You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zgeevx.c 41 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. static integer c__0 = 0;
  486. static integer c_n1 = -1;
  487. /* > \brief <b> ZGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE mat
  488. rices</b> */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download ZGEEVX + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgeevx.
  495. f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgeevx.
  498. f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgeevx.
  501. f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE ZGEEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, W, VL, */
  507. /* LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM, RCONDE, */
  508. /* RCONDV, WORK, LWORK, RWORK, INFO ) */
  509. /* CHARACTER BALANC, JOBVL, JOBVR, SENSE */
  510. /* INTEGER IHI, ILO, INFO, LDA, LDVL, LDVR, LWORK, N */
  511. /* DOUBLE PRECISION ABNRM */
  512. /* DOUBLE PRECISION RCONDE( * ), RCONDV( * ), RWORK( * ), */
  513. /* $ SCALE( * ) */
  514. /* COMPLEX*16 A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ), */
  515. /* $ W( * ), WORK( * ) */
  516. /* > \par Purpose: */
  517. /* ============= */
  518. /* > */
  519. /* > \verbatim */
  520. /* > */
  521. /* > ZGEEVX computes for an N-by-N complex nonsymmetric matrix A, the */
  522. /* > eigenvalues and, optionally, the left and/or right eigenvectors. */
  523. /* > */
  524. /* > Optionally also, it computes a balancing transformation to improve */
  525. /* > the conditioning of the eigenvalues and eigenvectors (ILO, IHI, */
  526. /* > SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues */
  527. /* > (RCONDE), and reciprocal condition numbers for the right */
  528. /* > eigenvectors (RCONDV). */
  529. /* > */
  530. /* > The right eigenvector v(j) of A satisfies */
  531. /* > A * v(j) = lambda(j) * v(j) */
  532. /* > where lambda(j) is its eigenvalue. */
  533. /* > The left eigenvector u(j) of A satisfies */
  534. /* > u(j)**H * A = lambda(j) * u(j)**H */
  535. /* > where u(j)**H denotes the conjugate transpose of u(j). */
  536. /* > */
  537. /* > The computed eigenvectors are normalized to have Euclidean norm */
  538. /* > equal to 1 and largest component real. */
  539. /* > */
  540. /* > Balancing a matrix means permuting the rows and columns to make it */
  541. /* > more nearly upper triangular, and applying a diagonal similarity */
  542. /* > transformation D * A * D**(-1), where D is a diagonal matrix, to */
  543. /* > make its rows and columns closer in norm and the condition numbers */
  544. /* > of its eigenvalues and eigenvectors smaller. The computed */
  545. /* > reciprocal condition numbers correspond to the balanced matrix. */
  546. /* > Permuting rows and columns will not change the condition numbers */
  547. /* > (in exact arithmetic) but diagonal scaling will. For further */
  548. /* > explanation of balancing, see section 4.10.2 of the LAPACK */
  549. /* > Users' Guide. */
  550. /* > \endverbatim */
  551. /* Arguments: */
  552. /* ========== */
  553. /* > \param[in] BALANC */
  554. /* > \verbatim */
  555. /* > BALANC is CHARACTER*1 */
  556. /* > Indicates how the input matrix should be diagonally scaled */
  557. /* > and/or permuted to improve the conditioning of its */
  558. /* > eigenvalues. */
  559. /* > = 'N': Do not diagonally scale or permute; */
  560. /* > = 'P': Perform permutations to make the matrix more nearly */
  561. /* > upper triangular. Do not diagonally scale; */
