You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlals0.c 34 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static doublereal c_b5 = -1.;
  485. static integer c__1 = 1;
  486. static doublereal c_b13 = 1.;
  487. static doublereal c_b15 = 0.;
  488. static integer c__0 = 0;
  489. /* > \brief \b ZLALS0 applies back multiplying factors in solving the least squares problem using divide and c
  490. onquer SVD approach. Used by sgelsd. */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download ZLALS0 + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlals0.
  497. f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlals0.
  500. f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlals0.
  503. f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE ZLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B, LDB, BX, LDBX, */
  509. /* PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM, */
  510. /* POLES, DIFL, DIFR, Z, K, C, S, RWORK, INFO ) */
  511. /* INTEGER GIVPTR, ICOMPQ, INFO, K, LDB, LDBX, LDGCOL, */
  512. /* $ LDGNUM, NL, NR, NRHS, SQRE */
  513. /* DOUBLE PRECISION C, S */
  514. /* INTEGER GIVCOL( LDGCOL, * ), PERM( * ) */
  515. /* DOUBLE PRECISION DIFL( * ), DIFR( LDGNUM, * ), */
  516. /* $ GIVNUM( LDGNUM, * ), POLES( LDGNUM, * ), */
  517. /* $ RWORK( * ), Z( * ) */
  518. /* COMPLEX*16 B( LDB, * ), BX( LDBX, * ) */
  519. /* > \par Purpose: */
  520. /* ============= */
  521. /* > */
  522. /* > \verbatim */
  523. /* > */
  524. /* > ZLALS0 applies back the multiplying factors of either the left or the */
  525. /* > right singular vector matrix of a diagonal matrix appended by a row */
  526. /* > to the right hand side matrix B in solving the least squares problem */
  527. /* > using the divide-and-conquer SVD approach. */
  528. /* > */
  529. /* > For the left singular vector matrix, three types of orthogonal */
  530. /* > matrices are involved: */
  531. /* > */
  532. /* > (1L) Givens rotations: the number of such rotations is GIVPTR; the */
  533. /* > pairs of columns/rows they were applied to are stored in GIVCOL; */
  534. /* > and the C- and S-values of these rotations are stored in GIVNUM. */
  535. /* > */
  536. /* > (2L) Permutation. The (NL+1)-st row of B is to be moved to the first */
  537. /* > row, and for J=2:N, PERM(J)-th row of B is to be moved to the */
  538. /* > J-th row. */
  539. /* > */
  540. /* > (3L) The left singular vector matrix of the remaining matrix. */
  541. /* > */
  542. /* > For the right singular vector matrix, four types of orthogonal */
  543. /* > matrices are involved: */
  544. /* > */
  545. /* > (1R) The right singular vector matrix of the remaining matrix. */
  546. /* > */
  547. /* > (2R) If SQRE = 1, one extra Givens rotation to generate the right */
  548. /* > null space. */
  549. /* > */
  550. /* > (3R) The inverse transformation of (2L). */
  551. /* > */
  552. /* > (4R) The inverse transformation of (1L). */
  553. /* > \endverbatim */
  554. /* Arguments: */
  555. /* ========== */
  556. /* > \param[in] ICOMPQ */
  557. /* > \verbatim */
  558. /* > ICOMPQ is INTEGER */
