char *);
  679. integer ir, it;
  680. doublereal ew;
  681. integer nr;
  682. doublereal pgamma;
  683. extern integer idamax_(integer *, doublereal *, integer *);
  684. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  685. integer lsfmin, lsfmax, ip1, jp1, lm1;
  686. doublereal cab, rab, ewc, cor, sum;
  687. integer nrp2, icab;
  688. /* -- LAPACK computational routine (version 3.7.0) -- */
  689. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  690. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  691. /* December 2016 */
  692. /* ===================================================================== */
  693. /* Test the input parameters */
  694. /* Parameter adjustments */
  695. a_dim1 = *lda;
  696. a_offset = 1 + a_dim1 * 1;
  697. a -= a_offset;
  698. b_dim1 = *ldb;
  699. b_offset = 1 + b_dim1 * 1;
  700. b -= b_offset;
  701. --lscale;
  702. --rscale;
  703. --work;
  704. /* Function Body */
  705. *info = 0;
  706. if (! lsame_(job, "N") && ! lsame_(job, "P") && ! lsame_(job, "S")
  707. && ! lsame_(job, "B")) {
  708. *info = -1;
  709. } else if (*n < 0) {
  710. *info = -2;
  711. } else if (*lda < f2cmax(1,*n)) {
  712. *info = -4;
  713. } else if (*ldb < f2cmax(1,*n)) {
  714. *info = -6;
  715. }
  716. if (*info != 0) {
  717. i__1 = -(*info);
  718. xerbla_("DGGBAL", &i__1, (ftnlen)6);
  719. return;
  720. }
  721. /* Quick return if possible */
  722. if (*n == 0) {
  723. *ilo = 1;
  724. *ihi = *n;
  725. return;
  726. }
  727. if (*n == 1) {
  728. *ilo = 1;
  729. *ihi = *n;
  730. lscale[1] = 1.;
  731. rscale[1] = 1.;
  732. return;
  733. }
  734. if (lsame_(job, "N")) {
  735. *ilo = 1;
  736. *ihi = *n;
  737. i__1 = *n;
  738. for (i__ = 1; i__ <= i__1; ++i__) {
  739. lscale[i__] = 1.;
  740. rscale[i__] = 1.;
  741. /* L10: */
  742. }
  743. return;
  744. }
  745. k = 1;
  746. l = *n;
  747. if (lsame_(job, "S")) {
  748. goto L190;
  749. }
  750. goto L30;
  751. /* Permute the matrices A and B to isolate the eigenvalues. */
  752. /* Find row with one nonzero in columns 1 through L */
  753. L20:
  754. l = lm1;
  755. if (l != 1) {
  756. goto L30;
  757. }
  758. rscale[1] = 1.;
  759. lscale[1] = 1.;
  760. goto L190;
  761. L30:
  762. lm1 = l - 1;
  763. for (i__ = l; i__ >= 1; --i__) {
  764. i__1 = lm1;
  765. for (j = 1; j <= i__1; ++j) {
  766. jp1 = j + 1;
  767. if (a[i__ + j * a_dim1] != 0. || b[i__ + j * b_dim1] != 0.) {
  768. goto L50;
  769. }
  770. /* L40: */
  771. }
  772. j = l;
  773. goto L70;
  774. L50:
  775. i__1 = l;
  776. for (j = jp1; j <= i__1; ++j) {
  777. if (a[i__ + j * a_dim1] != 0. || b[i__ + j * b_dim1] != 0.) {
  778. goto L80;
  779. }
  780. /* L60: */
  781. }
  782. j = jp1 - 1;
  783. L70:
  784. m = l;
  785. iflow = 1;
  786. goto L160;
  787. L80:
  788. ;
  789. }
  790. goto L100;
  791. /* Find column with one nonzero in rows K through N */
