You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgesvdx.c 45 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static complex c_b1 = {0.f,0.f};
  487. static integer c__6 = 6;
  488. static integer c__0 = 0;
  489. static integer c__2 = 2;
  490. static integer c__1 = 1;
  491. static integer c_n1 = -1;
  492. /* > \brief <b> CGESVDX computes the singular value decomposition (SVD) for GE matrices</b> */
  493. /* =========== DOCUMENTATION =========== */
  494. /* Online html documentation available at */
  495. /* http://www.netlib.org/lapack/explore-html/ */
  496. /* > \htmlonly */
  497. /* > Download CGESVDX + dependencies */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgesvdx
  499. .f"> */
  500. /* > [TGZ]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgesvdx
  502. .f"> */
  503. /* > [ZIP]</a> */
  504. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgesvdx
  505. .f"> */
  506. /* > [TXT]</a> */
  507. /* > \endhtmlonly */
  508. /* Definition: */
  509. /* =========== */
  510. /* SUBROUTINE CGESVDX( JOBU, JOBVT, RANGE, M, N, A, LDA, VL, VU, */
  511. /* $ IL, IU, NS, S, U, LDU, VT, LDVT, WORK, */
  512. /* $ LWORK, RWORK, IWORK, INFO ) */
  513. /* CHARACTER JOBU, JOBVT, RANGE */
  514. /* INTEGER IL, INFO, IU, LDA, LDU, LDVT, LWORK, M, N, NS */
  515. /* REAL VL, VU */
  516. /* INTEGER IWORK( * ) */
  517. /* REAL S( * ), RWORK( * ) */
  518. /* COMPLEX A( LDA, * ), U( LDU, * ), VT( LDVT, * ), */
  519. /* $ WORK( * ) */
  520. /* > \par Purpose: */
  521. /* ============= */
  522. /* > */
  523. /* > \verbatim */
  524. /* > */
  525. /* > CGESVDX computes the singular value decomposition (SVD) of a complex */
  526. /* > M-by-N matrix A, optionally computing the left and/or right singular */
  527. /* > vectors. The SVD is written */
  528. /* > */
  529. /* > A = U * SIGMA * transpose(V) */
  530. /* > */
  531. /* > where SIGMA is an M-by-N matrix which is zero except for its */
  532. /* > f2cmin(m,n) diagonal elements, U is an M-by-M unitary matrix, and */
  533. /* > V is an N-by-N unitary matrix. The diagonal elements of SIGMA */
  534. /* > are the singular values of A; they are real and non-negative, and */
  535. /* > are returned in descending order. The first f2cmin(m,n) columns of */
  536. /* > U and V are the left and right singular vectors of A. */
  537. /* > */
  538. /* > CGESVDX uses an eigenvalue problem for obtaining the SVD, which */
  539. /* > allows for the computation of a subset of singular values and */
  540. /* > vectors. See SBDSVDX for details. */
  541. /* > */
  542. /* > Note that the routine returns V**T, not V. */
  543. /* > \endverbatim */
  544. /* Arguments: */
  545. /* ========== */
  546. /* > \param[in] JOBU */
  547. /* > \verbatim */
  548. /* > JOBU is CHARACTER*1 */
  549. /* > Specifies options for computing all or part of the matrix U: */
  550. /* > = 'V': the first f2cmin(m,n) columns of U (the left singular */
  551. /* > vectors) or as specified by RANGE are returned in */
  552. /* > the array U; */
  553. /* > = 'N': no columns of U (no left singular vectors) are */
  554. /* > computed. */
  555. /* > \endverbatim */
  556. /* > */
  557. /* > \param[in] JOBVT */
  558. /* > \verbatim */
  559. /* > JOBVT is CHARACTER*1 */
  560. /* > Specifies options for computing all or part of the matrix */
  561. /* > V**T: */
  562. /* > = 'V': the first f2cmin(m,n) rows of V**T (the right singular */
  563. /* > vectors) or as specified by RANGE are returned in */
  564. /* > the array VT; */
  565. /* > = 'N': no rows of V**T (no right singular vectors) are */
  566. /* > computed. */
  567. /* > \endverbatim */
  568. /* > */
  569. /* > \param[in] RANGE */
  570. /* > \verbatim */
  571. /* > RANGE is CHARACTER*1 */
  572. /* > = 'A': all singular values will be found. */
  573. /* > = 'V': all singular values in the half-open interval (VL,VU] */
  574. /* > will be found. */
  575. /* > = 'I': the IL-th through IU-th singular values will be found. */
  576. /* > \endverbatim */
  577. /* > */
  578. /* > \param[in] M */
  579. /* > \verbatim */
  580. /* > M is INTEGER */