  559. /* > Specifies whether singular vectors are to be computed in */
  560. /* > factored form: */
  561. /* > = 0: Left singular vector matrix. */
  562. /* > = 1: Right singular vector matrix. */
  563. /* > \endverbatim */
  564. /* > */
  565. /* > \param[in] NL */
  566. /* > \verbatim */
  567. /* > NL is INTEGER */
  568. /* > The row dimension of the upper block. NL >= 1. */
  569. /* > \endverbatim */
  570. /* > */
  571. /* > \param[in] NR */
  572. /* > \verbatim */
  573. /* > NR is INTEGER */
  574. /* > The row dimension of the lower block. NR >= 1. */
  575. /* > \endverbatim */
  576. /* > */
  577. /* > \param[in] SQRE */
  578. /* > \verbatim */
  579. /* > SQRE is INTEGER */
  580. /* > = 0: the lower block is an NR-by-NR square matrix. */
  581. /* > = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
  582. /* > */
  583. /* > The bidiagonal matrix has row dimension N = NL + NR + 1, */
  584. /* > and column dimension M = N + SQRE. */
  585. /* > \endverbatim */
  586. /* > */
  587. /* > \param[in] NRHS */
  588. /* > \verbatim */
  589. /* > NRHS is INTEGER */
  590. /* > The number of columns of B and BX. NRHS must be at least 1. */
  591. /* > \endverbatim */
  592. /* > */
  593. /* > \param[in,out] B */
  594. /* > \verbatim */
  595. /* > B is COMPLEX*16 array, dimension ( LDB, NRHS ) */
  596. /* > On input, B contains the right hand sides of the least */
  597. /* > squares problem in rows 1 through M. On output, B contains */
  598. /* > the solution X in rows 1 through N. */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[in] LDB */
  602. /* > \verbatim */
  603. /* > LDB is INTEGER */
  604. /* > The leading dimension of B. LDB must be at least */
  605. /* > f2cmax(1,MAX( M, N ) ). */
  606. /* > \endverbatim */
  607. /* > */
  608. /* > \param[out] BX */
  609. /* > \verbatim */
  610. /* > BX is COMPLEX*16 array, dimension ( LDBX, NRHS ) */
  611. /* > \endverbatim */
  612. /* > */
  613. /* > \param[in] LDBX */
  614. /* > \verbatim */
  615. /* > LDBX is INTEGER */
  616. /* > The leading dimension of BX. */
  617. /* > \endverbatim */
  618. /* > */
  619. /* > \param[in] PERM */
  620. /* > \verbatim */
  621. /* > PERM is INTEGER array, dimension ( N ) */
  622. /* > The permutations (from deflation and sorting) applied */
  623. /* > to the two blocks. */
  624. /* > \endverbatim */
  625. /* > */
  626. /* > \param[in] GIVPTR */
  627. /* > \verbatim */
  628. /* > GIVPTR is INTEGER */
  629. /* > The number of Givens rotations which took place in this */
  630. /* > subproblem. */
  631. /* > \endverbatim */
  632. /* > */
  633. /* > \param[in] GIVCOL */
  634. /* > \verbatim */
  635. /* > GIVCOL is INTEGER array, dimension ( LDGCOL, 2 ) */
  636. /* > Each pair of numbers indicates a pair of rows/columns */
  637. /* > involved in a Givens rotation. */
  638. /* > \endverbatim */
  639. /* > */
  640. /* > \param[in] LDGCOL */
  641. /* > \verbatim */
  642. /* > LDGCOL is INTEGER */
  643. /* > The leading dimension of GIVCOL, must be at least N. */
  644. /* > \endverbatim */
  645. /* > */
  646. /* > \param[in] GIVNUM */
  647. /* > \verbatim */