  792. L90:
  793. ++k;
  794. L100:
  795. i__1 = l;
  796. for (j = k; j <= i__1; ++j) {
  797. i__2 = lm1;
  798. for (i__ = k; i__ <= i__2; ++i__) {
  799. ip1 = i__ + 1;
  800. if (a[i__ + j * a_dim1] != 0. || b[i__ + j * b_dim1] != 0.) {
  801. goto L120;
  802. }
  803. /* L110: */
  804. }
  805. i__ = l;
  806. goto L140;
  807. L120:
  808. i__2 = l;
  809. for (i__ = ip1; i__ <= i__2; ++i__) {
  810. if (a[i__ + j * a_dim1] != 0. || b[i__ + j * b_dim1] != 0.) {
  811. goto L150;
  812. }
  813. /* L130: */
  814. }
  815. i__ = ip1 - 1;
  816. L140:
  817. m = k;
  818. iflow = 2;
  819. goto L160;
  820. L150:
  821. ;
  822. }
  823. goto L190;
  824. /* Permute rows M and I */
  825. L160:
  826. lscale[m] = (doublereal) i__;
  827. if (i__ == m) {
  828. goto L170;
  829. }
  830. i__1 = *n - k + 1;
  831. dswap_(&i__1, &a[i__ + k * a_dim1], lda, &a[m + k * a_dim1], lda);
  832. i__1 = *n - k + 1;
  833. dswap_(&i__1, &b[i__ + k * b_dim1], ldb, &b[m + k * b_dim1], ldb);
  834. /* Permute columns M and J */
  835. L170:
  836. rscale[m] = (doublereal) j;
  837. if (j == m) {
  838. goto L180;
  839. }
  840. dswap_(&l, &a[j * a_dim1 + 1], &c__1, &a[m * a_dim1 + 1], &c__1);
  841. dswap_(&l, &b[j * b_dim1 + 1], &c__1, &b[m * b_dim1 + 1], &c__1);
  842. L180:
  843. switch (iflow) {
  844. case 1: goto L20;
  845. case 2: goto L90;
  846. }
  847. L190:
  848. *ilo = k;
  849. *ihi = l;
  850. if (lsame_(job, "P")) {
  851. i__1 = *ihi;
  852. for (i__ = *ilo; i__ <= i__1; ++i__) {
  853. lscale[i__] = 1.;
  854. rscale[i__] = 1.;
  855. /* L195: */
  856. }
  857. return;
  858. }
  859. if (*ilo == *ihi) {
  860. return;
  861. }
  862. /* Balance the submatrix in rows ILO to IHI. */
  863. nr = *ihi - *ilo + 1;
  864. i__1 = *ihi;
  865. for (i__ = *ilo; i__ <= i__1; ++i__) {
  866. rscale[i__] = 0.;
  867. lscale[i__] = 0.;
  868. work[i__] = 0.;
  869. work[i__ + *n] = 0.;
  870. work[i__ + (*n << 1)] = 0.;
  871. work[i__ + *n * 3] = 0.;
  872. work[i__ + (*n << 2)] = 0.;
  873. work[i__ + *n * 5] = 0.;
  874. /* L200: */
  875. }
  876. /* Compute right side vector in resulting linear equations */
  877. basl = d_lg10(&c_b35);
  878. i__1 = *ihi;
  879. for (i__ = *ilo; i__ <= i__1; ++i__) {
  880. i__2 = *ihi;
  881. for (j = *ilo; j <= i__2; ++j) {
  882. tb = b[i__ + j * b_dim1];
  883. ta = a[i__ + j * a_dim1];
  884. if (ta == 0.) {
  885. goto L210;
  886. }
  887. d__1 = abs(ta);
  888. ta = d_lg10(&d__1) / basl;
  889. L210:
  890. if (tb == 0.) {
  891. goto L220;
  892. }
  893. d__1 = abs(tb);
  894. tb = d_lg10(&d__1) / basl;
  895. L220:
  896. work[i__ + (*n << 2)] = work[i__ + (*n << 2)] - ta - tb;
  897. work[j + *n * 5] = work[j + *n * 5] - ta - tb;
  898. /* L230: */
  899. }
  900. /* L240: */
  901. }
  902. coef = 1. / (doublereal) (nr << 1);
  903. coef2 = coef * coef;
  904. coef5 = coef2 * .5;
  905. nrp2 = nr + 2;