  562. /* > = 'S': Diagonally scale the matrix, ie. replace A by */
  563. /* > D*A*D**(-1), where D is a diagonal matrix chosen */
  564. /* > to make the rows and columns of A more equal in */
  565. /* > norm. Do not permute; */
  566. /* > = 'B': Both diagonally scale and permute A. */
  567. /* > */
  568. /* > Computed reciprocal condition numbers will be for the matrix */
  569. /* > after balancing and/or permuting. Permuting does not change */
  570. /* > condition numbers (in exact arithmetic), but balancing does. */
  571. /* > \endverbatim */
  572. /* > */
  573. /* > \param[in] JOBVL */
  574. /* > \verbatim */
  575. /* > JOBVL is CHARACTER*1 */
  576. /* > = 'N': left eigenvectors of A are not computed; */
  577. /* > = 'V': left eigenvectors of A are computed. */
  578. /* > If SENSE = 'E' or 'B', JOBVL must = 'V'. */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[in] JOBVR */
  582. /* > \verbatim */
  583. /* > JOBVR is CHARACTER*1 */
  584. /* > = 'N': right eigenvectors of A are not computed; */
  585. /* > = 'V': right eigenvectors of A are computed. */
  586. /* > If SENSE = 'E' or 'B', JOBVR must = 'V'. */
  587. /* > \endverbatim */
  588. /* > */
  589. /* > \param[in] SENSE */
  590. /* > \verbatim */
  591. /* > SENSE is CHARACTER*1 */
  592. /* > Determines which reciprocal condition numbers are computed. */
  593. /* > = 'N': None are computed; */
  594. /* > = 'E': Computed for eigenvalues only; */
  595. /* > = 'V': Computed for right eigenvectors only; */
  596. /* > = 'B': Computed for eigenvalues and right eigenvectors. */
  597. /* > */
  598. /* > If SENSE = 'E' or 'B', both left and right eigenvectors */
  599. /* > must also be computed (JOBVL = 'V' and JOBVR = 'V'). */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[in] N */
  603. /* > \verbatim */
  604. /* > N is INTEGER */
  605. /* > The order of the matrix A. N >= 0. */
  606. /* > \endverbatim */
  607. /* > */
  608. /* > \param[in,out] A */
  609. /* > \verbatim */
  610. /* > A is COMPLEX*16 array, dimension (LDA,N) */
  611. /* > On entry, the N-by-N matrix A. */
  612. /* > On exit, A has been overwritten. If JOBVL = 'V' or */
  613. /* > JOBVR = 'V', A contains the Schur form of the balanced */
  614. /* > version of the matrix A. */
  615. /* > \endverbatim */
  616. /* > */
  617. /* > \param[in] LDA */
  618. /* > \verbatim */
  619. /* > LDA is INTEGER */
  620. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  621. /* > \endverbatim */
  622. /* > */
  623. /* > \param[out] W */
  624. /* > \verbatim */
  625. /* > W is COMPLEX*16 array, dimension (N) */
  626. /* > W contains the computed eigenvalues. */
  627. /* > \endverbatim */
  628. /* > */
  629. /* > \param[out] VL */
  630. /* > \verbatim */
  631. /* > VL is COMPLEX*16 array, dimension (LDVL,N) */
  632. /* > If JOBVL = 'V', the left eigenvectors u(j) are stored one */
  633. /* > after another in the columns of VL, in the same order */
  634. /* > as their eigenvalues. */
  635. /* > If JOBVL = 'N', VL is not referenced. */
  636. /* > u(j) = VL(:,j), the j-th column of VL. */
  637. /* > \endverbatim */
  638. /* > */
  639. /* > \param[in] LDVL */
  640. /* > \verbatim */
  641. /* > LDVL is INTEGER */
  642. /* > The leading dimension of the array VL. LDVL >= 1; if */
  643. /* > JOBVL = 'V', LDVL >= N. */
  644. /* > \endverbatim */
  645. /* > */
  646. /* > \param[out] VR */
  647. /* > \verbatim */
  648. /* > VR is COMPLEX*16 array, dimension (LDVR,N) */
  649. /* > If JOBVR = 'V', the right eigenvectors v(j) are stored one */
