You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sgesdd.c 68 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  217. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  218. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  219. #define sig_die(s, kill) { exit(1); }
  220. #define s_stop(s, n) {exit(0);}
  221. #define z_abs(z) (cabs(Cd(z)))
  222. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  223. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  224. #define myexit_() break;
  225. #define mycycle() continue;
  226. #define myceiling(w) {ceil(w)}
  227. #define myhuge(w) {HUGE_VAL}
  228. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  229. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  230. /* -- translated by f2c (version 20000121).
  231. You must link the resulting object file with the libraries:
  232. -lf2c -lm (in that order)
  233. */
  234. /* Table of constant values */
  235. static integer c_n1 = -1;
  236. static integer c__0 = 0;
  237. static real c_b63 = 0.f;
  238. static integer c__1 = 1;
  239. static real c_b84 = 1.f;
  240. /* > \brief \b SGESDD */
  241. /* =========== DOCUMENTATION =========== */
  242. /* Online html documentation available at */
  243. /* http://www.netlib.org/lapack/explore-html/ */
  244. /* > \htmlonly */
  245. /* > Download SGESDD + dependencies */
  246. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgesdd.
  247. f"> */
  248. /* > [TGZ]</a> */
  249. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgesdd.
  250. f"> */
  251. /* > [ZIP]</a> */
  252. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgesdd.
  253. f"> */
  254. /* > [TXT]</a> */
  255. /* > \endhtmlonly */
  256. /* Definition: */
  257. /* =========== */
  258. /* SUBROUTINE SGESDD( JOBZ, M, N, A, LDA, S, U, LDU, VT, LDVT, */
  259. /* WORK, LWORK, IWORK, INFO ) */
  260. /* CHARACTER JOBZ */
  261. /* INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N */
  262. /* INTEGER IWORK( * ) */
  263. /* REAL A( LDA, * ), S( * ), U( LDU, * ), */
  264. /* $ VT( LDVT, * ), WORK( * ) */
  265. /* > \par Purpose: */
  266. /* ============= */
  267. /* > */
  268. /* > \verbatim */
  269. /* > */
  270. /* > SGESDD computes the singular value decomposition (SVD) of a real */
  271. /* > M-by-N matrix A, optionally computing the left and right singular */
  272. /* > vectors. If singular vectors are desired, it uses a */
  273. /* > divide-and-conquer algorithm. */
  274. /* > */
  275. /* > The SVD is written */
  276. /* > */
  277. /* > A = U * SIGMA * transpose(V) */
  278. /* > */
  279. /* > where SIGMA is an M-by-N matrix which is zero except for its */
  280. /* > f2cmin(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and */
  281. /* > V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA */
  282. /* > are the singular values of A; they are real and non-negative, and */
  283. /* > are returned in descending order. The first f2cmin(m,n) columns of */
  284. /* > U and V are the left and right singular vectors of A. */
