|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364 |
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
-
- /* > \brief \b CHPTRF */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download CHPTRF + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chptrf.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chptrf.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chptrf.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE CHPTRF( UPLO, N, AP, IPIV, INFO ) */
-
- /* CHARACTER UPLO */
- /* INTEGER INFO, N */
- /* INTEGER IPIV( * ) */
- /* COMPLEX AP( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > CHPTRF computes the factorization of a complex Hermitian packed */
- /* > matrix A using the Bunch-Kaufman diagonal pivoting method: */
- /* > */
- /* > A = U*D*U**H or A = L*D*L**H */
- /* > */
- /* > where U (or L) is a product of permutation and unit upper (lower) */
- /* > triangular matrices, and D is Hermitian and block diagonal with */
- /* > 1-by-1 and 2-by-2 diagonal blocks. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] UPLO */
- /* > \verbatim */
- /* > UPLO is CHARACTER*1 */
- /* > = 'U': Upper triangle of A is stored; */
- /* > = 'L': Lower triangle of A is stored. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrix A. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] AP */
- /* > \verbatim */
- /* > AP is COMPLEX array, dimension (N*(N+1)/2) */
- /* > On entry, the upper or lower triangle of the Hermitian matrix */
- /* > A, packed columnwise in a linear array. The j-th column of A */
- /* > is stored in the array AP as follows: */
- /* > if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
- /* > if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
- /* > */
- /* > On exit, the block diagonal matrix D and the multipliers used */
- /* > to obtain the factor U or L, stored as a packed triangular */
- /* > matrix overwriting A (see below for further details). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IPIV */
- /* > \verbatim */
- /* > IPIV is INTEGER array, dimension (N) */
- /* > Details of the interchanges and the block structure of D. */
- /* > If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
- /* > interchanged and D(k,k) is a 1-by-1 diagonal block. */
- /* > If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and */
- /* > columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */
- /* > is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = */
- /* > IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were */
- /* > interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > > 0: if INFO = i, D(i,i) is exactly zero. The factorization */
- /* > has been completed, but the block diagonal matrix D is */
- /* > exactly singular, and division by zero will occur if it */
- /* > is used to solve a system of equations. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup complexOTHERcomputational */
-
- /* > \par Further Details: */
- /* ===================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > If UPLO = 'U', then A = U*D*U**H, where */