  648. /* > GIVNUM is DOUBLE PRECISION array, dimension ( LDGNUM, 2 ) */
  649. /* > Each number indicates the C or S value used in the */
  650. /* > corresponding Givens rotation. */
  651. /* > \endverbatim */
  652. /* > */
  653. /* > \param[in] LDGNUM */
  654. /* > \verbatim */
  655. /* > LDGNUM is INTEGER */
  656. /* > The leading dimension of arrays DIFR, POLES and */
  657. /* > GIVNUM, must be at least K. */
  658. /* > \endverbatim */
  659. /* > */
  660. /* > \param[in] POLES */
  661. /* > \verbatim */
  662. /* > POLES is DOUBLE PRECISION array, dimension ( LDGNUM, 2 ) */
  663. /* > On entry, POLES(1:K, 1) contains the new singular */
  664. /* > values obtained from solving the secular equation, and */
  665. /* > POLES(1:K, 2) is an array containing the poles in the secular */
  666. /* > equation. */
  667. /* > \endverbatim */
  668. /* > */
  669. /* > \param[in] DIFL */
  670. /* > \verbatim */
  671. /* > DIFL is DOUBLE PRECISION array, dimension ( K ). */
  672. /* > On entry, DIFL(I) is the distance between I-th updated */
  673. /* > (undeflated) singular value and the I-th (undeflated) old */
  674. /* > singular value. */
  675. /* > \endverbatim */
  676. /* > */
  677. /* > \param[in] DIFR */
  678. /* > \verbatim */
  679. /* > DIFR is DOUBLE PRECISION array, dimension ( LDGNUM, 2 ). */
  680. /* > On entry, DIFR(I, 1) contains the distances between I-th */
  681. /* > updated (undeflated) singular value and the I+1-th */
  682. /* > (undeflated) old singular value. And DIFR(I, 2) is the */
  683. /* > normalizing factor for the I-th right singular vector. */
  684. /* > \endverbatim */
  685. /* > */
  686. /* > \param[in] Z */
  687. /* > \verbatim */
  688. /* > Z is DOUBLE PRECISION array, dimension ( K ) */
  689. /* > Contain the components of the deflation-adjusted updating row */
  690. /* > vector. */
  691. /* > \endverbatim */
  692. /* > */
  693. /* > \param[in] K */
  694. /* > \verbatim */
  695. /* > K is INTEGER */
  696. /* > Contains the dimension of the non-deflated matrix, */
  697. /* > This is the order of the related secular equation. 1 <= K <=N. */
  698. /* > \endverbatim */
  699. /* > */
  700. /* > \param[in] C */
  701. /* > \verbatim */
  702. /* > C is DOUBLE PRECISION */
  703. /* > C contains garbage if SQRE =0 and the C-value of a Givens */
  704. /* > rotation related to the right null space if SQRE = 1. */
  705. /* > \endverbatim */
  706. /* > */
  707. /* > \param[in] S */
  708. /* > \verbatim */
  709. /* > S is DOUBLE PRECISION */
  710. /* > S contains garbage if SQRE =0 and the S-value of a Givens */
  711. /* > rotation related to the right null space if SQRE = 1. */
  712. /* > \endverbatim */
  713. /* > */
  714. /* > \param[out] RWORK */
  715. /* > \verbatim */
  716. /* > RWORK is DOUBLE PRECISION array, dimension */
  717. /* > ( K*(1+NRHS) + 2*NRHS ) */
  718. /* > \endverbatim */
  719. /* > */
  720. /* > \param[out] INFO */
  721. /* > \verbatim */
  722. /* > INFO is INTEGER */
  723. /* > = 0: successful exit. */
  724. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  725. /* > \endverbatim */
  726. /* Authors: */