  285. /* > */
  286. /* > Note that the routine returns VT = V**T, not V. */
  287. /* > */
  288. /* > The divide and conquer algorithm makes very mild assumptions about */
  289. /* > floating point arithmetic. It will work on machines with a guard */
  290. /* > digit in add/subtract, or on those binary machines without guard */
  291. /* > digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
  292. /* > Cray-2. It could conceivably fail on hexadecimal or decimal machines */
  293. /* > without guard digits, but we know of none. */
  294. /* > \endverbatim */
  295. /* Arguments: */
  296. /* ========== */
  297. /* > \param[in] JOBZ */
  298. /* > \verbatim */
  299. /* > JOBZ is CHARACTER*1 */
  300. /* > Specifies options for computing all or part of the matrix U: */
  301. /* > = 'A': all M columns of U and all N rows of V**T are */
  302. /* > returned in the arrays U and VT; */
  303. /* > = 'S': the first f2cmin(M,N) columns of U and the first */
  304. /* > f2cmin(M,N) rows of V**T are returned in the arrays U */
  305. /* > and VT; */
  306. /* > = 'O': If M >= N, the first N columns of U are overwritten */
  307. /* > on the array A and all rows of V**T are returned in */
  308. /* > the array VT; */
  309. /* > otherwise, all columns of U are returned in the */
  310. /* > array U and the first M rows of V**T are overwritten */
  311. /* > in the array A; */
  312. /* > = 'N': no columns of U or rows of V**T are computed. */
  313. /* > \endverbatim */
  314. /* > */
  315. /* > \param[in] M */
  316. /* > \verbatim */
  317. /* > M is INTEGER */
  318. /* > The number of rows of the input matrix A. M >= 0. */
  319. /* > \endverbatim */
  320. /* > */
  321. /* > \param[in] N */
  322. /* > \verbatim */
  323. /* > N is INTEGER */
  324. /* > The number of columns of the input matrix A. N >= 0. */
  325. /* > \endverbatim */
  326. /* > */
  327. /* > \param[in,out] A */
  328. /* > \verbatim */
  329. /* > A is REAL array, dimension (LDA,N) */
  330. /* > On entry, the M-by-N matrix A. */
  331. /* > On exit, */
  332. /* > if JOBZ = 'O', A is overwritten with the first N columns */
  333. /* > of U (the left singular vectors, stored */
  334. /* > columnwise) if M >= N; */
  335. /* > A is overwritten with the first M rows */
  336. /* > of V**T (the right singular vectors, stored */
  337. /* > rowwise) otherwise. */
  338. /* > if JOBZ .ne. 'O', the contents of A are destroyed. */
  339. /* > \endverbatim */
  340. /* > */
  341. /* > \param[in] LDA */
  342. /* > \verbatim */
  343. /* > LDA is INTEGER */
  344. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  345. /* > \endverbatim */
  346. /* > */
  347. /* > \param[out] S */
  348. /* > \verbatim */
  349. /* > S is REAL array, dimension (f2cmin(M,N)) */
  350. /* > The singular values of A, sorted so that S(i) >= S(i+1). */
  351. /* > \endverbatim */
  352. /* > */
  353. /* > \param[out] U */
  354. /* > \verbatim */
  355. /* > U is REAL array, dimension (LDU,UCOL) */