- /* > U = P(n)*U(n)* ... *P(k)U(k)* ..., */
- /* > i.e., U is a product of terms P(k)*U(k), where k decreases from n to */
- /* > 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
- /* > and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
- /* > defined by IPIV(k), and U(k) is a unit upper triangular matrix, such */
- /* > that if the diagonal block D(k) is of order s (s = 1 or 2), then */
- /* > */
- /* > ( I v 0 ) k-s */
- /* > U(k) = ( 0 I 0 ) s */
- /* > ( 0 0 I ) n-k */
- /* > k-s s n-k */
- /* > */
- /* > If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). */
- /* > If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k), */
- /* > and A(k,k), and v overwrites A(1:k-2,k-1:k). */
- /* > */
- /* > If UPLO = 'L', then A = L*D*L**H, where */
- /* > L = P(1)*L(1)* ... *P(k)*L(k)* ..., */
- /* > i.e., L is a product of terms P(k)*L(k), where k increases from 1 to */
- /* > n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
- /* > and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
- /* > defined by IPIV(k), and L(k) is a unit lower triangular matrix, such */
- /* > that if the diagonal block D(k) is of order s (s = 1 or 2), then */
- /* > */
- /* > ( I 0 0 ) k-1 */
- /* > L(k) = ( 0 I 0 ) s */
- /* > ( 0 v I ) n-k-s+1 */
- /* > k-1 s n-k-s+1 */
- /* > */
- /* > If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). */
- /* > If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k), */
- /* > and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1). */
- /* > \endverbatim */
-
- /* > \par Contributors: */
- /* ================== */
- /* > */
- /* > J. Lewis, Boeing Computer Services Company */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void chptrf_(char *uplo, integer *n, complex *ap, integer *
- ipiv, integer *info)
- {
- /* System generated locals */
- integer i__1, i__2, i__3, i__4, i__5, i__6;
- real r__1, r__2, r__3, r__4;
- complex q__1, q__2, q__3, q__4, q__5, q__6;
-
- /* Local variables */
- extern /* Subroutine */ void chpr_(char *, integer *, real *, complex *,
- integer *, complex *);
- integer imax, jmax;
- real d__;
- integer i__, j, k;
- complex t;
- real alpha;
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ void cswap_(integer *, complex *, integer *,
- complex *, integer *);
- integer kstep;
- logical upper;
- real r1, d11;
- complex d12;
- real d22;
- complex d21;
- extern real slapy2_(real *, real *);
- integer kc, kk, kp;
- real absakk;
- complex wk;
- integer kx;
- extern integer icamax_(integer *, complex *, integer *);
- real tt;
- extern /* Subroutine */ void csscal_(integer *, real *, complex *, integer
- *);
- extern int xerbla_(char *, integer *, ftnlen);
- real colmax, rowmax;
- integer knc, kpc, npp;
- complex wkm1, wkp1;
-
-
- /* -- LAPACK computational routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Test the input parameters. */
-
- /* Parameter adjustments */
- --ipiv;
- --ap;
-
- /* Function Body */
- *info = 0;
- upper = lsame_(uplo, "U");