  581. /* > The number of rows of the input matrix A. M >= 0. */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in] N */
  585. /* > \verbatim */
  586. /* > N is INTEGER */
  587. /* > The number of columns of the input matrix A. N >= 0. */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[in,out] A */
  591. /* > \verbatim */
  592. /* > A is COMPLEX array, dimension (LDA,N) */
  593. /* > On entry, the M-by-N matrix A. */
  594. /* > On exit, the contents of A are destroyed. */
  595. /* > \endverbatim */
  596. /* > */
  597. /* > \param[in] LDA */
  598. /* > \verbatim */
  599. /* > LDA is INTEGER */
  600. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  601. /* > \endverbatim */
  602. /* > */
  603. /* > \param[in] VL */
  604. /* > \verbatim */
  605. /* > VL is REAL */
  606. /* > If RANGE='V', the lower bound of the interval to */
  607. /* > be searched for singular values. VU > VL. */
  608. /* > Not referenced if RANGE = 'A' or 'I'. */
  609. /* > \endverbatim */
  610. /* > */
  611. /* > \param[in] VU */
  612. /* > \verbatim */
  613. /* > VU is REAL */
  614. /* > If RANGE='V', the upper bound of the interval to */
  615. /* > be searched for singular values. VU > VL. */
  616. /* > Not referenced if RANGE = 'A' or 'I'. */
  617. /* > \endverbatim */
  618. /* > */
  619. /* > \param[in] IL */
  620. /* > \verbatim */
  621. /* > IL is INTEGER */
  622. /* > If RANGE='I', the index of the */
  623. /* > smallest singular value to be returned. */
  624. /* > 1 <= IL <= IU <= f2cmin(M,N), if f2cmin(M,N) > 0. */
  625. /* > Not referenced if RANGE = 'A' or 'V'. */
  626. /* > \endverbatim */
  627. /* > */
  628. /* > \param[in] IU */
  629. /* > \verbatim */
  630. /* > IU is INTEGER */
  631. /* > If RANGE='I', the index of the */
  632. /* > largest singular value to be returned. */
  633. /* > 1 <= IL <= IU <= f2cmin(M,N), if f2cmin(M,N) > 0. */
  634. /* > Not referenced if RANGE = 'A' or 'V'. */
  635. /* > \endverbatim */
  636. /* > */
  637. /* > \param[out] NS */
  638. /* > \verbatim */
  639. /* > NS is INTEGER */
  640. /* > The total number of singular values found, */
  641. /* > 0 <= NS <= f2cmin(M,N). */
  642. /* > If RANGE = 'A', NS = f2cmin(M,N); if RANGE = 'I', NS = IU-IL+1. */
  643. /* > \endverbatim */
  644. /* > */
  645. /* > \param[out] S */
  646. /* > \verbatim */
  647. /* > S is REAL array, dimension (f2cmin(M,N)) */
  648. /* > The singular values of A, sorted so that S(i) >= S(i+1). */
  649. /* > \endverbatim */
  650. /* > */
  651. /* > \param[out] U */
  652. /* > \verbatim */
  653. /* > U is COMPLEX array, dimension (LDU,UCOL) */
  654. /* > If JOBU = 'V', U contains columns of U (the left singular */
  655. /* > vectors, stored columnwise) as specified by RANGE; if */
  656. /* > JOBU = 'N', U is not referenced. */
  657. /* > Note: The user must ensure that UCOL >= NS; if RANGE = 'V', */
  658. /* > the exact value of NS is not known in advance and an upper */
  659. /* > bound must be used. */
  660. /* > \endverbatim */
  661. /* > */
  662. /* > \param[in] LDU */
  663. /* > \verbatim */
  664. /* > LDU is INTEGER */
  665. /* > The leading dimension of the array U. LDU >= 1; if */
  666. /* > JOBU = 'V', LDU >= M. */
  667. /* > \endverbatim */
  668. /* > */
  669. /* > \param[out] VT */
  670. /* > \verbatim */
  671. /* > VT is COMPLEX array, dimension (LDVT,N) */
  672. /* > If JOBVT = 'V', VT contains the rows of V**T (the right singular */
  673. /* > vectors, stored rowwise) as specified by RANGE; if JOBVT = 'N', */
  674. /* > VT is not referenced. */
  675. /* > Note: The user must ensure that LDVT >= NS; if RANGE = 'V', */
  676. /* > the exact value of NS is not known in advance and an upper */
  677. /* > bound must be used. */
  678. /* > \endverbatim */
  679. /* > */
  680. /* > \param[in] LDVT */
  681. /* > \verbatim */
  682. /* > LDVT is INTEGER */
  683. /* > The leading dimension of the array VT. LDVT >= 1; if */
  684. /* > JOBVT = 'V', LDVT >= NS (see above). */
  685. /* > \endverbatim */
  686. /* > */
  687. /* > \param[out] WORK */
  688. /* > \verbatim */
  689. /* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