  650. /* > after another in the columns of VR, in the same order */
  651. /* > as their eigenvalues. */
  652. /* > If JOBVR = 'N', VR is not referenced. */
  653. /* > v(j) = VR(:,j), the j-th column of VR. */
  654. /* > \endverbatim */
  655. /* > */
  656. /* > \param[in] LDVR */
  657. /* > \verbatim */
  658. /* > LDVR is INTEGER */
  659. /* > The leading dimension of the array VR. LDVR >= 1; if */
  660. /* > JOBVR = 'V', LDVR >= N. */
  661. /* > \endverbatim */
  662. /* > */
  663. /* > \param[out] ILO */
  664. /* > \verbatim */
  665. /* > ILO is INTEGER */
  666. /* > \endverbatim */
  667. /* > */
  668. /* > \param[out] IHI */
  669. /* > \verbatim */
  670. /* > IHI is INTEGER */
  671. /* > ILO and IHI are integer values determined when A was */
  672. /* > balanced. The balanced A(i,j) = 0 if I > J and */
  673. /* > J = 1,...,ILO-1 or I = IHI+1,...,N. */
  674. /* > \endverbatim */
  675. /* > */
  676. /* > \param[out] SCALE */
  677. /* > \verbatim */
  678. /* > SCALE is DOUBLE PRECISION array, dimension (N) */
  679. /* > Details of the permutations and scaling factors applied */
  680. /* > when balancing A. If P(j) is the index of the row and column */
  681. /* > interchanged with row and column j, and D(j) is the scaling */
  682. /* > factor applied to row and column j, then */
  683. /* > SCALE(J) = P(J), for J = 1,...,ILO-1 */
  684. /* > = D(J), for J = ILO,...,IHI */
  685. /* > = P(J) for J = IHI+1,...,N. */
  686. /* > The order in which the interchanges are made is N to IHI+1, */
  687. /* > then 1 to ILO-1. */
  688. /* > \endverbatim */
  689. /* > */
  690. /* > \param[out] ABNRM */
  691. /* > \verbatim */
  692. /* > ABNRM is DOUBLE PRECISION */
  693. /* > The one-norm of the balanced matrix (the maximum */
  694. /* > of the sum of absolute values of elements of any column). */
  695. /* > \endverbatim */
  696. /* > */
  697. /* > \param[out] RCONDE */
  698. /* > \verbatim */
  699. /* > RCONDE is DOUBLE PRECISION array, dimension (N) */
  700. /* > RCONDE(j) is the reciprocal condition number of the j-th */
  701. /* > eigenvalue. */
  702. /* > \endverbatim */
  703. /* > */
  704. /* > \param[out] RCONDV */
  705. /* > \verbatim */
  706. /* > RCONDV is DOUBLE PRECISION array, dimension (N) */
  707. /* > RCONDV(j) is the reciprocal condition number of the j-th */
  708. /* > right eigenvector. */
  709. /* > \endverbatim */
  710. /* > */
  711. /* > \param[out] WORK */
  712. /* > \verbatim */
  713. /* > WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) */
  714. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  715. /* > \endverbatim */
  716. /* > */
  717. /* > \param[in] LWORK */
  718. /* > \verbatim */
  719. /* > LWORK is INTEGER */
  720. /* > The dimension of the array WORK. If SENSE = 'N' or 'E', */
  721. /* > LWORK >= f2cmax(1,2*N), and if SENSE = 'V' or 'B', */
  722. /* > LWORK >= N*N+2*N. */
  723. /* > For good performance, LWORK must generally be larger. */
  724. /* > */
  725. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  726. /* > only calculates the optimal size of the WORK array, returns */
  727. /* > this value as the first entry of the WORK array, and no error */
  728. /* > message related to LWORK is issued by XERBLA. */
  729. /* > \endverbatim */
  730. /* > */
  731. /* > \param[out] RWORK */
  732. /* > \verbatim */
  733. /* > RWORK is DOUBLE PRECISION array, dimension (2*N) */
  734. /* > \endverbatim */
  735. /* > */
  736. /* > \param[out] INFO */