- if (! upper && ! lsame_(uplo, "L")) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("CHPTRF", &i__1, (ftnlen)6);
- return;
- }
-
- /* Initialize ALPHA for use in choosing pivot block size. */
-
- alpha = (sqrt(17.f) + 1.f) / 8.f;
-
- if (upper) {
-
- /* Factorize A as U*D*U**H using the upper triangle of A */
-
- /* K is the main loop index, decreasing from N to 1 in steps of */
- /* 1 or 2 */
-
- k = *n;
- kc = (*n - 1) * *n / 2 + 1;
- L10:
- knc = kc;
-
- /* If K < 1, exit from loop */
-
- if (k < 1) {
- goto L110;
- }
- kstep = 1;
-
- /* Determine rows and columns to be interchanged and whether */
- /* a 1-by-1 or 2-by-2 pivot block will be used */
-
- i__1 = kc + k - 1;
- absakk = (r__1 = ap[i__1].r, abs(r__1));
-
- /* IMAX is the row-index of the largest off-diagonal element in */
- /* column K, and COLMAX is its absolute value */
-
- if (k > 1) {
- i__1 = k - 1;
- imax = icamax_(&i__1, &ap[kc], &c__1);
- i__1 = kc + imax - 1;
- colmax = (r__1 = ap[i__1].r, abs(r__1)) + (r__2 = r_imag(&ap[kc +
- imax - 1]), abs(r__2));
- } else {
- colmax = 0.f;
- }
-
- if (f2cmax(absakk,colmax) == 0.f) {
-
- /* Column K is zero: set INFO and continue */
-
- if (*info == 0) {
- *info = k;
- }
- kp = k;
- i__1 = kc + k - 1;
- i__2 = kc + k - 1;
- r__1 = ap[i__2].r;
- ap[i__1].r = r__1, ap[i__1].i = 0.f;
- } else {
- if (absakk >= alpha * colmax) {
-
- /* no interchange, use 1-by-1 pivot block */
-
- kp = k;
- } else {
-
- /* JMAX is the column-index of the largest off-diagonal */
- /* element in row IMAX, and ROWMAX is its absolute value */
-
- rowmax = 0.f;
- jmax = imax;
- kx = imax * (imax + 1) / 2 + imax;
- i__1 = k;
- for (j = imax + 1; j <= i__1; ++j) {
- i__2 = kx;
- if ((r__1 = ap[i__2].r, abs(r__1)) + (r__2 = r_imag(&ap[
- kx]), abs(r__2)) > rowmax) {
- i__2 = kx;
- rowmax = (r__1 = ap[i__2].r, abs(r__1)) + (r__2 =
- r_imag(&ap[kx]), abs(r__2));
- jmax = j;
- }
- kx += j;
- /* L20: */
- }
- kpc = (imax - 1) * imax / 2 + 1;
- if (imax > 1) {
- i__1 = imax - 1;
- jmax = icamax_(&i__1, &ap[kpc], &c__1);
- /* Computing MAX */
- i__1 = kpc + jmax - 1;
- r__3 = rowmax, r__4 = (r__1 = ap[i__1].r, abs(r__1)) + (
- r__2 = r_imag(&ap[kpc + jmax - 1]), abs(r__2));
- rowmax = f2cmax(r__3,r__4);
- }
-
- if (absakk >= alpha * colmax * (colmax / rowmax)) {
-
- /* no interchange, use 1-by-1 pivot block */
-
- kp = k;
- } else /* if(complicated condition) */ {
- i__1 = kpc + imax - 1;
- if ((r__1 = ap[i__1].r, abs(r__1)) >= alpha * rowmax) {
-
- /* interchange rows and columns K and IMAX, use 1-by-1 */
- /* pivot block */
-
- kp = imax;
- } else {
-
- /* interchange rows and columns K-1 and IMAX, use 2-by-2 */
- /* pivot block */
-
- kp = imax;
- kstep = 2;
- }
- }
- }
-
- kk = k - kstep + 1;
- if (kstep == 2) {
- knc = knc - k + 1;
- }
- if (kp != kk) {
-
- /* Interchange rows and columns KK and KP in the leading */
- /* submatrix A(1:k,1:k) */
-
- i__1 = kp - 1;
- cswap_(&i__1, &ap[knc], &c__1, &ap[kpc], &c__1);
- kx = kpc + kp - 1;
- i__1 = kk - 1;
- for (j = kp + 1; j <= i__1; ++j) {
- kx = kx + j - 1;
- r_cnjg(&q__1, &ap[knc + j - 1]);