  690. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK; */
  691. /* > \endverbatim */
  692. /* > */
  693. /* > \param[in] LWORK */
  694. /* > \verbatim */
  695. /* > LWORK is INTEGER */
  696. /* > The dimension of the array WORK. */
  697. /* > LWORK >= MAX(1,MIN(M,N)*(MIN(M,N)+4)) for the paths (see */
  698. /* > comments inside the code): */
  699. /* > - PATH 1 (M much larger than N) */
  700. /* > - PATH 1t (N much larger than M) */
  701. /* > LWORK >= MAX(1,MIN(M,N)*2+MAX(M,N)) for the other paths. */
  702. /* > For good performance, LWORK should generally be larger. */
  703. /* > */
  704. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  705. /* > only calculates the optimal size of the WORK array, returns */
  706. /* > this value as the first entry of the WORK array, and no error */
  707. /* > message related to LWORK is issued by XERBLA. */
  708. /* > \endverbatim */
  709. /* > */
  710. /* > \param[out] RWORK */
  711. /* > \verbatim */
  712. /* > RWORK is REAL array, dimension (MAX(1,LRWORK)) */
  713. /* > LRWORK >= MIN(M,N)*(MIN(M,N)*2+15*MIN(M,N)). */
  714. /* > \endverbatim */
  715. /* > */
  716. /* > \param[out] IWORK */
  717. /* > \verbatim */
  718. /* > IWORK is INTEGER array, dimension (12*MIN(M,N)) */
  719. /* > If INFO = 0, the first NS elements of IWORK are zero. If INFO > 0, */
  720. /* > then IWORK contains the indices of the eigenvectors that failed */
  721. /* > to converge in SBDSVDX/SSTEVX. */
  722. /* > \endverbatim */
  723. /* > */
  724. /* > \param[out] INFO */
  725. /* > \verbatim */
  726. /* > INFO is INTEGER */
  727. /* > = 0: successful exit */
  728. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  729. /* > > 0: if INFO = i, then i eigenvectors failed to converge */
  730. /* > in SBDSVDX/SSTEVX. */
  731. /* > if INFO = N*2 + 1, an internal error occurred in */
  732. /* > SBDSVDX */
  733. /* > \endverbatim */
  734. /* Authors: */
  735. /* ======== */
  736. /* > \author Univ. of Tennessee */
  737. /* > \author Univ. of California Berkeley */
  738. /* > \author Univ. of Colorado Denver */
  739. /* > \author NAG Ltd. */
  740. /* > \date June 2016 */
  741. /* > \ingroup complexGEsing */
  742. /* ===================================================================== */
  743. /* Subroutine */ void cgesvdx_(char *jobu, char *jobvt, char *range, integer *
  744. m, integer *n, complex *a, integer *lda, real *vl, real *vu, integer *
  745. il, integer *iu, integer *ns, real *s, complex *u, integer *ldu,
  746. complex *vt, integer *ldvt, complex *work, integer *lwork, real *
  747. rwork, integer *iwork, integer *info)
  748. {
  749. /* System generated locals */
  750. address a__1[2];
  751. integer a_dim1, a_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1[2],
  752. i__2, i__3, i__4, i__5;
  753. real r__1;
  754. complex q__1;
  755. char ch__1[2];
  756. /* Local variables */
  757. integer iscl;
  758. logical alls, inds;
  759. integer ilqf;
  760. real anrm;
  761. integer ierr, iqrf, itau;
  762. char jobz[1];
  763. logical vals;
  764. integer i__, j, k;
  765. extern logical lsame_(char *, char *);
  766. integer iltgk, itemp, minmn, itaup, itauq, iutgk, itgkz, mnthr;
  767. logical wantu;
  768. integer id, ie;
  769. extern /* Subroutine */ void cgebrd_(integer *, integer *, complex *,
  770. integer *, real *, real *, complex *, complex *, complex *,
  771. integer *, integer *);
  772. extern real clange_(char *, integer *, integer *, complex *, integer *,
  773. real *);
  774. extern /* Subroutine */ void cgelqf_(integer *, integer *, complex *,
  775. integer *, complex *, complex *, integer *, integer *), clascl_(
  776. char *, integer *, integer *, real *, real *, integer *, integer *
  777. , complex *, integer *, integer *), cgeqrf_(integer *,
  778. integer *, complex *, integer *, complex *, complex *, integer *,
  779. integer *);
  780. extern real slamch_(char *);
  781. extern /* Subroutine */ void claset_(char *, integer *, integer *, complex
  782. *, complex *, complex *, integer *), clacpy_(char *,