  356. /* > UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N; */
  357. /* > UCOL = f2cmin(M,N) if JOBZ = 'S'. */
  358. /* > If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains the M-by-M */
  359. /* > orthogonal matrix U; */
  360. /* > if JOBZ = 'S', U contains the first f2cmin(M,N) columns of U */
  361. /* > (the left singular vectors, stored columnwise); */
  362. /* > if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not referenced. */
  363. /* > \endverbatim */
  364. /* > */
  365. /* > \param[in] LDU */
  366. /* > \verbatim */
  367. /* > LDU is INTEGER */
  368. /* > The leading dimension of the array U. LDU >= 1; if */
  369. /* > JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU >= M. */
  370. /* > \endverbatim */
  371. /* > */
  372. /* > \param[out] VT */
  373. /* > \verbatim */
  374. /* > VT is REAL array, dimension (LDVT,N) */
  375. /* > If JOBZ = 'A' or JOBZ = 'O' and M >= N, VT contains the */
  376. /* > N-by-N orthogonal matrix V**T; */
  377. /* > if JOBZ = 'S', VT contains the first f2cmin(M,N) rows of */
  378. /* > V**T (the right singular vectors, stored rowwise); */
  379. /* > if JOBZ = 'O' and M < N, or JOBZ = 'N', VT is not referenced. */
  380. /* > \endverbatim */
  381. /* > */
  382. /* > \param[in] LDVT */
  383. /* > \verbatim */
  384. /* > LDVT is INTEGER */
  385. /* > The leading dimension of the array VT. LDVT >= 1; */
  386. /* > if JOBZ = 'A' or JOBZ = 'O' and M >= N, LDVT >= N; */
  387. /* > if JOBZ = 'S', LDVT >= f2cmin(M,N). */
  388. /* > \endverbatim */
  389. /* > */
  390. /* > \param[out] WORK */
  391. /* > \verbatim */
  392. /* > WORK is REAL array, dimension (MAX(1,LWORK)) */
  393. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK; */
  394. /* > \endverbatim */
  395. /* > */
  396. /* > \param[in] LWORK */
  397. /* > \verbatim */
  398. /* > LWORK is INTEGER */
  399. /* > The dimension of the array WORK. LWORK >= 1. */
  400. /* > If LWORK = -1, a workspace query is assumed. The optimal */
  401. /* > size for the WORK array is calculated and stored in WORK(1), */
  402. /* > and no other work except argument checking is performed. */
  403. /* > */
  404. /* > Let mx = f2cmax(M,N) and mn = f2cmin(M,N). */
  405. /* > If JOBZ = 'N', LWORK >= 3*mn + f2cmax( mx, 7*mn ). */
  406. /* > If JOBZ = 'O', LWORK >= 3*mn + f2cmax( mx, 5*mn*mn + 4*mn ). */
  407. /* > If JOBZ = 'S', LWORK >= 4*mn*mn + 7*mn. */
  408. /* > If JOBZ = 'A', LWORK >= 4*mn*mn + 6*mn + mx. */
  409. /* > These are not tight minimums in all cases; see comments inside code. */
  410. /* > For good performance, LWORK should generally be larger; */
  411. /* > a query is recommended. */
  412. /* > \endverbatim */
  413. /* > */
  414. /* > \param[out] IWORK */
  415. /* > \verbatim */
  416. /* > IWORK is INTEGER array, dimension (8*f2cmin(M,N)) */
  417. /* > \endverbatim */
  418. /* > */
  419. /* > \param[out] INFO */
  420. /* > \verbatim */
  421. /* > INFO is INTEGER */
  422. /* > = 0: successful exit. */