  737. /* > \verbatim */
  738. /* > INFO is INTEGER */
  739. /* > = 0: successful exit */
  740. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  741. /* > > 0: if INFO = i, the QR algorithm failed to compute all the */
  742. /* > eigenvalues, and no eigenvectors or condition numbers */
  743. /* > have been computed; elements 1:ILO-1 and i+1:N of W */
  744. /* > contain eigenvalues which have converged. */
  745. /* > \endverbatim */
  746. /* Authors: */
  747. /* ======== */
  748. /* > \author Univ. of Tennessee */
  749. /* > \author Univ. of California Berkeley */
  750. /* > \author Univ. of Colorado Denver */
  751. /* > \author NAG Ltd. */
  752. /* > \date June 2016 */
  753. /* @precisions fortran z -> c */
  754. /* > \ingroup complex16GEeigen */
  755. /* ===================================================================== */
  756. /* Subroutine */ void zgeevx_(char *balanc, char *jobvl, char *jobvr, char *
  757. sense, integer *n, doublecomplex *a, integer *lda, doublecomplex *w,
  758. doublecomplex *vl, integer *ldvl, doublecomplex *vr, integer *ldvr,
  759. integer *ilo, integer *ihi, doublereal *scale, doublereal *abnrm,
  760. doublereal *rconde, doublereal *rcondv, doublecomplex *work, integer *
  761. lwork, doublereal *rwork, integer *info)
  762. {
  763. /* System generated locals */
  764. integer a_dim1, a_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1,
  765. i__2, i__3;
  766. doublereal d__1, d__2;
  767. doublecomplex z__1, z__2;
  768. /* Local variables */
  769. char side[1];
  770. doublereal anrm;
  771. integer ierr, itau, iwrk, nout, i__, k, icond;
  772. extern logical lsame_(char *, char *);
  773. extern /* Subroutine */ void zscal_(integer *, doublecomplex *,
  774. doublecomplex *, integer *), dlabad_(doublereal *, doublereal *);
  775. extern doublereal dznrm2_(integer *, doublecomplex *, integer *);
  776. logical scalea;
  777. extern doublereal dlamch_(char *);
  778. doublereal cscale;
  779. extern /* Subroutine */ void dlascl_(char *, integer *, integer *,
  780. doublereal *, doublereal *, integer *, integer *, doublereal *,
  781. integer *, integer *), zgebak_(char *, char *, integer *,
  782. integer *, integer *, doublereal *, integer *, doublecomplex *,
  783. integer *, integer *), zgebal_(char *, integer *,
  784. doublecomplex *, integer *, integer *, integer *, doublereal *,
  785. integer *);
  786. extern integer idamax_(integer *, doublereal *, integer *);
  787. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  788. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  789. integer *, integer *, ftnlen, ftnlen);
  790. logical select[1];
  791. extern /* Subroutine */ void zdscal_(integer *, doublereal *,
  792. doublecomplex *, integer *);
  793. doublereal bignum;
  794. extern doublereal zlange_(char *, integer *, integer *, doublecomplex *,
  795. integer *, doublereal *);
  796. extern /* Subroutine */ void zgehrd_(integer *, integer *, integer *,
  797. doublecomplex *, integer *, doublecomplex *, doublecomplex *,
  798. integer *, integer *), zlascl_(char *, integer *, integer *,
  799. doublereal *, doublereal *, integer *, integer *, doublecomplex *,
  800. integer *, integer *), zlacpy_(char *, integer *,
  801. integer *, doublecomplex *, integer *, doublecomplex *, integer *);
  802. integer minwrk, maxwrk;
  803. logical wantvl, wntsnb;
  804. integer hswork;
  805. logical wntsne;
  806. doublereal smlnum;
  807. extern /* Subroutine */ void zhseqr_(char *, char *, integer *, integer *,