  783. integer *, integer *, complex *, integer *, complex *, integer *);
  784. extern int xerbla_(char *, integer *, ftnlen);
  785. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  786. integer *, integer *, ftnlen, ftnlen);
  787. real bignum;
  788. extern /* Subroutine */ void slascl_(char *, integer *, integer *, real *,
  789. real *, integer *, integer *, real *, integer *, integer *);
  790. real abstol;
  791. extern /* Subroutine */ void cunmbr_(char *, char *, char *, integer *,
  792. integer *, integer *, complex *, integer *, complex *, complex *,
  793. integer *, complex *, integer *, integer *);
  794. char rngtgk[1];
  795. extern /* Subroutine */ void cunmlq_(char *, char *, integer *, integer *,
  796. integer *, complex *, integer *, complex *, complex *, integer *,
  797. complex *, integer *, integer *);
  798. integer itempr;
  799. extern /* Subroutine */ void cunmqr_(char *, char *, integer *, integer *,
  800. integer *, complex *, integer *, complex *, complex *, integer *,
  801. complex *, integer *, integer *);
  802. integer minwrk, maxwrk;
  803. real smlnum;
  804. logical lquery, wantvt;
  805. real dum[1], eps;
  806. extern /* Subroutine */ void sbdsvdx_(char *, char *, char *, integer *,
  807. real *, real *, real *, real *, integer *, integer *, integer *,
  808. real *, real *, integer *, real *, integer *, integer *);
  809. /* -- LAPACK driver routine (version 3.8.0) -- */
  810. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  811. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  812. /* June 2016 */
  813. /* ===================================================================== */
  814. /* Test the input arguments. */
  815. /* Parameter adjustments */
  816. a_dim1 = *lda;
  817. a_offset = 1 + a_dim1 * 1;
  818. a -= a_offset;
  819. --s;
  820. u_dim1 = *ldu;
  821. u_offset = 1 + u_dim1 * 1;
  822. u -= u_offset;
  823. vt_dim1 = *ldvt;
  824. vt_offset = 1 + vt_dim1 * 1;
  825. vt -= vt_offset;
  826. --work;
  827. --rwork;
  828. --iwork;
  829. /* Function Body */
  830. *ns = 0;
  831. *info = 0;
  832. abstol = slamch_("S") * 2;
  833. lquery = *lwork == -1;
  834. minmn = f2cmin(*m,*n);
  835. wantu = lsame_(jobu, "V");
  836. wantvt = lsame_(jobvt, "V");
  837. if (wantu || wantvt) {
  838. *(unsigned char *)jobz = 'V';
  839. } else {
  840. *(unsigned char *)jobz = 'N';
  841. }
  842. alls = lsame_(range, "A");
  843. vals = lsame_(range, "V");
  844. inds = lsame_(range, "I");
  845. *info = 0;
  846. if (! lsame_(jobu, "V") && ! lsame_(jobu, "N")) {
  847. *info = -1;
  848. } else if (! lsame_(jobvt, "V") && ! lsame_(jobvt,
  849. "N")) {
  850. *info = -2;
  851. } else if (! (alls || vals || inds)) {
  852. *info = -3;
  853. } else if (*m < 0) {
  854. *info = -4;
  855. } else if (*n < 0) {
  856. *info = -5;
  857. } else if (*m > *lda) {
  858. *info = -7;
  859. } else if (minmn > 0) {
  860. if (vals) {
  861. if (*vl < 0.f) {
  862. *info = -8;
  863. } else if (*vu <= *vl) {
  864. *info = -9;
  865. }
  866. } else if (inds) {
  867. if (*il < 1 || *il > f2cmax(1,minmn)) {
  868. *info = -10;
  869. } else if (*iu < f2cmin(minmn,*il) || *iu > minmn) {
  870. *info = -11;
  871. }
  872. }
  873. if (*info == 0) {
  874. if (wantu && *ldu < *m) {
  875. *info = -15;
  876. } else if (wantvt) {
  877. if (inds) {
  878. if (*ldvt < *iu - *il + 1) {
  879. *info = -17;
  880. }
  881. } else if (*ldvt < minmn) {
  882. *info = -17;
  883. }
  884. }
  885. }
  886. }
  887. /* Compute workspace */
  888. /* (Note: Comments in the code beginning "Workspace:" describe the */
  889. /* minimal amount of workspace needed at that point in the code, */
  890. /* as well as the preferred amount for good performance. */
  891. /* NB refers to the optimal block size for the immediately */
  892. /* following subroutine, as returned by ILAENV.) */
  893. if (*info == 0) {
  894. minwrk = 1;
  895. maxwrk = 1;
  896. if (minmn > 0) {
  897. if (*m >= *n) {
  898. /* Writing concatenation */
  899. i__1[0] = 1, a__1[0] = jobu;
  900. i__1[1] = 1, a__1[1] = jobvt;
  901. s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