- t.r = q__1.r, t.i = q__1.i;
- i__2 = knc + j - 1;
- r_cnjg(&q__1, &ap[kx]);
- ap[i__2].r = q__1.r, ap[i__2].i = q__1.i;
- i__2 = kx;
- ap[i__2].r = t.r, ap[i__2].i = t.i;
- /* L30: */
- }
- i__1 = kx + kk - 1;
- r_cnjg(&q__1, &ap[kx + kk - 1]);
- ap[i__1].r = q__1.r, ap[i__1].i = q__1.i;
- i__1 = knc + kk - 1;
- r1 = ap[i__1].r;
- i__1 = knc + kk - 1;
- i__2 = kpc + kp - 1;
- r__1 = ap[i__2].r;
- ap[i__1].r = r__1, ap[i__1].i = 0.f;
- i__1 = kpc + kp - 1;
- ap[i__1].r = r1, ap[i__1].i = 0.f;
- if (kstep == 2) {
- i__1 = kc + k - 1;
- i__2 = kc + k - 1;
- r__1 = ap[i__2].r;
- ap[i__1].r = r__1, ap[i__1].i = 0.f;
- i__1 = kc + k - 2;
- t.r = ap[i__1].r, t.i = ap[i__1].i;
- i__1 = kc + k - 2;
- i__2 = kc + kp - 1;
- ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i;
- i__1 = kc + kp - 1;
- ap[i__1].r = t.r, ap[i__1].i = t.i;
- }
- } else {
- i__1 = kc + k - 1;
- i__2 = kc + k - 1;
- r__1 = ap[i__2].r;
- ap[i__1].r = r__1, ap[i__1].i = 0.f;
- if (kstep == 2) {
- i__1 = kc - 1;
- i__2 = kc - 1;
- r__1 = ap[i__2].r;
- ap[i__1].r = r__1, ap[i__1].i = 0.f;
- }
- }
-
- /* Update the leading submatrix */
-
- if (kstep == 1) {
-
- /* 1-by-1 pivot block D(k): column k now holds */
-
- /* W(k) = U(k)*D(k) */
-
- /* where U(k) is the k-th column of U */
-
- /* Perform a rank-1 update of A(1:k-1,1:k-1) as */
-
- /* A := A - U(k)*D(k)*U(k)**H = A - W(k)*1/D(k)*W(k)**H */
-
- i__1 = kc + k - 1;
- r1 = 1.f / ap[i__1].r;
- i__1 = k - 1;
- r__1 = -r1;
- chpr_(uplo, &i__1, &r__1, &ap[kc], &c__1, &ap[1]);
-
- /* Store U(k) in column k */
-
- i__1 = k - 1;
- csscal_(&i__1, &r1, &ap[kc], &c__1);
- } else {
-
- /* 2-by-2 pivot block D(k): columns k and k-1 now hold */
-
- /* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */
-
- /* where U(k) and U(k-1) are the k-th and (k-1)-th columns */
- /* of U */
-
- /* Perform a rank-2 update of A(1:k-2,1:k-2) as */
-
- /* A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**H */
- /* = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**H */
-
- if (k > 2) {
-
- i__1 = k - 1 + (k - 1) * k / 2;
- r__1 = ap[i__1].r;
- r__2 = r_imag(&ap[k - 1 + (k - 1) * k / 2]);
- d__ = slapy2_(&r__1, &r__2);
- i__1 = k - 1 + (k - 2) * (k - 1) / 2;
- d22 = ap[i__1].r / d__;
- i__1 = k + (k - 1) * k / 2;
- d11 = ap[i__1].r / d__;
- tt = 1.f / (d11 * d22 - 1.f);
- i__1 = k - 1 + (k - 1) * k / 2;
- q__1.r = ap[i__1].r / d__, q__1.i = ap[i__1].i / d__;
- d12.r = q__1.r, d12.i = q__1.i;
- d__ = tt / d__;
-
- for (j = k - 2; j >= 1; --j) {
- i__1 = j + (k - 2) * (k - 1) / 2;
- q__3.r = d11 * ap[i__1].r, q__3.i = d11 * ap[i__1].i;
- r_cnjg(&q__5, &d12);
- i__2 = j + (k - 1) * k / 2;
- q__4.r = q__5.r * ap[i__2].r - q__5.i * ap[i__2].i,
- q__4.i = q__5.r * ap[i__2].i + q__5.i * ap[
- i__2].r;
- q__2.r = q__3.r - q__4.r, q__2.i = q__3.i - q__4.i;
- q__1.r = d__ * q__2.r, q__1.i = d__ * q__2.i;
- wkm1.r = q__1.r, wkm1.i = q__1.i;
- i__1 = j + (k - 1) * k / 2;
- q__3.r = d22 * ap[i__1].r, q__3.i = d22 * ap[i__1].i;
- i__2 = j + (k - 2) * (k - 1) / 2;