  808. integer *, doublecomplex *, integer *, doublecomplex *,
  809. doublecomplex *, integer *, doublecomplex *, integer *, integer *);
  810. logical lquery, wantvr;
  811. extern /* Subroutine */ void ztrsna_(char *, char *, logical *, integer *,
  812. doublecomplex *, integer *, doublecomplex *, integer *,
  813. doublecomplex *, integer *, doublereal *, doublereal *, integer *,
  814. integer *, doublecomplex *, integer *, doublereal *, integer *), zunghr_(integer *, integer *, integer *,
  815. doublecomplex *, integer *, doublecomplex *, doublecomplex *,
  816. integer *, integer *);
  817. logical wntsnn, wntsnv;
  818. char job[1];
  819. extern /* Subroutine */ void ztrevc3_(char *, char *, logical *, integer *,
  820. doublecomplex *, integer *, doublecomplex *, integer *,
  821. doublecomplex *, integer *, integer *, integer *, doublecomplex *,
  822. integer *, doublereal *, integer *, integer *);
  823. doublereal scl, dum[1], eps;
  824. doublecomplex tmp;
  825. integer lwork_trevc__;
  826. /* -- LAPACK driver routine (version 3.7.0) -- */
  827. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  828. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  829. /* June 2016 */
  830. /* ===================================================================== */
  831. /* Test the input arguments */
  832. /* Parameter adjustments */
  833. a_dim1 = *lda;
  834. a_offset = 1 + a_dim1 * 1;
  835. a -= a_offset;
  836. --w;
  837. vl_dim1 = *ldvl;
  838. vl_offset = 1 + vl_dim1 * 1;
  839. vl -= vl_offset;
  840. vr_dim1 = *ldvr;
  841. vr_offset = 1 + vr_dim1 * 1;
  842. vr -= vr_offset;
  843. --scale;
  844. --rconde;
  845. --rcondv;
  846. --work;
  847. --rwork;
  848. /* Function Body */
  849. *info = 0;
  850. lquery = *lwork == -1;
  851. wantvl = lsame_(jobvl, "V");
  852. wantvr = lsame_(jobvr, "V");
  853. wntsnn = lsame_(sense, "N");
  854. wntsne = lsame_(sense, "E");
  855. wntsnv = lsame_(sense, "V");
  856. wntsnb = lsame_(sense, "B");
  857. if (! (lsame_(balanc, "N") || lsame_(balanc, "S") || lsame_(balanc, "P")
  858. || lsame_(balanc, "B"))) {
  859. *info = -1;
  860. } else if (! wantvl && ! lsame_(jobvl, "N")) {
  861. *info = -2;
  862. } else if (! wantvr && ! lsame_(jobvr, "N")) {
  863. *info = -3;
  864. } else if (! (wntsnn || wntsne || wntsnb || wntsnv) || (wntsne || wntsnb)
  865. && ! (wantvl && wantvr)) {
  866. *info = -4;
  867. } else if (*n < 0) {
  868. *info = -5;
  869. } else if (*lda < f2cmax(1,*n)) {
  870. *info = -7;
  871. } else if (*ldvl < 1 || wantvl && *ldvl < *n) {
  872. *info = -10;
  873. } else if (*ldvr < 1 || wantvr && *ldvr < *n) {
  874. *info = -12;
  875. }
  876. /* Compute workspace */
  877. /* (Note: Comments in the code beginning "Workspace:" describe the */
  878. /* minimal amount of workspace needed at that point in the code, */
  879. /* as well as the preferred amount for good performance. */
  880. /* CWorkspace refers to complex workspace, and RWorkspace to real */
  881. /* workspace. NB refers to the optimal block size for the */
  882. /* immediately following subroutine, as returned by ILAENV. */
  883. /* HSWORK refers to the workspace preferred by ZHSEQR, as */
  884. /* calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */
  885. /* the worst case.) */
  886. if (*info == 0) {
  887. if (*n == 0) {
  888. minwrk = 1;
  889. maxwrk = 1;
  890. } else {
  891. maxwrk = *n + *n * ilaenv_(&c__1, "ZGEHRD", " ", n, &c__1, n, &
  892. c__0, (ftnlen)6, (ftnlen)1);
  893. if (wantvl) {