  423. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  424. /* > > 0: SBDSDC did not converge, updating process failed. */
  425. /* > \endverbatim */
  426. /* Authors: */
  427. /* ======== */
  428. /* > \author Univ. of Tennessee */
  429. /* > \author Univ. of California Berkeley */
  430. /* > \author Univ. of Colorado Denver */
  431. /* > \author NAG Ltd. */
  432. /* > \date June 2016 */
  433. /* > \ingroup realGEsing */
  434. /* > \par Contributors: */
  435. /* ================== */
  436. /* > */
  437. /* > Ming Gu and Huan Ren, Computer Science Division, University of */
  438. /* > California at Berkeley, USA */
  439. /* > */
  440. /* ===================================================================== */
  441. /* Subroutine */ void sgesdd_(char *jobz, integer *m, integer *n, real *a,
  442. integer *lda, real *s, real *u, integer *ldu, real *vt, integer *ldvt,
  443. real *work, integer *lwork, integer *iwork, integer *info)
  444. {
  445. /* System generated locals */
  446. integer a_dim1, a_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1,
  447. i__2, i__3;
  448. /* Local variables */
  449. integer lwork_sgelqf_mn__, lwork_sgeqrf_mn__, iscl, lwork_sorglq_mn__,
  450. lwork_sorglq_nn__;
  451. real anrm;
  452. integer idum[1], ierr, itau, lwork_sorgqr_mm__, lwork_sorgqr_mn__,
  453. lwork_sormbr_qln_mm__, lwork_sormbr_qln_mn__,
  454. lwork_sormbr_qln_nn__, lwork_sormbr_prt_mm__,
  455. lwork_sormbr_prt_mn__, lwork_sormbr_prt_nn__, i__;
  456. extern logical lsame_(char *, char *);
  457. integer chunk;
  458. extern /* Subroutine */ void sgemm_(char *, char *, integer *, integer *,
  459. integer *, real *, real *, integer *, real *, integer *, real *,
  460. real *, integer *);
  461. integer minmn, wrkbl, itaup, itauq, mnthr;
  462. logical wntqa;
  463. integer nwork;
  464. logical wntqn, wntqo, wntqs;
  465. integer ie, il, ir, bdspac, iu, lwork_sorgbr_p_mm__;
  466. extern /* Subroutine */ void sbdsdc_(char *, char *, integer *, real *,
  467. real *, real *, integer *, real *, integer *, real *, integer *,
  468. real *, integer *, integer *);
  469. integer lwork_sorgbr_q_nn__;
  470. extern /* Subroutine */ void sgebrd_(integer *, integer *, real *, integer
  471. *, real *, real *, real *, real *, real *, integer *, integer *);
  472. extern real slamch_(char *), slange_(char *, integer *, integer *,
  473. real *, integer *, real *);
  474. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  475. real bignum;
  476. extern /* Subroutine */ void sgelqf_(integer *, integer *, real *, integer
  477. *, real *, real *, integer *, integer *), slascl_(char *, integer
  478. *, integer *, real *, real *, integer *, integer *, real *,
  479. integer *, integer *), sgeqrf_(integer *, integer *, real
  480. *, integer *, real *, real *, integer *, integer *), slacpy_(char
  481. *, integer *, integer *, real *, integer *, real *, integer *), slaset_(char *, integer *, integer *, real *, real *,
  482. real *, integer *);
  483. extern logical sisnan_(real *);