  902. mnthr = ilaenv_(&c__6, "CGESVD", ch__1, m, n, &c__0, &c__0, (
  903. ftnlen)6, (ftnlen)2);
  904. if (*m >= mnthr) {
  905. /* Path 1 (M much larger than N) */
  906. minwrk = *n * (*n + 5);
  907. maxwrk = *n + *n * ilaenv_(&c__1, "CGEQRF", " ", m, n, &
  908. c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
  909. /* Computing MAX */
  910. i__2 = maxwrk, i__3 = *n * *n + (*n << 1) + (*n << 1) *
  911. ilaenv_(&c__1, "CGEBRD", " ", n, n, &c_n1, &c_n1,
  912. (ftnlen)6, (ftnlen)1);
  913. maxwrk = f2cmax(i__2,i__3);
  914. if (wantu || wantvt) {
  915. /* Computing MAX */
  916. i__2 = maxwrk, i__3 = *n * *n + (*n << 1) + *n *
  917. ilaenv_(&c__1, "CUNMQR", "LN", n, n, n, &c_n1,
  918. (ftnlen)6, (ftnlen)2);
  919. maxwrk = f2cmax(i__2,i__3);
  920. }
  921. } else {
  922. /* Path 2 (M at least N, but not much larger) */
  923. minwrk = *n * 3 + *m;
  924. maxwrk = (*n << 1) + (*m + *n) * ilaenv_(&c__1, "CGEBRD",
  925. " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
  926. if (wantu || wantvt) {
  927. /* Computing MAX */
  928. i__2 = maxwrk, i__3 = (*n << 1) + *n * ilaenv_(&c__1,
  929. "CUNMQR", "LN", n, n, n, &c_n1, (ftnlen)6, (
  930. ftnlen)2);
  931. maxwrk = f2cmax(i__2,i__3);
  932. }
  933. }
  934. } else {
  935. /* Writing concatenation */
  936. i__1[0] = 1, a__1[0] = jobu;
  937. i__1[1] = 1, a__1[1] = jobvt;
  938. s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
  939. mnthr = ilaenv_(&c__6, "CGESVD", ch__1, m, n, &c__0, &c__0, (
  940. ftnlen)6, (ftnlen)2);
  941. if (*n >= mnthr) {
  942. /* Path 1t (N much larger than M) */
  943. minwrk = *m * (*m + 5);
  944. maxwrk = *m + *m * ilaenv_(&c__1, "CGELQF", " ", m, n, &
  945. c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
  946. /* Computing MAX */
  947. i__2 = maxwrk, i__3 = *m * *m + (*m << 1) + (*m << 1) *
  948. ilaenv_(&c__1, "CGEBRD", " ", m, m, &c_n1, &c_n1,
  949. (ftnlen)6, (ftnlen)1);
  950. maxwrk = f2cmax(i__2,i__3);
  951. if (wantu || wantvt) {
  952. /* Computing MAX */
  953. i__2 = maxwrk, i__3 = *m * *m + (*m << 1) + *m *
  954. ilaenv_(&c__1, "CUNMQR", "LN", m, m, m, &c_n1,
  955. (ftnlen)6, (ftnlen)2);
  956. maxwrk = f2cmax(i__2,i__3);
  957. }
  958. } else {
  959. /* Path 2t (N greater than M, but not much larger) */
  960. minwrk = *m * 3 + *n;
  961. maxwrk = (*m << 1) + (*m + *n) * ilaenv_(&c__1, "CGEBRD",
  962. " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
  963. if (wantu || wantvt) {
  964. /* Computing MAX */
  965. i__2 = maxwrk, i__3 = (*m << 1) + *m * ilaenv_(&c__1,
  966. "CUNMQR", "LN", m, m, m, &c_n1, (ftnlen)6, (
  967. ftnlen)2);
  968. maxwrk = f2cmax(i__2,i__3);
  969. }
  970. }
  971. }
  972. }
  973. maxwrk = f2cmax(maxwrk,minwrk);
  974. r__1 = (real) maxwrk;
  975. q__1.r = r__1, q__1.i = 0.f;
  976. work[1].r = q__1.r, work[1].i = q__1.i;
  977. if (*lwork < minwrk && ! lquery) {
  978. *info = -19;
  979. }
  980. }
  981. if (*info != 0) {
  982. i__2 = -(*info);
  983. xerbla_("CGESVDX", &i__2, (ftnlen)7);
  984. return;
  985. } else if (lquery) {
  986. return;
  987. }
  988. /* Quick return if possible */
  989. if (*m == 0 || *n == 0) {
  990. return;
  991. }
  992. /* Set singular values indices accord to RANGE='A'. */
  993. if (alls) {
  994. *(unsigned char *)rngtgk = 'I';
  995. iltgk = 1;
  996. iutgk = f2cmin(*m,*n);
  997. } else if (inds) {
  998. *(unsigned char *)rngtgk = 'I';
  999. iltgk = *il;
  1000. iutgk = *iu;
  1001. } else {
  1002. *(unsigned char *)rngtgk = 'V';
  1003. iltgk = 0;
  1004. iutgk = 0;
  1005. }
  1006. /* Get machine constants */
  1007. eps = slamch_("P");
  1008. smlnum = sqrt(slamch_("S")) / eps;
  1009. bignum = 1.f / smlnum;
  1010. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  1011. anrm = clange_("M", m, n, &a[a_offset], lda, dum);
  1012. iscl = 0;
  1013. if (anrm > 0.f && anrm < smlnum) {
  1014. iscl = 1;
  1015. clascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
  1016. info);
  1017. } else if (anrm > bignum) {
  1018. iscl = 1;
  1019. clascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
  1020. info);
  1021. }
  1022. if (*m >= *n) {