  894. ztrevc3_("L", "B", select, n, &a[a_offset], lda, &vl[
  895. vl_offset], ldvl, &vr[vr_offset], ldvr, n, &nout, &
  896. work[1], &c_n1, &rwork[1], &c_n1, &ierr);
  897. lwork_trevc__ = (integer) work[1].r;
  898. maxwrk = f2cmax(maxwrk,lwork_trevc__);
  899. zhseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &w[1], &vl[
  900. vl_offset], ldvl, &work[1], &c_n1, info);
  901. } else if (wantvr) {
  902. ztrevc3_("R", "B", select, n, &a[a_offset], lda, &vl[
  903. vl_offset], ldvl, &vr[vr_offset], ldvr, n, &nout, &
  904. work[1], &c_n1, &rwork[1], &c_n1, &ierr);
  905. lwork_trevc__ = (integer) work[1].r;
  906. maxwrk = f2cmax(maxwrk,lwork_trevc__);
  907. zhseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &w[1], &vr[
  908. vr_offset], ldvr, &work[1], &c_n1, info);
  909. } else {
  910. if (wntsnn) {
  911. zhseqr_("E", "N", n, &c__1, n, &a[a_offset], lda, &w[1], &
  912. vr[vr_offset], ldvr, &work[1], &c_n1, info);
  913. } else {
  914. zhseqr_("S", "N", n, &c__1, n, &a[a_offset], lda, &w[1], &
  915. vr[vr_offset], ldvr, &work[1], &c_n1, info);
  916. }
  917. }
  918. hswork = (integer) work[1].r;
  919. if (! wantvl && ! wantvr) {
  920. minwrk = *n << 1;
  921. if (! (wntsnn || wntsne)) {
  922. /* Computing MAX */
  923. i__1 = minwrk, i__2 = *n * *n + (*n << 1);
  924. minwrk = f2cmax(i__1,i__2);
  925. }
  926. maxwrk = f2cmax(maxwrk,hswork);
  927. if (! (wntsnn || wntsne)) {
  928. /* Computing MAX */
  929. i__1 = maxwrk, i__2 = *n * *n + (*n << 1);
  930. maxwrk = f2cmax(i__1,i__2);
  931. }
  932. } else {
  933. minwrk = *n << 1;
  934. if (! (wntsnn || wntsne)) {
  935. /* Computing MAX */
  936. i__1 = minwrk, i__2 = *n * *n + (*n << 1);
  937. minwrk = f2cmax(i__1,i__2);
  938. }
  939. maxwrk = f2cmax(maxwrk,hswork);
  940. /* Computing MAX */
  941. i__1 = maxwrk, i__2 = *n + (*n - 1) * ilaenv_(&c__1, "ZUNGHR",
  942. " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)1);
  943. maxwrk = f2cmax(i__1,i__2);
  944. if (! (wntsnn || wntsne)) {
  945. /* Computing MAX */
  946. i__1 = maxwrk, i__2 = *n * *n + (*n << 1);
  947. maxwrk = f2cmax(i__1,i__2);
  948. }
  949. /* Computing MAX */
  950. i__1 = maxwrk, i__2 = *n << 1;
  951. maxwrk = f2cmax(i__1,i__2);
  952. }
  953. maxwrk = f2cmax(maxwrk,minwrk);
  954. }
  955. work[1].r = (doublereal) maxwrk, work[1].i = 0.;
  956. if (*lwork < minwrk && ! lquery) {
  957. *info = -20;
  958. }
  959. }
  960. if (*info != 0) {
  961. i__1 = -(*info);
  962. xerbla_("ZGEEVX", &i__1, (ftnlen)6);
  963. return;
  964. } else if (lquery) {
  965. return;
  966. }
  967. /* Quick return if possible */
  968. if (*n == 0) {
  969. return;
  970. }
  971. /* Get machine constants */
  972. eps = dlamch_("P");
  973. smlnum = dlamch_("S");
  974. bignum = 1. / smlnum;
  975. dlabad_(&smlnum, &bignum);
  976. smlnum = sqrt(smlnum) / eps;
  977. bignum = 1. / smlnum;
  978. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  979. icond = 0;
  980. anrm = zlange_("M", n, n, &a[a_offset], lda, dum);
  981. scalea = FALSE_;
  982. if (anrm > 0. && anrm < smlnum) {
  983. scalea = TRUE_;
  984. cscale = smlnum;
  985. } else if (anrm > bignum) {
  986. scalea = TRUE_;
  987. cscale = bignum;
  988. }
  989. if (scalea) {
  990. zlascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
  991. ierr);
  992. }
  993. /* Balance the matrix and compute ABNRM */
  994. zgebal_(balanc, n, &a[a_offset], lda, ilo, ihi, &scale[1], &ierr);
  995. *abnrm = zlange_("1", n, n, &a[a_offset], lda, dum);
  996. if (scalea) {
  997. dum[0] = *abnrm;