  484. extern /* Subroutine */ void sorgbr_(char *, integer *, integer *, integer
  485. *, real *, integer *, real *, real *, integer *, integer *);
  486. integer ldwrkl;
  487. extern /* Subroutine */ void sormbr_(char *, char *, char *, integer *,
  488. integer *, integer *, real *, integer *, real *, real *, integer *
  489. , real *, integer *, integer *);
  490. integer ldwrkr, minwrk, ldwrku, maxwrk;
  491. extern /* Subroutine */ void sorglq_(integer *, integer *, integer *, real
  492. *, integer *, real *, real *, integer *, integer *);
  493. integer ldwkvt;
  494. real smlnum;
  495. logical wntqas;
  496. extern /* Subroutine */ void sorgqr_(integer *, integer *, integer *, real
  497. *, integer *, real *, real *, integer *, integer *);
  498. logical lquery;
  499. integer blk;
  500. real dum[1], eps;
  501. integer ivt, lwork_sgebrd_mm__, lwork_sgebrd_mn__, lwork_sgebrd_nn__;
  502. /* -- LAPACK driver routine (version 3.7.0) -- */
  503. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  504. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  505. /* June 2016 */
  506. /* ===================================================================== */
  507. /* Test the input arguments */
  508. /* Parameter adjustments */
  509. a_dim1 = *lda;
  510. a_offset = 1 + a_dim1 * 1;
  511. a -= a_offset;
  512. --s;
  513. u_dim1 = *ldu;
  514. u_offset = 1 + u_dim1 * 1;
  515. u -= u_offset;
  516. vt_dim1 = *ldvt;
  517. vt_offset = 1 + vt_dim1 * 1;
  518. vt -= vt_offset;
  519. --work;
  520. --iwork;
  521. /* Function Body */
  522. *info = 0;
  523. minmn = f2cmin(*m,*n);
  524. wntqa = lsame_(jobz, "A");
  525. wntqs = lsame_(jobz, "S");
  526. wntqas = wntqa || wntqs;
  527. wntqo = lsame_(jobz, "O");
  528. wntqn = lsame_(jobz, "N");
  529. lquery = *lwork == -1;
  530. if (! (wntqa || wntqs || wntqo || wntqn)) {
  531. *info = -1;
  532. } else if (*m < 0) {
  533. *info = -2;
  534. } else if (*n < 0) {
  535. *info = -3;
  536. } else if (*lda < f2cmax(1,*m)) {
  537. *info = -5;
  538. } else if (*ldu < 1 || wntqas && *ldu < *m || wntqo && *m < *n && *ldu < *
  539. m) {
  540. *info = -8;
  541. } else if (*ldvt < 1 || wntqa && *ldvt < *n || wntqs && *ldvt < minmn ||
  542. wntqo && *m >= *n && *ldvt < *n) {
  543. *info = -10;
  544. }
  545. /* Compute workspace */
  546. /* Note: Comments in the code beginning "Workspace:" describe the */
  547. /* minimal amount of workspace allocated at that point in the code, */
  548. /* as well as the preferred amount for good performance. */
  549. /* NB refers to the optimal block size for the immediately */
  550. /* following subroutine, as returned by ILAENV. */
  551. if (*info == 0) {
  552. minwrk = 1;
  553. maxwrk = 1;
  554. bdspac = 0;
  555. mnthr = (integer) (minmn * 11.f / 6.f);
  556. if (*m >= *n && minmn > 0) {
  557. /* Compute space needed for SBDSDC */
  558. if (wntqn) {
  559. /* sbdsdc needs only 4*N (or 6*N for uplo=L for LAPACK <= 3.6) */
  560. /* keep 7*N for backwards compatibility. */