- q__4.r = d12.r * ap[i__2].r - d12.i * ap[i__2].i,
- q__4.i = d12.r * ap[i__2].i + d12.i * ap[i__2]
- .r;
- q__2.r = q__3.r - q__4.r, q__2.i = q__3.i - q__4.i;
- q__1.r = d__ * q__2.r, q__1.i = d__ * q__2.i;
- wk.r = q__1.r, wk.i = q__1.i;
- for (i__ = j; i__ >= 1; --i__) {
- i__1 = i__ + (j - 1) * j / 2;
- i__2 = i__ + (j - 1) * j / 2;
- i__3 = i__ + (k - 1) * k / 2;
- r_cnjg(&q__4, &wk);
- q__3.r = ap[i__3].r * q__4.r - ap[i__3].i *
- q__4.i, q__3.i = ap[i__3].r * q__4.i + ap[
- i__3].i * q__4.r;
- q__2.r = ap[i__2].r - q__3.r, q__2.i = ap[i__2].i
- - q__3.i;
- i__4 = i__ + (k - 2) * (k - 1) / 2;
- r_cnjg(&q__6, &wkm1);
- q__5.r = ap[i__4].r * q__6.r - ap[i__4].i *
- q__6.i, q__5.i = ap[i__4].r * q__6.i + ap[
- i__4].i * q__6.r;
- q__1.r = q__2.r - q__5.r, q__1.i = q__2.i -
- q__5.i;
- ap[i__1].r = q__1.r, ap[i__1].i = q__1.i;
- /* L40: */
- }
- i__1 = j + (k - 1) * k / 2;
- ap[i__1].r = wk.r, ap[i__1].i = wk.i;
- i__1 = j + (k - 2) * (k - 1) / 2;
- ap[i__1].r = wkm1.r, ap[i__1].i = wkm1.i;
- i__1 = j + (j - 1) * j / 2;
- i__2 = j + (j - 1) * j / 2;
- r__1 = ap[i__2].r;
- q__1.r = r__1, q__1.i = 0.f;
- ap[i__1].r = q__1.r, ap[i__1].i = q__1.i;
- /* L50: */
- }
-
- }
-
- }
- }
-
- /* Store details of the interchanges in IPIV */
-
- if (kstep == 1) {
- ipiv[k] = kp;
- } else {
- ipiv[k] = -kp;
- ipiv[k - 1] = -kp;
- }
-
- /* Decrease K and return to the start of the main loop */
-
- k -= kstep;
- kc = knc - k;
- goto L10;
-
- } else {
-
- /* Factorize A as L*D*L**H using the lower triangle of A */
-
- /* K is the main loop index, increasing from 1 to N in steps of */
- /* 1 or 2 */
-
- k = 1;
- kc = 1;
- npp = *n * (*n + 1) / 2;
- L60:
- knc = kc;
-
- /* If K > N, exit from loop */
-
- if (k > *n) {
- goto L110;
- }
- kstep = 1;
-
- /* Determine rows and columns to be interchanged and whether */
- /* a 1-by-1 or 2-by-2 pivot block will be used */
-
- i__1 = kc;
- absakk = (r__1 = ap[i__1].r, abs(r__1));
-
- /* IMAX is the row-index of the largest off-diagonal element in */
- /* column K, and COLMAX is its absolute value */
-
- if (k < *n) {
- i__1 = *n - k;
- imax = k + icamax_(&i__1, &ap[kc + 1], &c__1);
- i__1 = kc + imax - k;
- colmax = (r__1 = ap[i__1].r, abs(r__1)) + (r__2 = r_imag(&ap[kc +
- imax - k]), abs(r__2));
- } else {
- colmax = 0.f;
- }
-
- if (f2cmax(absakk,colmax) == 0.f) {
-
- /* Column K is zero: set INFO and continue */
-
- if (*info == 0) {
- *info = k;
- }
- kp = k;
- i__1 = kc;
- i__2 = kc;
- r__1 = ap[i__2].r;
- ap[i__1].r = r__1, ap[i__1].i = 0.f;
- } else {
- if (absakk >= alpha * colmax) {
-
- /* no interchange, use 1-by-1 pivot block */
-
- kp = k;
- } else {
-
- /* JMAX is the column-index of the largest off-diagonal */
- /* element in row IMAX, and ROWMAX is its absolute value */
-
- rowmax = 0.f;
- kx = kc + imax - k;
- i__1 = imax - 1;
- for (j = k; j <= i__1; ++j) {
- i__2 = kx;
- if ((r__1 = ap[i__2].r, abs(r__1)) + (r__2 = r_imag(&ap[
- kx]), abs(r__2)) > rowmax) {
- i__2 = kx;
- rowmax = (r__1 = ap[i__2].r, abs(r__1)) + (r__2 =
- r_imag(&ap[kx]), abs(r__2));
- jmax = j;
- }