  906. beta = 0.;
  907. it = 1;
  908. /* Start generalized conjugate gradient iteration */
  909. L250:
  910. gamma = ddot_(&nr, &work[*ilo + (*n << 2)], &c__1, &work[*ilo + (*n << 2)]
  911. , &c__1) + ddot_(&nr, &work[*ilo + *n * 5], &c__1, &work[*ilo + *
  912. n * 5], &c__1);
  913. ew = 0.;
  914. ewc = 0.;
  915. i__1 = *ihi;
  916. for (i__ = *ilo; i__ <= i__1; ++i__) {
  917. ew += work[i__ + (*n << 2)];
  918. ewc += work[i__ + *n * 5];
  919. /* L260: */
  920. }
  921. /* Computing 2nd power */
  922. d__1 = ew;
  923. /* Computing 2nd power */
  924. d__2 = ewc;
  925. /* Computing 2nd power */
  926. d__3 = ew - ewc;
  927. gamma = coef * gamma - coef2 * (d__1 * d__1 + d__2 * d__2) - coef5 * (
  928. d__3 * d__3);
  929. if (gamma == 0.) {
  930. goto L350;
  931. }
  932. if (it != 1) {
  933. beta = gamma / pgamma;
  934. }
  935. t = coef5 * (ewc - ew * 3.);
  936. tc = coef5 * (ew - ewc * 3.);
  937. dscal_(&nr, &beta, &work[*ilo], &c__1);
  938. dscal_(&nr, &beta, &work[*ilo + *n], &c__1);
  939. daxpy_(&nr, &coef, &work[*ilo + (*n << 2)], &c__1, &work[*ilo + *n], &
  940. c__1);
  941. daxpy_(&nr, &coef, &work[*ilo + *n * 5], &c__1, &work[*ilo], &c__1);
  942. i__1 = *ihi;
  943. for (i__ = *ilo; i__ <= i__1; ++i__) {
  944. work[i__] += tc;
  945. work[i__ + *n] += t;
  946. /* L270: */
  947. }
  948. /* Apply matrix to vector */
  949. i__1 = *ihi;
  950. for (i__ = *ilo; i__ <= i__1; ++i__) {
  951. kount = 0;
  952. sum = 0.;
  953. i__2 = *ihi;
  954. for (j = *ilo; j <= i__2; ++j) {
  955. if (a[i__ + j * a_dim1] == 0.) {
  956. goto L280;
  957. }
  958. ++kount;
  959. sum += work[j];
  960. L280:
  961. if (b[i__ + j * b_dim1] == 0.) {
  962. goto L290;
  963. }
  964. ++kount;
  965. sum += work[j];
  966. L290:
  967. ;
  968. }
  969. work[i__ + (*n << 1)] = (doublereal) kount * work[i__ + *n] + sum;
  970. /* L300: */
  971. }
  972. i__1 = *ihi;
  973. for (j = *ilo; j <= i__1; ++j) {
  974. kount = 0;
  975. sum = 0.;
  976. i__2 = *ihi;
  977. for (i__ = *ilo; i__ <= i__2; ++i__) {
  978. if (a[i__ + j * a_dim1] == 0.) {
  979. goto L310;
  980. }
  981. ++kount;
  982. sum += work[i__ + *n];
  983. L310:
  984. if (b[i__ + j * b_dim1] == 0.) {
  985. goto L320;
  986. }
  987. ++kount;
  988. sum += work[i__ + *n];
  989. L320:
  990. ;
  991. }
  992. work[j + *n * 3] = (doublereal) kount * work[j] + sum;
  993. /* L330: */
  994. }
  995. sum = ddot_(&nr, &work[*ilo + *n], &c__1, &work[*ilo + (*n << 1)], &c__1)
  996. + ddot_(&nr, &work[*ilo], &c__1, &work[*ilo + *n * 3], &c__1);
  997. alpha = gamma / sum;
  998. /* Determine correction to current iteration */
  999. cmax = 0.;
  1000. i__1 = *ihi;
  1001. for (i__ = *ilo; i__ <= i__1; ++i__) {
  1002. cor = alpha * work[i__ + *n];
  1003. if (abs(cor) > cmax) {
  1004. cmax = abs(cor);
  1005. }
  1006. lscale[i__] += cor;
  1007. cor = alpha * work[i__];