  561. bdspac = *n * 7;
  562. } else {
  563. bdspac = *n * 3 * *n + (*n << 2);
  564. }
  565. /* Compute space preferred for each routine */
  566. sgebrd_(m, n, dum, m, dum, dum, dum, dum, dum, &c_n1, &ierr);
  567. lwork_sgebrd_mn__ = (integer) dum[0];
  568. sgebrd_(n, n, dum, n, dum, dum, dum, dum, dum, &c_n1, &ierr);
  569. lwork_sgebrd_nn__ = (integer) dum[0];
  570. sgeqrf_(m, n, dum, m, dum, dum, &c_n1, &ierr);
  571. lwork_sgeqrf_mn__ = (integer) dum[0];
  572. sorgbr_("Q", n, n, n, dum, n, dum, dum, &c_n1, &ierr);
  573. lwork_sorgbr_q_nn__ = (integer) dum[0];
  574. sorgqr_(m, m, n, dum, m, dum, dum, &c_n1, &ierr);
  575. lwork_sorgqr_mm__ = (integer) dum[0];
  576. sorgqr_(m, n, n, dum, m, dum, dum, &c_n1, &ierr);
  577. lwork_sorgqr_mn__ = (integer) dum[0];
  578. sormbr_("P", "R", "T", n, n, n, dum, n, dum, dum, n, dum, &c_n1, &
  579. ierr);
  580. lwork_sormbr_prt_nn__ = (integer) dum[0];
  581. sormbr_("Q", "L", "N", n, n, n, dum, n, dum, dum, n, dum, &c_n1, &
  582. ierr);
  583. lwork_sormbr_qln_nn__ = (integer) dum[0];
  584. sormbr_("Q", "L", "N", m, n, n, dum, m, dum, dum, m, dum, &c_n1, &
  585. ierr);
  586. lwork_sormbr_qln_mn__ = (integer) dum[0];
  587. sormbr_("Q", "L", "N", m, m, n, dum, m, dum, dum, m, dum, &c_n1, &
  588. ierr);
  589. lwork_sormbr_qln_mm__ = (integer) dum[0];
  590. if (*m >= mnthr) {
  591. if (wntqn) {
  592. /* Path 1 (M >> N, JOBZ='N') */
  593. wrkbl = *n + lwork_sgeqrf_mn__;
  594. /* Computing MAX */
  595. i__1 = wrkbl, i__2 = *n * 3 + lwork_sgebrd_nn__;
  596. wrkbl = f2cmax(i__1,i__2);
  597. /* Computing MAX */
  598. i__1 = wrkbl, i__2 = bdspac + *n;
  599. maxwrk = f2cmax(i__1,i__2);
  600. minwrk = bdspac + *n;
  601. } else if (wntqo) {
  602. /* Path 2 (M >> N, JOBZ='O') */
  603. wrkbl = *n + lwork_sgeqrf_mn__;
  604. /* Computing MAX */
  605. i__1 = wrkbl, i__2 = *n + lwork_sorgqr_mn__;
  606. wrkbl = f2cmax(i__1,i__2);
  607. /* Computing MAX */
  608. i__1 = wrkbl, i__2 = *n * 3 + lwork_sgebrd_nn__;
  609. wrkbl = f2cmax(i__1,i__2);
  610. /* Computing MAX */
  611. i__1 = wrkbl, i__2 = *n * 3 + lwork_sormbr_qln_nn__;
  612. wrkbl = f2cmax(i__1,i__2);
  613. /* Computing MAX */
  614. i__1 = wrkbl, i__2 = *n * 3 + lwork_sormbr_prt_nn__;
  615. wrkbl = f2cmax(i__1,i__2);
  616. /* Computing MAX */
  617. i__1 = wrkbl, i__2 = *n * 3 + bdspac;
  618. wrkbl = f2cmax(i__1,i__2);
  619. maxwrk = wrkbl + (*n << 1) * *n;
  620. minwrk = bdspac + (*n << 1) * *n + *n * 3;
  621. } else if (wntqs) {
  622. /* Path 3 (M >> N, JOBZ='S') */
  623. wrkbl = *n + lwork_sgeqrf_mn__;
  624. /* Computing MAX */
  625. i__1 = wrkbl, i__2 = *n + lwork_sorgqr_mn__;
  626. wrkbl = f2cmax(i__1,i__2);
  627. /* Computing MAX */
  628. i__1 = wrkbl, i__2 = *n * 3 + lwork_sgebrd_nn__;
  629. wrkbl = f2cmax(i__1,i__2);
  630. /* Computing MAX */
  631. i__1 = wrkbl, i__2 = *n * 3 + lwork_sormbr_qln_nn__;
  632. wrkbl = f2cmax(i__1,i__2);
  633. /* Computing MAX */
  634. i__1 = wrkbl, i__2 = *n * 3 + lwork_sormbr_prt_nn__;