- kx = kx + *n - j;
- /* L70: */
- }
- kpc = npp - (*n - imax + 1) * (*n - imax + 2) / 2 + 1;
- if (imax < *n) {
- i__1 = *n - imax;
- jmax = imax + icamax_(&i__1, &ap[kpc + 1], &c__1);
- /* Computing MAX */
- i__1 = kpc + jmax - imax;
- r__3 = rowmax, r__4 = (r__1 = ap[i__1].r, abs(r__1)) + (
- r__2 = r_imag(&ap[kpc + jmax - imax]), abs(r__2));
- rowmax = f2cmax(r__3,r__4);
- }
-
- if (absakk >= alpha * colmax * (colmax / rowmax)) {
-
- /* no interchange, use 1-by-1 pivot block */
-
- kp = k;
- } else /* if(complicated condition) */ {
- i__1 = kpc;
- if ((r__1 = ap[i__1].r, abs(r__1)) >= alpha * rowmax) {
-
- /* interchange rows and columns K and IMAX, use 1-by-1 */
- /* pivot block */
-
- kp = imax;
- } else {
-
- /* interchange rows and columns K+1 and IMAX, use 2-by-2 */
- /* pivot block */
-
- kp = imax;
- kstep = 2;
- }
- }
- }
-
- kk = k + kstep - 1;
- if (kstep == 2) {
- knc = knc + *n - k + 1;
- }
- if (kp != kk) {
-
- /* Interchange rows and columns KK and KP in the trailing */
- /* submatrix A(k:n,k:n) */
-
- if (kp < *n) {
- i__1 = *n - kp;
- cswap_(&i__1, &ap[knc + kp - kk + 1], &c__1, &ap[kpc + 1],
- &c__1);
- }
- kx = knc + kp - kk;
- i__1 = kp - 1;
- for (j = kk + 1; j <= i__1; ++j) {
- kx = kx + *n - j + 1;
- r_cnjg(&q__1, &ap[knc + j - kk]);
- t.r = q__1.r, t.i = q__1.i;
- i__2 = knc + j - kk;
- r_cnjg(&q__1, &ap[kx]);
- ap[i__2].r = q__1.r, ap[i__2].i = q__1.i;
- i__2 = kx;
- ap[i__2].r = t.r, ap[i__2].i = t.i;
- /* L80: */
- }
- i__1 = knc + kp - kk;
- r_cnjg(&q__1, &ap[knc + kp - kk]);
- ap[i__1].r = q__1.r, ap[i__1].i = q__1.i;
- i__1 = knc;
- r1 = ap[i__1].r;
- i__1 = knc;
- i__2 = kpc;
- r__1 = ap[i__2].r;
- ap[i__1].r = r__1, ap[i__1].i = 0.f;
- i__1 = kpc;
- ap[i__1].r = r1, ap[i__1].i = 0.f;
- if (kstep == 2) {
- i__1 = kc;
- i__2 = kc;
- r__1 = ap[i__2].r;
- ap[i__1].r = r__1, ap[i__1].i = 0.f;
- i__1 = kc + 1;
- t.r = ap[i__1].r, t.i = ap[i__1].i;
- i__1 = kc + 1;
- i__2 = kc + kp - k;
- ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i;
- i__1 = kc + kp - k;
- ap[i__1].r = t.r, ap[i__1].i = t.i;
- }
- } else {
- i__1 = kc;
- i__2 = kc;
- r__1 = ap[i__2].r;
- ap[i__1].r = r__1, ap[i__1].i = 0.f;
- if (kstep == 2) {
- i__1 = knc;
- i__2 = knc;
- r__1 = ap[i__2].r;
- ap[i__1].r = r__1, ap[i__1].i = 0.f;
- }
- }
-
- /* Update the trailing submatrix */
-
- if (kstep == 1) {
-
- /* 1-by-1 pivot block D(k): column k now holds */
-
- /* W(k) = L(k)*D(k) */
-
- /* where L(k) is the k-th column of L */
-
- if (k < *n) {
-
- /* Perform a rank-1 update of A(k+1:n,k+1:n) as */
-
- /* A := A - L(k)*D(k)*L(k)**H = A - W(k)*(1/D(k))*W(k)**H */
-
- i__1 = kc;
- r1 = 1.f / ap[i__1].r;
- i__1 = *n - k;
- r__1 = -r1;
- chpr_(uplo, &i__1, &r__1, &ap[kc + 1], &c__1, &ap[kc + *n
- - k + 1]);
-
- /* Store L(k) in column K */
-
- i__1 = *n - k;
- csscal_(&i__1, &r1, &ap[kc + 1], &c__1);
- }
- } else {
-
- /* 2-by-2 pivot block D(k): columns K and K+1 now hold */
-
- /* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */
-
- /* where L(k) and L(k+1) are the k-th and (k+1)-th columns */