  1023. /* A has at least as many rows as columns. If A has sufficiently */
  1024. /* more rows than columns, first reduce A using the QR */
  1025. /* decomposition. */
  1026. if (*m >= mnthr) {
  1027. /* Path 1 (M much larger than N): */
  1028. /* A = Q * R = Q * ( QB * B * PB**T ) */
  1029. /* = Q * ( QB * ( UB * S * VB**T ) * PB**T ) */
  1030. /* U = Q * QB * UB; V**T = VB**T * PB**T */
  1031. /* Compute A=Q*R */
  1032. /* (Workspace: need 2*N, prefer N+N*NB) */
  1033. itau = 1;
  1034. itemp = itau + *n;
  1035. i__2 = *lwork - itemp + 1;
  1036. cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[itemp], &i__2,
  1037. info);
  1038. /* Copy R into WORK and bidiagonalize it: */
  1039. /* (Workspace: need N*N+3*N, prefer N*N+N+2*N*NB) */
  1040. iqrf = itemp;
  1041. itauq = itemp + *n * *n;
  1042. itaup = itauq + *n;
  1043. itemp = itaup + *n;
  1044. id = 1;
  1045. ie = id + *n;
  1046. itgkz = ie + *n;
  1047. clacpy_("U", n, n, &a[a_offset], lda, &work[iqrf], n);
  1048. i__2 = *n - 1;
  1049. i__3 = *n - 1;
  1050. claset_("L", &i__2, &i__3, &c_b1, &c_b1, &work[iqrf + 1], n);
  1051. i__2 = *lwork - itemp + 1;
  1052. cgebrd_(n, n, &work[iqrf], n, &rwork[id], &rwork[ie], &work[itauq]
  1053. , &work[itaup], &work[itemp], &i__2, info);
  1054. itempr = itgkz + *n * ((*n << 1) + 1);
  1055. /* Solve eigenvalue problem TGK*Z=Z*S. */
  1056. /* (Workspace: need 2*N*N+14*N) */
  1057. i__2 = *n << 1;
  1058. sbdsvdx_("U", jobz, rngtgk, n, &rwork[id], &rwork[ie], vl, vu, &
  1059. iltgk, &iutgk, ns, &s[1], &rwork[itgkz], &i__2, &rwork[
  1060. itempr], &iwork[1], info)
  1061. ;
  1062. /* If needed, compute left singular vectors. */
  1063. if (wantu) {
  1064. k = itgkz;
  1065. i__2 = *ns;
  1066. for (i__ = 1; i__ <= i__2; ++i__) {
  1067. i__3 = *n;
  1068. for (j = 1; j <= i__3; ++j) {
  1069. i__4 = j + i__ * u_dim1;
  1070. i__5 = k;
  1071. q__1.r = rwork[i__5], q__1.i = 0.f;
  1072. u[i__4].r = q__1.r, u[i__4].i = q__1.i;
  1073. ++k;
  1074. }
  1075. k += *n;
  1076. }
  1077. i__2 = *m - *n;
  1078. claset_("A", &i__2, ns, &c_b1, &c_b1, &u[*n + 1 + u_dim1],
  1079. ldu);
  1080. /* Call CUNMBR to compute QB*UB. */
  1081. /* (Workspace in WORK( ITEMP ): need N, prefer N*NB) */
  1082. i__2 = *lwork - itemp + 1;
  1083. cunmbr_("Q", "L", "N", n, ns, n, &work[iqrf], n, &work[itauq],
  1084. &u[u_offset], ldu, &work[itemp], &i__2, info);
  1085. /* Call CUNMQR to compute Q*(QB*UB). */
  1086. /* (Workspace in WORK( ITEMP ): need N, prefer N*NB) */
  1087. i__2 = *lwork - itemp + 1;
  1088. cunmqr_("L", "N", m, ns, n, &a[a_offset], lda, &work[itau], &
  1089. u[u_offset], ldu, &work[itemp], &i__2, info);
  1090. }
  1091. /* If needed, compute right singular vectors. */
  1092. if (wantvt) {
  1093. k = itgkz + *n;
  1094. i__2 = *ns;
  1095. for (i__ = 1; i__ <= i__2; ++i__) {
  1096. i__3 = *n;
  1097. for (j = 1; j <= i__3; ++j) {
  1098. i__4 = i__ + j * vt_dim1;
  1099. i__5 = k;
  1100. q__1.r = rwork[i__5], q__1.i = 0.f;
  1101. vt[i__4].r = q__1.r, vt[i__4].i = q__1.i;
  1102. ++k;
  1103. }
  1104. k += *n;
  1105. }
  1106. /* Call CUNMBR to compute VB**T * PB**T */
  1107. /* (Workspace in WORK( ITEMP ): need N, prefer N*NB) */
  1108. i__2 = *lwork - itemp + 1;
  1109. cunmbr_("P", "R", "C", ns, n, n, &work[iqrf], n, &work[itaup],
  1110. &vt[vt_offset], ldvt, &work[itemp], &i__2, info);
  1111. }
  1112. } else {
  1113. /* Path 2 (M at least N, but not much larger) */
  1114. /* Reduce A to bidiagonal form without QR decomposition */
  1115. /* A = QB * B * PB**T = QB * ( UB * S * VB**T ) * PB**T */
  1116. /* U = QB * UB; V**T = VB**T * PB**T */
  1117. /* Bidiagonalize A */
  1118. /* (Workspace: need 2*N+M, prefer 2*N+(M+N)*NB) */
  1119. itauq = 1;
  1120. itaup = itauq + *n;
  1121. itemp = itaup + *n;
  1122. id = 1;
  1123. ie = id + *n;
  1124. itgkz = ie + *n;
  1125. i__2 = *lwork - itemp + 1;
  1126. cgebrd_(m, n, &a[a_offset], lda, &rwork[id], &rwork[ie], &work[
  1127. itauq], &work[itaup], &work[itemp], &i__2, info);
  1128. itempr = itgkz + *n * ((*n << 1) + 1);
  1129. /* Solve eigenvalue problem TGK*Z=Z*S. */