  998. dlascl_("G", &c__0, &c__0, &cscale, &anrm, &c__1, &c__1, dum, &c__1, &
  999. ierr);
  1000. *abnrm = dum[0];
  1001. }
  1002. /* Reduce to upper Hessenberg form */
  1003. /* (CWorkspace: need 2*N, prefer N+N*NB) */
  1004. /* (RWorkspace: none) */
  1005. itau = 1;
  1006. iwrk = itau + *n;
  1007. i__1 = *lwork - iwrk + 1;
  1008. zgehrd_(n, ilo, ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1, &
  1009. ierr);
  1010. if (wantvl) {
  1011. /* Want left eigenvectors */
  1012. /* Copy Householder vectors to VL */
  1013. *(unsigned char *)side = 'L';
  1014. zlacpy_("L", n, n, &a[a_offset], lda, &vl[vl_offset], ldvl)
  1015. ;
  1016. /* Generate unitary matrix in VL */
  1017. /* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) */
  1018. /* (RWorkspace: none) */
  1019. i__1 = *lwork - iwrk + 1;
  1020. zunghr_(n, ilo, ihi, &vl[vl_offset], ldvl, &work[itau], &work[iwrk], &
  1021. i__1, &ierr);
  1022. /* Perform QR iteration, accumulating Schur vectors in VL */
  1023. /* (CWorkspace: need 1, prefer HSWORK (see comments) ) */
  1024. /* (RWorkspace: none) */
  1025. iwrk = itau;
  1026. i__1 = *lwork - iwrk + 1;
  1027. zhseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &w[1], &vl[
  1028. vl_offset], ldvl, &work[iwrk], &i__1, info);
  1029. if (wantvr) {
  1030. /* Want left and right eigenvectors */
  1031. /* Copy Schur vectors to VR */
  1032. *(unsigned char *)side = 'B';
  1033. zlacpy_("F", n, n, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr);
  1034. }
  1035. } else if (wantvr) {
  1036. /* Want right eigenvectors */
  1037. /* Copy Householder vectors to VR */
  1038. *(unsigned char *)side = 'R';
  1039. zlacpy_("L", n, n, &a[a_offset], lda, &vr[vr_offset], ldvr)
  1040. ;
  1041. /* Generate unitary matrix in VR */
  1042. /* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) */
  1043. /* (RWorkspace: none) */
  1044. i__1 = *lwork - iwrk + 1;
  1045. zunghr_(n, ilo, ihi, &vr[vr_offset], ldvr, &work[itau], &work[iwrk], &
  1046. i__1, &ierr);
  1047. /* Perform QR iteration, accumulating Schur vectors in VR */
  1048. /* (CWorkspace: need 1, prefer HSWORK (see comments) ) */
  1049. /* (RWorkspace: none) */
  1050. iwrk = itau;
  1051. i__1 = *lwork - iwrk + 1;
  1052. zhseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &w[1], &vr[
  1053. vr_offset], ldvr, &work[iwrk], &i__1, info);
  1054. } else {
  1055. /* Compute eigenvalues only */
  1056. /* If condition numbers desired, compute Schur form */
  1057. if (wntsnn) {
  1058. *(unsigned char *)job = 'E';
  1059. } else {
  1060. *(unsigned char *)job = 'S';
  1061. }
  1062. /* (CWorkspace: need 1, prefer HSWORK (see comments) ) */
  1063. /* (RWorkspace: none) */
  1064. iwrk = itau;
  1065. i__1 = *lwork - iwrk + 1;
  1066. zhseqr_(job, "N", n, ilo, ihi, &a[a_offset], lda, &w[1], &vr[
  1067. vr_offset], ldvr, &work[iwrk], &i__1, info);
  1068. }
  1069. /* If INFO .NE. 0 from ZHSEQR, then quit */
  1070. if (*info != 0) {
  1071. goto L50;
  1072. }
  1073. if (wantvl || wantvr) {
  1074. /* Compute left and/or right eigenvectors */
  1075. /* (CWorkspace: need 2*N, prefer N + 2*N*NB) */
  1076. /* (RWorkspace: need N) */
  1077. i__1 = *lwork - iwrk + 1;
  1078. ztrevc3_(side, "B", select, n, &a[a_offset], lda, &vl[vl_offset],
  1079. ldvl, &vr[vr_offset], ldvr, n, &nout, &work[iwrk], &i__1, &
  1080. rwork[1], n, &ierr);
  1081. }
  1082. /* Compute condition numbers if desired */
  1083. /* (CWorkspace: need N*N+2*N unless SENSE = 'E') */
  1084. /* (RWorkspace: need 2*N unless SENSE = 'E') */