  727. /* ======== */
  728. /* > \author Univ. of Tennessee */
  729. /* > \author Univ. of California Berkeley */
  730. /* > \author Univ. of Colorado Denver */
  731. /* > \author NAG Ltd. */
  732. /* > \date December 2016 */
  733. /* > \ingroup complex16OTHERcomputational */
  734. /* > \par Contributors: */
  735. /* ================== */
  736. /* > */
  737. /* > Ming Gu and Ren-Cang Li, Computer Science Division, University of */
  738. /* > California at Berkeley, USA \n */
  739. /* > Osni Marques, LBNL/NERSC, USA \n */
  740. /* ===================================================================== */
  741. /* Subroutine */ void zlals0_(integer *icompq, integer *nl, integer *nr,
  742. integer *sqre, integer *nrhs, doublecomplex *b, integer *ldb,
  743. doublecomplex *bx, integer *ldbx, integer *perm, integer *givptr,
  744. integer *givcol, integer *ldgcol, doublereal *givnum, integer *ldgnum,
  745. doublereal *poles, doublereal *difl, doublereal *difr, doublereal *
  746. z__, integer *k, doublereal *c__, doublereal *s, doublereal *rwork,
  747. integer *info)
  748. {
  749. /* System generated locals */
  750. integer givcol_dim1, givcol_offset, difr_dim1, difr_offset, givnum_dim1,
  751. givnum_offset, poles_dim1, poles_offset, b_dim1, b_offset,
  752. bx_dim1, bx_offset, i__1, i__2, i__3, i__4, i__5;
  753. doublereal d__1;
  754. doublecomplex z__1;
  755. /* Local variables */
  756. integer jcol;
  757. doublereal temp;
  758. integer jrow;
  759. extern doublereal dnrm2_(integer *, doublereal *, integer *);
  760. integer i__, j, m, n;
  761. doublereal diflj, difrj, dsigj;
  762. extern /* Subroutine */ void dgemv_(char *, integer *, integer *,
  763. doublereal *, doublereal *, integer *, doublereal *, integer *,
  764. doublereal *, doublereal *, integer *), zdrot_(integer *,
  765. doublecomplex *, integer *, doublecomplex *, integer *,
  766. doublereal *, doublereal *);
  767. extern doublereal dlamc3_(doublereal *, doublereal *);
  768. extern /* Subroutine */ void zcopy_(integer *, doublecomplex *, integer *,
  769. doublecomplex *, integer *);
  770. doublereal dj;
  771. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  772. doublereal dsigjp;
  773. extern /* Subroutine */ void zdscal_(integer *, doublereal *,
  774. doublecomplex *, integer *), zlascl_(char *, integer *, integer *,
  775. doublereal *, doublereal *, integer *, integer *, doublecomplex *
  776. , integer *, integer *), zlacpy_(char *, integer *,
  777. integer *, doublecomplex *, integer *, doublecomplex *, integer *);
  778. integer nlp1;
  779. /* -- LAPACK computational routine (version 3.7.0) -- */
  780. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  781. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  782. /* December 2016 */
  783. /* ===================================================================== */
  784. /* Test the input parameters. */
  785. /* Parameter adjustments */
  786. b_dim1 = *ldb;
  787. b_offset = 1 + b_dim1 * 1;
  788. b -= b_offset;
  789. bx_dim1 = *ldbx;
  790. bx_offset = 1 + bx_dim1 * 1;
  791. bx -= bx_offset;
  792. --perm;
  793. givcol_dim1 = *ldgcol;