  1130. /* (Workspace: need 2*N*N+14*N) */
  1131. i__2 = *n << 1;
  1132. sbdsvdx_("U", jobz, rngtgk, n, &rwork[id], &rwork[ie], vl, vu, &
  1133. iltgk, &iutgk, ns, &s[1], &rwork[itgkz], &i__2, &rwork[
  1134. itempr], &iwork[1], info)
  1135. ;
  1136. /* If needed, compute left singular vectors. */
  1137. if (wantu) {
  1138. k = itgkz;
  1139. i__2 = *ns;
  1140. for (i__ = 1; i__ <= i__2; ++i__) {
  1141. i__3 = *n;
  1142. for (j = 1; j <= i__3; ++j) {
  1143. i__4 = j + i__ * u_dim1;
  1144. i__5 = k;
  1145. q__1.r = rwork[i__5], q__1.i = 0.f;
  1146. u[i__4].r = q__1.r, u[i__4].i = q__1.i;
  1147. ++k;
  1148. }
  1149. k += *n;
  1150. }
  1151. i__2 = *m - *n;
  1152. claset_("A", &i__2, ns, &c_b1, &c_b1, &u[*n + 1 + u_dim1],
  1153. ldu);
  1154. /* Call CUNMBR to compute QB*UB. */
  1155. /* (Workspace in WORK( ITEMP ): need N, prefer N*NB) */
  1156. i__2 = *lwork - itemp + 1;
  1157. cunmbr_("Q", "L", "N", m, ns, n, &a[a_offset], lda, &work[
  1158. itauq], &u[u_offset], ldu, &work[itemp], &i__2, &ierr);
  1159. }
  1160. /* If needed, compute right singular vectors. */
  1161. if (wantvt) {
  1162. k = itgkz + *n;
  1163. i__2 = *ns;
  1164. for (i__ = 1; i__ <= i__2; ++i__) {
  1165. i__3 = *n;
  1166. for (j = 1; j <= i__3; ++j) {
  1167. i__4 = i__ + j * vt_dim1;
  1168. i__5 = k;
  1169. q__1.r = rwork[i__5], q__1.i = 0.f;
  1170. vt[i__4].r = q__1.r, vt[i__4].i = q__1.i;
  1171. ++k;
  1172. }
  1173. k += *n;
  1174. }
  1175. /* Call CUNMBR to compute VB**T * PB**T */
  1176. /* (Workspace in WORK( ITEMP ): need N, prefer N*NB) */
  1177. i__2 = *lwork - itemp + 1;
  1178. cunmbr_("P", "R", "C", ns, n, n, &a[a_offset], lda, &work[
  1179. itaup], &vt[vt_offset], ldvt, &work[itemp], &i__2, &
  1180. ierr);
  1181. }
  1182. }
  1183. } else {
  1184. /* A has more columns than rows. If A has sufficiently more */
  1185. /* columns than rows, first reduce A using the LQ decomposition. */
  1186. if (*n >= mnthr) {
  1187. /* Path 1t (N much larger than M): */
  1188. /* A = L * Q = ( QB * B * PB**T ) * Q */
  1189. /* = ( QB * ( UB * S * VB**T ) * PB**T ) * Q */
  1190. /* U = QB * UB ; V**T = VB**T * PB**T * Q */
  1191. /* Compute A=L*Q */
  1192. /* (Workspace: need 2*M, prefer M+M*NB) */
  1193. itau = 1;
  1194. itemp = itau + *m;
  1195. i__2 = *lwork - itemp + 1;
  1196. cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[itemp], &i__2,
  1197. info);
  1198. /* Copy L into WORK and bidiagonalize it: */
  1199. /* (Workspace in WORK( ITEMP ): need M*M+3*M, prefer M*M+M+2*M*NB) */
  1200. ilqf = itemp;
  1201. itauq = ilqf + *m * *m;
  1202. itaup = itauq + *m;
  1203. itemp = itaup + *m;
  1204. id = 1;
  1205. ie = id + *m;
  1206. itgkz = ie + *m;
  1207. clacpy_("L", m, m, &a[a_offset], lda, &work[ilqf], m);
  1208. i__2 = *m - 1;
  1209. i__3 = *m - 1;
  1210. claset_("U", &i__2, &i__3, &c_b1, &c_b1, &work[ilqf + *m], m);
  1211. i__2 = *lwork - itemp + 1;
  1212. cgebrd_(m, m, &work[ilqf], m, &rwork[id], &rwork[ie], &work[itauq]
  1213. , &work[itaup], &work[itemp], &i__2, info);
  1214. itempr = itgkz + *m * ((*m << 1) + 1);
  1215. /* Solve eigenvalue problem TGK*Z=Z*S. */
  1216. /* (Workspace: need 2*M*M+14*M) */
  1217. i__2 = *m << 1;
  1218. sbdsvdx_("U", jobz, rngtgk, m, &rwork[id], &rwork[ie], vl, vu, &
  1219. iltgk, &iutgk, ns, &s[1], &rwork[itgkz], &i__2, &rwork[
  1220. itempr], &iwork[1], info)
  1221. ;
  1222. /* If needed, compute left singular vectors. */
  1223. if (wantu) {
  1224. k = itgkz;
  1225. i__2 = *ns;
  1226. for (i__ = 1; i__ <= i__2; ++i__) {
  1227. i__3 = *m;
  1228. for (j = 1; j <= i__3; ++j) {
  1229. i__4 = j + i__ * u_dim1;
  1230. i__5 = k;
  1231. q__1.r = rwork[i__5], q__1.i = 0.f;
  1232. u[i__4].r = q__1.r, u[i__4].i = q__1.i;
  1233. ++k;
  1234. }
  1235. k += *m;
  1236. }
  1237. /* Call CUNMBR to compute QB*UB. */
  1238. /* (Workspace in WORK( ITEMP ): need M, prefer M*NB) */
  1239. i__2 = *lwork - itemp + 1;
  1240. cunmbr_("Q", "L", "N", m, ns, m, &work[ilqf], m, &work[itauq],
  1241. &u[u_offset], ldu, &work[itemp], &i__2, info);
  1242. }
  1243. /* If needed, compute right singular vectors. */