  635. wrkbl = f2cmax(i__1,i__2);
  636. /* Computing MAX */
  637. i__1 = wrkbl, i__2 = *n * 3 + bdspac;
  638. wrkbl = f2cmax(i__1,i__2);
  639. maxwrk = wrkbl + *n * *n;
  640. minwrk = bdspac + *n * *n + *n * 3;
  641. } else if (wntqa) {
  642. /* Path 4 (M >> N, JOBZ='A') */
  643. wrkbl = *n + lwork_sgeqrf_mn__;
  644. /* Computing MAX */
  645. i__1 = wrkbl, i__2 = *n + lwork_sorgqr_mm__;
  646. wrkbl = f2cmax(i__1,i__2);
  647. /* Computing MAX */
  648. i__1 = wrkbl, i__2 = *n * 3 + lwork_sgebrd_nn__;
  649. wrkbl = f2cmax(i__1,i__2);
  650. /* Computing MAX */
  651. i__1 = wrkbl, i__2 = *n * 3 + lwork_sormbr_qln_nn__;
  652. wrkbl = f2cmax(i__1,i__2);
  653. /* Computing MAX */
  654. i__1 = wrkbl, i__2 = *n * 3 + lwork_sormbr_prt_nn__;
  655. wrkbl = f2cmax(i__1,i__2);
  656. /* Computing MAX */
  657. i__1 = wrkbl, i__2 = *n * 3 + bdspac;
  658. wrkbl = f2cmax(i__1,i__2);
  659. maxwrk = wrkbl + *n * *n;
  660. /* Computing MAX */
  661. i__1 = *n * 3 + bdspac, i__2 = *n + *m;
  662. minwrk = *n * *n + f2cmax(i__1,i__2);
  663. }
  664. } else {
  665. /* Path 5 (M >= N, but not much larger) */
  666. wrkbl = *n * 3 + lwork_sgebrd_mn__;
  667. if (wntqn) {
  668. /* Path 5n (M >= N, jobz='N') */
  669. /* Computing MAX */
  670. i__1 = wrkbl, i__2 = *n * 3 + bdspac;
  671. maxwrk = f2cmax(i__1,i__2);
  672. minwrk = *n * 3 + f2cmax(*m,bdspac);
  673. } else if (wntqo) {
  674. /* Path 5o (M >= N, jobz='O') */
  675. /* Computing MAX */
  676. i__1 = wrkbl, i__2 = *n * 3 + lwork_sormbr_prt_nn__;
  677. wrkbl = f2cmax(i__1,i__2);
  678. /* Computing MAX */
  679. i__1 = wrkbl, i__2 = *n * 3 + lwork_sormbr_qln_mn__;
  680. wrkbl = f2cmax(i__1,i__2);
  681. /* Computing MAX */
  682. i__1 = wrkbl, i__2 = *n * 3 + bdspac;
  683. wrkbl = f2cmax(i__1,i__2);
  684. maxwrk = wrkbl + *m * *n;
  685. /* Computing MAX */
  686. i__1 = *m, i__2 = *n * *n + bdspac;
  687. minwrk = *n * 3 + f2cmax(i__1,i__2);
  688. } else if (wntqs) {
  689. /* Path 5s (M >= N, jobz='S') */
  690. /* Computing MAX */
  691. i__1 = wrkbl, i__2 = *n * 3 + lwork_sormbr_qln_mn__;
  692. wrkbl = f2cmax(i__1,i__2);
  693. /* Computing MAX */
  694. i__1 = wrkbl, i__2 = *n * 3 + lwork_sormbr_prt_nn__;
  695. wrkbl = f2cmax(i__1,i__2);
  696. /* Computing MAX */
  697. i__1 = wrkbl, i__2 = *n * 3 + bdspac;
  698. maxwrk = f2cmax(i__1,i__2);
  699. minwrk = *n * 3 + f2cmax(*m,bdspac);
  700. } else if (wntqa) {
  701. /* Path 5a (M >= N, jobz='A') */
  702. /* Computing MAX */
  703. i__1 = wrkbl, i__2 = *n * 3 + lwork_sormbr_qln_mm__;
  704. wrkbl = f2cmax(i__1,i__2);
  705. /* Computing MAX */
  706. i__1 = wrkbl, i__2 = *n * 3 + lwork_sormbr_prt_nn__;
  707. wrkbl = f2cmax(i__1,i__2);
  708. /* Computing MAX */
  709. i__1 = wrkbl, i__2 = *n * 3 + bdspac;
  710. maxwrk = f2cmax(i__1,i__2);
  711. minwrk = *n * 3 + f2cmax(*m,bdspac);
  712. }
  713. }
  714. } else if (minmn > 0) {
  715. /* Compute space needed for SBDSDC */
  716. if (wntqn) {
  717. /* sbdsdc needs only 4*N (or 6*N for uplo=L for LAPACK <= 3.6) */