  794. givcol_offset = 1 + givcol_dim1 * 1;
  795. givcol -= givcol_offset;
  796. difr_dim1 = *ldgnum;
  797. difr_offset = 1 + difr_dim1 * 1;
  798. difr -= difr_offset;
  799. poles_dim1 = *ldgnum;
  800. poles_offset = 1 + poles_dim1 * 1;
  801. poles -= poles_offset;
  802. givnum_dim1 = *ldgnum;
  803. givnum_offset = 1 + givnum_dim1 * 1;
  804. givnum -= givnum_offset;
  805. --difl;
  806. --z__;
  807. --rwork;
  808. /* Function Body */
  809. *info = 0;
  810. n = *nl + *nr + 1;
  811. if (*icompq < 0 || *icompq > 1) {
  812. *info = -1;
  813. } else if (*nl < 1) {
  814. *info = -2;
  815. } else if (*nr < 1) {
  816. *info = -3;
  817. } else if (*sqre < 0 || *sqre > 1) {
  818. *info = -4;
  819. } else if (*nrhs < 1) {
  820. *info = -5;
  821. } else if (*ldb < n) {
  822. *info = -7;
  823. } else if (*ldbx < n) {
  824. *info = -9;
  825. } else if (*givptr < 0) {
  826. *info = -11;
  827. } else if (*ldgcol < n) {
  828. *info = -13;
  829. } else if (*ldgnum < n) {
  830. *info = -15;
  831. //} else if (*k < 1) {
  832. } else if (*k < 0) {
  833. *info = -20;
  834. }
  835. if (*info != 0) {
  836. i__1 = -(*info);
  837. xerbla_("ZLALS0", &i__1, (ftnlen)6);
  838. return;
  839. }
  840. m = n + *sqre;
  841. nlp1 = *nl + 1;
  842. if (*icompq == 0) {
  843. /* Apply back orthogonal transformations from the left. */
  844. /* Step (1L): apply back the Givens rotations performed. */
  845. i__1 = *givptr;
  846. for (i__ = 1; i__ <= i__1; ++i__) {
  847. zdrot_(nrhs, &b[givcol[i__ + (givcol_dim1 << 1)] + b_dim1], ldb, &
  848. b[givcol[i__ + givcol_dim1] + b_dim1], ldb, &givnum[i__ +
  849. (givnum_dim1 << 1)], &givnum[i__ + givnum_dim1]);
  850. /* L10: */
  851. }
  852. /* Step (2L): permute rows of B. */
  853. zcopy_(nrhs, &b[nlp1 + b_dim1], ldb, &bx[bx_dim1 + 1], ldbx);
  854. i__1 = n;
  855. for (i__ = 2; i__ <= i__1; ++i__) {
  856. zcopy_(nrhs, &b[perm[i__] + b_dim1], ldb, &bx[i__ + bx_dim1],
  857. ldbx);
  858. /* L20: */
  859. }
  860. /* Step (3L): apply the inverse of the left singular vector */
  861. /* matrix to BX. */
  862. if (*k == 1) {
  863. zcopy_(nrhs, &bx[bx_offset], ldbx, &b[b_offset], ldb);
  864. if (z__[1] < 0.) {
  865. zdscal_(nrhs, &c_b5, &b[b_offset], ldb);
  866. }
  867. } else {
  868. i__1 = *k;
  869. for (j = 1; j <= i__1; ++j) {
  870. diflj = difl[j];
  871. dj = poles[j + poles_dim1];
  872. dsigj = -poles[j + (poles_dim1 << 1)];
  873. if (j < *k) {
  874. difrj = -difr[j + difr_dim1];
  875. dsigjp = -poles[j + 1 + (poles_dim1 << 1)];
  876. }
  877. if (z__[j] == 0. || poles[j + (poles_dim1 << 1)] == 0.) {
  878. rwork[j] = 0.;
  879. } else {
  880. rwork[j] = -poles[j + (poles_dim1 << 1)] * z__[j] / diflj
  881. / (poles[j + (poles_dim1 << 1)] + dj);
  882. }
  883. i__2 = j - 1;
  884. for (i__ = 1; i__ <= i__2; ++i__) {
  885. if (z__[i__] == 0. || poles[i__ + (poles_dim1 << 1)] ==
  886. 0.) {
  887. rwork[i__] = 0.;
  888. } else {
  889. rwork[i__] = poles[i__ + (poles_dim1 << 1)] * z__[i__]
  890. / (dlamc3_(&poles[i__ + (poles_dim1 << 1)], &
  891. dsigj) - diflj) / (poles[i__ + (poles_dim1 <<
  892. 1)] + dj);