  1244. if (wantvt) {
  1245. k = itgkz + *m;
  1246. i__2 = *ns;
  1247. for (i__ = 1; i__ <= i__2; ++i__) {
  1248. i__3 = *m;
  1249. for (j = 1; j <= i__3; ++j) {
  1250. i__4 = i__ + j * vt_dim1;
  1251. i__5 = k;
  1252. q__1.r = rwork[i__5], q__1.i = 0.f;
  1253. vt[i__4].r = q__1.r, vt[i__4].i = q__1.i;
  1254. ++k;
  1255. }
  1256. k += *m;
  1257. }
  1258. i__2 = *n - *m;
  1259. claset_("A", ns, &i__2, &c_b1, &c_b1, &vt[(*m + 1) * vt_dim1
  1260. + 1], ldvt);
  1261. /* Call CUNMBR to compute (VB**T)*(PB**T) */
  1262. /* (Workspace in WORK( ITEMP ): need M, prefer M*NB) */
  1263. i__2 = *lwork - itemp + 1;
  1264. cunmbr_("P", "R", "C", ns, m, m, &work[ilqf], m, &work[itaup],
  1265. &vt[vt_offset], ldvt, &work[itemp], &i__2, info);
  1266. /* Call CUNMLQ to compute ((VB**T)*(PB**T))*Q. */
  1267. /* (Workspace in WORK( ITEMP ): need M, prefer M*NB) */
  1268. i__2 = *lwork - itemp + 1;
  1269. cunmlq_("R", "N", ns, n, m, &a[a_offset], lda, &work[itau], &
  1270. vt[vt_offset], ldvt, &work[itemp], &i__2, info);
  1271. }
  1272. } else {
  1273. /* Path 2t (N greater than M, but not much larger) */
  1274. /* Reduce to bidiagonal form without LQ decomposition */
  1275. /* A = QB * B * PB**T = QB * ( UB * S * VB**T ) * PB**T */
  1276. /* U = QB * UB; V**T = VB**T * PB**T */
  1277. /* Bidiagonalize A */
  1278. /* (Workspace: need 2*M+N, prefer 2*M+(M+N)*NB) */
  1279. itauq = 1;
  1280. itaup = itauq + *m;
  1281. itemp = itaup + *m;
  1282. id = 1;
  1283. ie = id + *m;
  1284. itgkz = ie + *m;
  1285. i__2 = *lwork - itemp + 1;
  1286. cgebrd_(m, n, &a[a_offset], lda, &rwork[id], &rwork[ie], &work[
  1287. itauq], &work[itaup], &work[itemp], &i__2, info);
  1288. itempr = itgkz + *m * ((*m << 1) + 1);
  1289. /* Solve eigenvalue problem TGK*Z=Z*S. */
  1290. /* (Workspace: need 2*M*M+14*M) */
  1291. i__2 = *m << 1;
  1292. sbdsvdx_("L", jobz, rngtgk, m, &rwork[id], &rwork[ie], vl, vu, &
  1293. iltgk, &iutgk, ns, &s[1], &rwork[itgkz], &i__2, &rwork[
  1294. itempr], &iwork[1], info)
  1295. ;
  1296. /* If needed, compute left singular vectors. */
  1297. if (wantu) {
  1298. k = itgkz;
  1299. i__2 = *ns;
  1300. for (i__ = 1; i__ <= i__2; ++i__) {
  1301. i__3 = *m;
  1302. for (j = 1; j <= i__3; ++j) {
  1303. i__4 = j + i__ * u_dim1;
  1304. i__5 = k;
  1305. q__1.r = rwork[i__5], q__1.i = 0.f;
  1306. u[i__4].r = q__1.r, u[i__4].i = q__1.i;
  1307. ++k;
  1308. }
  1309. k += *m;
  1310. }
  1311. /* Call CUNMBR to compute QB*UB. */
  1312. /* (Workspace in WORK( ITEMP ): need M, prefer M*NB) */
  1313. i__2 = *lwork - itemp + 1;
  1314. cunmbr_("Q", "L", "N", m, ns, n, &a[a_offset], lda, &work[
  1315. itauq], &u[u_offset], ldu, &work[itemp], &i__2, info);
  1316. }
  1317. /* If needed, compute right singular vectors. */
  1318. if (wantvt) {
  1319. k = itgkz + *m;
  1320. i__2 = *ns;
  1321. for (i__ = 1; i__ <= i__2; ++i__) {
  1322. i__3 = *m;
  1323. for (j = 1; j <= i__3; ++j) {
  1324. i__4 = i__ + j * vt_dim1;
  1325. i__5 = k;
  1326. q__1.r = rwork[i__5], q__1.i = 0.f;
  1327. vt[i__4].r = q__1.r, vt[i__4].i = q__1.i;
  1328. ++k;
  1329. }
  1330. k += *m;
  1331. }
  1332. i__2 = *n - *m;
  1333. claset_("A", ns, &i__2, &c_b1, &c_b1, &vt[(*m + 1) * vt_dim1
  1334. + 1], ldvt);
  1335. /* Call CUNMBR to compute VB**T * PB**T */
  1336. /* (Workspace in WORK( ITEMP ): need M, prefer M*NB) */
  1337. i__2 = *lwork - itemp + 1;
  1338. cunmbr_("P", "R", "C", ns, n, m, &a[a_offset], lda, &work[
  1339. itaup], &vt[vt_offset], ldvt, &work[itemp], &i__2,
  1340. info);
  1341. }
  1342. }
  1343. }
  1344. /* Undo scaling if necessary */
  1345. if (iscl == 1) {
  1346. if (anrm > bignum) {
  1347. slascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
  1348. minmn, info);
  1349. }
  1350. if (anrm < smlnum) {
  1351. slascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
  1352. minmn, info);
  1353. }
  1354. }
  1355. /* Return optimal workspace in WORK(1) */
  1356. r__1 = (real) maxwrk;
  1357. q__1.r = r__1, q__1.i = 0.f;
  1358. work[1].r = q__1.r, work[1].i = q__1.i;
  1359. return;
  1360. /* End of CGESVDX */
  1361. } /* cgesvdx_ */