  1085. if (! wntsnn) {
  1086. ztrsna_(sense, "A", select, n, &a[a_offset], lda, &vl[vl_offset],
  1087. ldvl, &vr[vr_offset], ldvr, &rconde[1], &rcondv[1], n, &nout,
  1088. &work[iwrk], n, &rwork[1], &icond);
  1089. }
  1090. if (wantvl) {
  1091. /* Undo balancing of left eigenvectors */
  1092. zgebak_(balanc, "L", n, ilo, ihi, &scale[1], n, &vl[vl_offset], ldvl,
  1093. &ierr);
  1094. /* Normalize left eigenvectors and make largest component real */
  1095. i__1 = *n;
  1096. for (i__ = 1; i__ <= i__1; ++i__) {
  1097. scl = 1. / dznrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
  1098. zdscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
  1099. i__2 = *n;
  1100. for (k = 1; k <= i__2; ++k) {
  1101. i__3 = k + i__ * vl_dim1;
  1102. /* Computing 2nd power */
  1103. d__1 = vl[i__3].r;
  1104. /* Computing 2nd power */
  1105. d__2 = d_imag(&vl[k + i__ * vl_dim1]);
  1106. rwork[k] = d__1 * d__1 + d__2 * d__2;
  1107. /* $ AIMAG( VL( K, I ) )**2 */
  1108. /* L10: */
  1109. }
  1110. k = idamax_(n, &rwork[1], &c__1);
  1111. d_cnjg(&z__2, &vl[k + i__ * vl_dim1]);
  1112. d__1 = sqrt(rwork[k]);
  1113. z__1.r = z__2.r / d__1, z__1.i = z__2.i / d__1;
  1114. tmp.r = z__1.r, tmp.i = z__1.i;
  1115. zscal_(n, &tmp, &vl[i__ * vl_dim1 + 1], &c__1);
  1116. i__2 = k + i__ * vl_dim1;
  1117. i__3 = k + i__ * vl_dim1;
  1118. d__1 = vl[i__3].r;
  1119. z__1.r = d__1, z__1.i = 0.;
  1120. vl[i__2].r = z__1.r, vl[i__2].i = z__1.i;
  1121. /* L20: */
  1122. }
  1123. }
  1124. if (wantvr) {
  1125. /* Undo balancing of right eigenvectors */
  1126. zgebak_(balanc, "R", n, ilo, ihi, &scale[1], n, &vr[vr_offset], ldvr,
  1127. &ierr);
  1128. /* Normalize right eigenvectors and make largest component real */
  1129. i__1 = *n;
  1130. for (i__ = 1; i__ <= i__1; ++i__) {
  1131. scl = 1. / dznrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
  1132. zdscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
  1133. i__2 = *n;
  1134. for (k = 1; k <= i__2; ++k) {
  1135. i__3 = k + i__ * vr_dim1;
  1136. /* Computing 2nd power */
  1137. d__1 = vr[i__3].r;
  1138. /* Computing 2nd power */
  1139. d__2 = d_imag(&vr[k + i__ * vr_dim1]);
  1140. rwork[k] = d__1 * d__1 + d__2 * d__2;
  1141. /* $ AIMAG( VR( K, I ) )**2 */
  1142. /* L30: */
  1143. }
  1144. k = idamax_(n, &rwork[1], &c__1);
  1145. d_cnjg(&z__2, &vr[k + i__ * vr_dim1]);
  1146. d__1 = sqrt(rwork[k]);
  1147. z__1.r = z__2.r / d__1, z__1.i = z__2.i / d__1;
  1148. tmp.r = z__1.r, tmp.i = z__1.i;
  1149. zscal_(n, &tmp, &vr[i__ * vr_dim1 + 1], &c__1);
  1150. i__2 = k + i__ * vr_dim1;
  1151. i__3 = k + i__ * vr_dim1;
  1152. d__1 = vr[i__3].r;
  1153. z__1.r = d__1, z__1.i = 0.;
  1154. vr[i__2].r = z__1.r, vr[i__2].i = z__1.i;
  1155. /* L40: */
  1156. }
  1157. }
  1158. /* Undo scaling if necessary */
  1159. L50:
  1160. if (scalea) {
  1161. i__1 = *n - *info;
  1162. /* Computing MAX */
  1163. i__3 = *n - *info;
  1164. i__2 = f2cmax(i__3,1);
  1165. zlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &w[*info + 1]
  1166. , &i__2, &ierr);
  1167. if (*info == 0) {
  1168. if ((wntsnv || wntsnb) && icond == 0) {
  1169. dlascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &rcondv[
  1170. 1], n, &ierr);
  1171. }
  1172. } else {
  1173. i__1 = *ilo - 1;
  1174. zlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &w[1], n,
  1175. &ierr);
  1176. }
  1177. }
  1178. work[1].r = (doublereal) maxwrk, work[1].i = 0.;
  1179. return;
  1180. /* End of ZGEEVX */
  1181. } /* zgeevx_ */