  893. }
  894. /* L30: */
  895. }
  896. i__2 = *k;
  897. for (i__ = j + 1; i__ <= i__2; ++i__) {
  898. if (z__[i__] == 0. || poles[i__ + (poles_dim1 << 1)] ==
  899. 0.) {
  900. rwork[i__] = 0.;
  901. } else {
  902. rwork[i__] = poles[i__ + (poles_dim1 << 1)] * z__[i__]
  903. / (dlamc3_(&poles[i__ + (poles_dim1 << 1)], &
  904. dsigjp) + difrj) / (poles[i__ + (poles_dim1 <<
  905. 1)] + dj);
  906. }
  907. /* L40: */
  908. }
  909. rwork[1] = -1.;
  910. temp = dnrm2_(k, &rwork[1], &c__1);
  911. /* Since B and BX are complex, the following call to DGEMV */
  912. /* is performed in two steps (real and imaginary parts). */
  913. /* CALL DGEMV( 'T', K, NRHS, ONE, BX, LDBX, WORK, 1, ZERO, */
  914. /* $ B( J, 1 ), LDB ) */
  915. i__ = *k + (*nrhs << 1);
  916. i__2 = *nrhs;
  917. for (jcol = 1; jcol <= i__2; ++jcol) {
  918. i__3 = *k;
  919. for (jrow = 1; jrow <= i__3; ++jrow) {
  920. ++i__;
  921. i__4 = jrow + jcol * bx_dim1;
  922. rwork[i__] = bx[i__4].r;
  923. /* L50: */
  924. }
  925. /* L60: */
  926. }
  927. dgemv_("T", k, nrhs, &c_b13, &rwork[*k + 1 + (*nrhs << 1)], k,
  928. &rwork[1], &c__1, &c_b15, &rwork[*k + 1], &c__1);
  929. i__ = *k + (*nrhs << 1);
  930. i__2 = *nrhs;
  931. for (jcol = 1; jcol <= i__2; ++jcol) {
  932. i__3 = *k;
  933. for (jrow = 1; jrow <= i__3; ++jrow) {
  934. ++i__;
  935. rwork[i__] = d_imag(&bx[jrow + jcol * bx_dim1]);
  936. /* L70: */
  937. }
  938. /* L80: */
  939. }
  940. dgemv_("T", k, nrhs, &c_b13, &rwork[*k + 1 + (*nrhs << 1)], k,
  941. &rwork[1], &c__1, &c_b15, &rwork[*k + 1 + *nrhs], &
  942. c__1);
  943. i__2 = *nrhs;
  944. for (jcol = 1; jcol <= i__2; ++jcol) {
  945. i__3 = j + jcol * b_dim1;
  946. i__4 = jcol + *k;
  947. i__5 = jcol + *k + *nrhs;
  948. z__1.r = rwork[i__4], z__1.i = rwork[i__5];
  949. b[i__3].r = z__1.r, b[i__3].i = z__1.i;
  950. /* L90: */
  951. }
  952. zlascl_("G", &c__0, &c__0, &temp, &c_b13, &c__1, nrhs, &b[j +
  953. b_dim1], ldb, info);
  954. /* L100: */
  955. }
  956. }
  957. /* Move the deflated rows of BX to B also. */
  958. if (*k < f2cmax(m,n)) {
  959. i__1 = n - *k;
  960. zlacpy_("A", &i__1, nrhs, &bx[*k + 1 + bx_dim1], ldbx, &b[*k + 1
  961. + b_dim1], ldb);
  962. }
  963. } else {
  964. /* Apply back the right orthogonal transformations. */
  965. /* Step (1R): apply back the new right singular vector matrix */
  966. /* to B. */
  967. if (*k == 1) {
  968. zcopy_(nrhs, &b[b_offset], ldb, &bx[bx_offset], ldbx);
  969. } else {
  970. i__1 = *k;
  971. for (j = 1; j <= i__1; ++j) {
  972. dsigj = poles[j + (poles_dim1 << 1)];
  973. if (z__[j] == 0.) {
  974. rwork[j] = 0.;
  975. } else {
  976. rwork[j] = -z__[j] / difl[j] / (dsigj + poles[j +
  977. poles_dim1]) / difr[j + (difr_dim1 << 1)];
  978. }
  979. i__2 = j - 1;
  980. for (i__ = 1; i__ <= i__2; ++i__) {
  981. if (z__[j] == 0.) {
  982. rwork[i__] = 0.;
  983. } else {
  984. d__1 = -poles[i__ + 1 + (poles_dim1 << 1)];
  985. rwork[i__] = z__[j] / (dlamc3_(&dsigj, &d__1) - difr[
  986. i__ + difr_dim1]) / (dsigj + poles[i__ +
  987. poles_dim1]) / difr[i__ + (difr_dim1 << 1)];
  988. }
  989. /* L110: */
  990. }