- /* of L */
-
- if (k < *n - 1) {
-
- /* Perform a rank-2 update of A(k+2:n,k+2:n) as */
-
- /* A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )**H */
- /* = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )**H */
-
- /* where L(k) and L(k+1) are the k-th and (k+1)-th */
- /* columns of L */
-
- i__1 = k + 1 + (k - 1) * ((*n << 1) - k) / 2;
- r__1 = ap[i__1].r;
- r__2 = r_imag(&ap[k + 1 + (k - 1) * ((*n << 1) - k) / 2]);
- d__ = slapy2_(&r__1, &r__2);
- i__1 = k + 1 + k * ((*n << 1) - k - 1) / 2;
- d11 = ap[i__1].r / d__;
- i__1 = k + (k - 1) * ((*n << 1) - k) / 2;
- d22 = ap[i__1].r / d__;
- tt = 1.f / (d11 * d22 - 1.f);
- i__1 = k + 1 + (k - 1) * ((*n << 1) - k) / 2;
- q__1.r = ap[i__1].r / d__, q__1.i = ap[i__1].i / d__;
- d21.r = q__1.r, d21.i = q__1.i;
- d__ = tt / d__;
-
- i__1 = *n;
- for (j = k + 2; j <= i__1; ++j) {
- i__2 = j + (k - 1) * ((*n << 1) - k) / 2;
- q__3.r = d11 * ap[i__2].r, q__3.i = d11 * ap[i__2].i;
- i__3 = j + k * ((*n << 1) - k - 1) / 2;
- q__4.r = d21.r * ap[i__3].r - d21.i * ap[i__3].i,
- q__4.i = d21.r * ap[i__3].i + d21.i * ap[i__3]
- .r;
- q__2.r = q__3.r - q__4.r, q__2.i = q__3.i - q__4.i;
- q__1.r = d__ * q__2.r, q__1.i = d__ * q__2.i;
- wk.r = q__1.r, wk.i = q__1.i;
- i__2 = j + k * ((*n << 1) - k - 1) / 2;
- q__3.r = d22 * ap[i__2].r, q__3.i = d22 * ap[i__2].i;
- r_cnjg(&q__5, &d21);
- i__3 = j + (k - 1) * ((*n << 1) - k) / 2;
- q__4.r = q__5.r * ap[i__3].r - q__5.i * ap[i__3].i,
- q__4.i = q__5.r * ap[i__3].i + q__5.i * ap[
- i__3].r;
- q__2.r = q__3.r - q__4.r, q__2.i = q__3.i - q__4.i;
- q__1.r = d__ * q__2.r, q__1.i = d__ * q__2.i;
- wkp1.r = q__1.r, wkp1.i = q__1.i;
- i__2 = *n;
- for (i__ = j; i__ <= i__2; ++i__) {
- i__3 = i__ + (j - 1) * ((*n << 1) - j) / 2;
- i__4 = i__ + (j - 1) * ((*n << 1) - j) / 2;
- i__5 = i__ + (k - 1) * ((*n << 1) - k) / 2;
- r_cnjg(&q__4, &wk);
- q__3.r = ap[i__5].r * q__4.r - ap[i__5].i *
- q__4.i, q__3.i = ap[i__5].r * q__4.i + ap[
- i__5].i * q__4.r;
- q__2.r = ap[i__4].r - q__3.r, q__2.i = ap[i__4].i
- - q__3.i;
- i__6 = i__ + k * ((*n << 1) - k - 1) / 2;
- r_cnjg(&q__6, &wkp1);
- q__5.r = ap[i__6].r * q__6.r - ap[i__6].i *
- q__6.i, q__5.i = ap[i__6].r * q__6.i + ap[
- i__6].i * q__6.r;
- q__1.r = q__2.r - q__5.r, q__1.i = q__2.i -
- q__5.i;
- ap[i__3].r = q__1.r, ap[i__3].i = q__1.i;
- /* L90: */
- }
- i__2 = j + (k - 1) * ((*n << 1) - k) / 2;
- ap[i__2].r = wk.r, ap[i__2].i = wk.i;
- i__2 = j + k * ((*n << 1) - k - 1) / 2;
- ap[i__2].r = wkp1.r, ap[i__2].i = wkp1.i;
- i__2 = j + (j - 1) * ((*n << 1) - j) / 2;
- i__3 = j + (j - 1) * ((*n << 1) - j) / 2;
- r__1 = ap[i__3].r;
- q__1.r = r__1, q__1.i = 0.f;
- ap[i__2].r = q__1.r, ap[i__2].i = q__1.i;
- /* L100: */
- }
- }
- }
- }
-
- /* Store details of the interchanges in IPIV */
-
- if (kstep == 1) {
- ipiv[k] = kp;
- } else {
- ipiv[k] = -kp;
- ipiv[k + 1] = -kp;
- }
-
- /* Increase K and return to the start of the main loop */
-
- k += kstep;
- kc = knc + *n - k + 2;
- goto L60;
-
- }
-
- L110:
- return;
-
- /* End of CHPTRF */
-
- } /* chptrf_ */
-
|