  1008. if (abs(cor) > cmax) {
  1009. cmax = abs(cor);
  1010. }
  1011. rscale[i__] += cor;
  1012. /* L340: */
  1013. }
  1014. if (cmax < .5) {
  1015. goto L350;
  1016. }
  1017. d__1 = -alpha;
  1018. daxpy_(&nr, &d__1, &work[*ilo + (*n << 1)], &c__1, &work[*ilo + (*n << 2)]
  1019. , &c__1);
  1020. d__1 = -alpha;
  1021. daxpy_(&nr, &d__1, &work[*ilo + *n * 3], &c__1, &work[*ilo + *n * 5], &
  1022. c__1);
  1023. pgamma = gamma;
  1024. ++it;
  1025. if (it <= nrp2) {
  1026. goto L250;
  1027. }
  1028. /* End generalized conjugate gradient iteration */
  1029. L350:
  1030. sfmin = dlamch_("S");
  1031. sfmax = 1. / sfmin;
  1032. lsfmin = (integer) (d_lg10(&sfmin) / basl + 1.);
  1033. lsfmax = (integer) (d_lg10(&sfmax) / basl);
  1034. i__1 = *ihi;
  1035. for (i__ = *ilo; i__ <= i__1; ++i__) {
  1036. i__2 = *n - *ilo + 1;
  1037. irab = idamax_(&i__2, &a[i__ + *ilo * a_dim1], lda);
  1038. rab = (d__1 = a[i__ + (irab + *ilo - 1) * a_dim1], abs(d__1));
  1039. i__2 = *n - *ilo + 1;
  1040. irab = idamax_(&i__2, &b[i__ + *ilo * b_dim1], ldb);
  1041. /* Computing MAX */
  1042. d__2 = rab, d__3 = (d__1 = b[i__ + (irab + *ilo - 1) * b_dim1], abs(
  1043. d__1));
  1044. rab = f2cmax(d__2,d__3);
  1045. d__1 = rab + sfmin;
  1046. lrab = (integer) (d_lg10(&d__1) / basl + 1.);
  1047. ir = (integer) (lscale[i__] + d_sign(&c_b71, &lscale[i__]));
  1048. /* Computing MIN */
  1049. i__2 = f2cmax(ir,lsfmin), i__2 = f2cmin(i__2,lsfmax), i__3 = lsfmax - lrab;
  1050. ir = f2cmin(i__2,i__3);
  1051. lscale[i__] = pow_di(&c_b35, &ir);
  1052. icab = idamax_(ihi, &a[i__ * a_dim1 + 1], &c__1);
  1053. cab = (d__1 = a[icab + i__ * a_dim1], abs(d__1));
  1054. icab = idamax_(ihi, &b[i__ * b_dim1 + 1], &c__1);
  1055. /* Computing MAX */
  1056. d__2 = cab, d__3 = (d__1 = b[icab + i__ * b_dim1], abs(d__1));
  1057. cab = f2cmax(d__2,d__3);
  1058. d__1 = cab + sfmin;
  1059. lcab = (integer) (d_lg10(&d__1) / basl + 1.);
  1060. jc = (integer) (rscale[i__] + d_sign(&c_b71, &rscale[i__]));
  1061. /* Computing MIN */
  1062. i__2 = f2cmax(jc,lsfmin), i__2 = f2cmin(i__2,lsfmax), i__3 = lsfmax - lcab;
  1063. jc = f2cmin(i__2,i__3);
  1064. rscale[i__] = pow_di(&c_b35, &jc);
  1065. /* L360: */
  1066. }
  1067. /* Row scaling of matrices A and B */
  1068. i__1 = *ihi;
  1069. for (i__ = *ilo; i__ <= i__1; ++i__) {
  1070. i__2 = *n - *ilo + 1;
  1071. dscal_(&i__2, &lscale[i__], &a[i__ + *ilo * a_dim1], lda);
  1072. i__2 = *n - *ilo + 1;
  1073. dscal_(&i__2, &lscale[i__], &b[i__ + *ilo * b_dim1], ldb);
  1074. /* L370: */
  1075. }
  1076. /* Column scaling of matrices A and B */
  1077. i__1 = *ihi;
  1078. for (j = *ilo; j <= i__1; ++j) {
  1079. dscal_(ihi, &rscale[j], &a[j * a_dim1 + 1], &c__1);
  1080. dscal_(ihi, &rscale[j], &b[j * b_dim1 + 1], &c__1);
  1081. /* L380: */
  1082. }
  1083. return;
  1084. /* End of DGGBAL */
  1085. } /* dggbal_ */