  991. i__2 = *k;
  992. for (i__ = j + 1; i__ <= i__2; ++i__) {
  993. if (z__[j] == 0.) {
  994. rwork[i__] = 0.;
  995. } else {
  996. d__1 = -poles[i__ + (poles_dim1 << 1)];
  997. rwork[i__] = z__[j] / (dlamc3_(&dsigj, &d__1) - difl[
  998. i__]) / (dsigj + poles[i__ + poles_dim1]) /
  999. difr[i__ + (difr_dim1 << 1)];
  1000. }
  1001. /* L120: */
  1002. }
  1003. /* Since B and BX are complex, the following call to DGEMV */
  1004. /* is performed in two steps (real and imaginary parts). */
  1005. /* CALL DGEMV( 'T', K, NRHS, ONE, B, LDB, WORK, 1, ZERO, */
  1006. /* $ BX( J, 1 ), LDBX ) */
  1007. i__ = *k + (*nrhs << 1);
  1008. i__2 = *nrhs;
  1009. for (jcol = 1; jcol <= i__2; ++jcol) {
  1010. i__3 = *k;
  1011. for (jrow = 1; jrow <= i__3; ++jrow) {
  1012. ++i__;
  1013. i__4 = jrow + jcol * b_dim1;
  1014. rwork[i__] = b[i__4].r;
  1015. /* L130: */
  1016. }
  1017. /* L140: */
  1018. }
  1019. dgemv_("T", k, nrhs, &c_b13, &rwork[*k + 1 + (*nrhs << 1)], k,
  1020. &rwork[1], &c__1, &c_b15, &rwork[*k + 1], &c__1);
  1021. i__ = *k + (*nrhs << 1);
  1022. i__2 = *nrhs;
  1023. for (jcol = 1; jcol <= i__2; ++jcol) {
  1024. i__3 = *k;
  1025. for (jrow = 1; jrow <= i__3; ++jrow) {
  1026. ++i__;
  1027. rwork[i__] = d_imag(&b[jrow + jcol * b_dim1]);
  1028. /* L150: */
  1029. }
  1030. /* L160: */
  1031. }
  1032. dgemv_("T", k, nrhs, &c_b13, &rwork[*k + 1 + (*nrhs << 1)], k,
  1033. &rwork[1], &c__1, &c_b15, &rwork[*k + 1 + *nrhs], &
  1034. c__1);
  1035. i__2 = *nrhs;
  1036. for (jcol = 1; jcol <= i__2; ++jcol) {
  1037. i__3 = j + jcol * bx_dim1;
  1038. i__4 = jcol + *k;
  1039. i__5 = jcol + *k + *nrhs;
  1040. z__1.r = rwork[i__4], z__1.i = rwork[i__5];
  1041. bx[i__3].r = z__1.r, bx[i__3].i = z__1.i;
  1042. /* L170: */
  1043. }
  1044. /* L180: */
  1045. }
  1046. }
  1047. /* Step (2R): if SQRE = 1, apply back the rotation that is */
  1048. /* related to the right null space of the subproblem. */
  1049. if (*sqre == 1) {
  1050. zcopy_(nrhs, &b[m + b_dim1], ldb, &bx[m + bx_dim1], ldbx);
  1051. zdrot_(nrhs, &bx[bx_dim1 + 1], ldbx, &bx[m + bx_dim1], ldbx, c__,
  1052. s);
  1053. }
  1054. if (*k < f2cmax(m,n)) {
  1055. i__1 = n - *k;
  1056. zlacpy_("A", &i__1, nrhs, &b[*k + 1 + b_dim1], ldb, &bx[*k + 1 +
  1057. bx_dim1], ldbx);
  1058. }
  1059. /* Step (3R): permute rows of B. */
  1060. zcopy_(nrhs, &bx[bx_dim1 + 1], ldbx, &b[nlp1 + b_dim1], ldb);
  1061. if (*sqre == 1) {
  1062. zcopy_(nrhs, &bx[m + bx_dim1], ldbx, &b[m + b_dim1], ldb);
  1063. }
  1064. i__1 = n;
  1065. for (i__ = 2; i__ <= i__1; ++i__) {
  1066. zcopy_(nrhs, &bx[i__ + bx_dim1], ldbx, &b[perm[i__] + b_dim1],
  1067. ldb);
  1068. /* L190: */
  1069. }
  1070. /* Step (4R): apply back the Givens rotations performed. */
  1071. for (i__ = *givptr; i__ >= 1; --i__) {
  1072. d__1 = -givnum[i__ + givnum_dim1];
  1073. zdrot_(nrhs, &b[givcol[i__ + (givcol_dim1 << 1)] + b_dim1], ldb, &
  1074. b[givcol[i__ + givcol_dim1] + b_dim1], ldb, &givnum[i__ +
  1075. (givnum_dim1 << 1)], &d__1);
  1076. /* L200: */
  1077. }
  1078. }
  1079. return;
  1080. /* End of ZLALS0 */
  1081. } /* zlals0_ */