  718. /* keep 7*N for backwards compatibility. */
  719. bdspac = *m * 7;
  720. } else {
  721. bdspac = *m * 3 * *m + (*m << 2);
  722. }
  723. /* Compute space preferred for each routine */
  724. sgebrd_(m, n, dum, m, dum, dum, dum, dum, dum, &c_n1, &ierr);
  725. lwork_sgebrd_mn__ = (integer) dum[0];
  726. sgebrd_(m, m, &a[a_offset], m, &s[1], dum, dum, dum, dum, &c_n1, &
  727. ierr);
  728. lwork_sgebrd_mm__ = (integer) dum[0];
  729. sgelqf_(m, n, &a[a_offset], m, dum, dum, &c_n1, &ierr);
  730. lwork_sgelqf_mn__ = (integer) dum[0];
  731. sorglq_(n, n, m, dum, n, dum, dum, &c_n1, &ierr);
  732. lwork_sorglq_nn__ = (integer) dum[0];
  733. sorglq_(m, n, m, &a[a_offset], m, dum, dum, &c_n1, &ierr);
  734. lwork_sorglq_mn__ = (integer) dum[0];
  735. sorgbr_("P", m, m, m, &a[a_offset], n, dum, dum, &c_n1, &ierr);
  736. lwork_sorgbr_p_mm__ = (integer) dum[0];
  737. sormbr_("P", "R", "T", m, m, m, dum, m, dum, dum, m, dum, &c_n1, &
  738. ierr);
  739. lwork_sormbr_prt_mm__ = (integer) dum[0];
  740. sormbr_("P", "R", "T", m, n, m, dum, m, dum, dum, m, dum, &c_n1, &
  741. ierr);
  742. lwork_sormbr_prt_mn__ = (integer) dum[0];
  743. sormbr_("P", "R", "T", n, n, m, dum, n, dum, dum, n, dum, &c_n1, &
  744. ierr);
  745. lwork_sormbr_prt_nn__ = (integer) dum[0];
  746. sormbr_("Q", "L", "N", m, m, m, dum, m, dum, dum, m, dum, &c_n1, &
  747. ierr);
  748. lwork_sormbr_qln_mm__ = (integer) dum[0];
  749. if (*n >= mnthr) {
  750. if (wntqn) {
  751. /* Path 1t (N >> M, JOBZ='N') */
  752. wrkbl = *m + lwork_sgelqf_mn__;
  753. /* Computing MAX */
  754. i__1 = wrkbl, i__2 = *m * 3 + lwork_sgebrd_mm__;
  755. wrkbl = f2cmax(i__1,i__2);
  756. /* Computing MAX */
  757. i__1 = wrkbl, i__2 = bdspac + *m;
  758. maxwrk = f2cmax(i__1,i__2);
  759. minwrk = bdspac + *m;
  760. } else if (wntqo) {
  761. /* Path 2t (N >> M, JOBZ='O') */
  762. wrkbl = *m + lwork_sgelqf_mn__;
  763. /* Computing MAX */
  764. i__1 = wrkbl, i__2 = *m + lwork_sorglq_mn__;
  765. wrkbl = f2cmax(i__1,i__2);
  766. /* Computing MAX */
  767. i__1 = wrkbl, i__2 = *m * 3 + lwork_sgebrd_mm__;
  768. wrkbl = f2cmax(i__1,i__2);
  769. /* Computing MAX */
  770. i__1 = wrkbl, i__2 = *m * 3 + lwork_sormbr_qln_mm__;
  771. wrkbl = f2cmax(i__1,i__2);
  772. /* Computing MAX */
  773. i__1 = wrkbl, i__2 = *m * 3 + lwork_sormbr_prt_mm__;
  774. wrkbl = f2cmax(i__1,i__2);
  775. /* Computing MAX */
  776. i__1 = wrkbl, i__2 = *m * 3 + bdspac;
  777. wrkbl = f2cmax(i__1,i__2);
  778. maxwrk = wrkbl + (*m << 1) * *m;
  779. minwrk = bdspac + (*m << 1) * *m + *m * 3;
  780. } else if (wntqs) {
  781. /* Path 3t (N >> M, JOBZ='S') */
  782. wrkbl = *m + lwork_sgelqf_mn__;
  783. /* Computing MAX */
  784. i__1 = wrkbl, i__2 = *m + lwork_sorglq_mn__;
  785. wrkbl = f2cmax(i__1,i__2);
  786. /* Computing MAX */
  787. i__1 = wrkbl, i__2 = *m * 3 + lwork_sgebrd_mm__;
  788. wrkbl = f2cmax(i__1,i__2);
  789. /* Computing MAX */
  790. i__1 = wrkbl, i__2 = *m * 3 + lwork_sormbr_qln_mm__;
  791. wrkbl = f2cmax(i__1,i__2);
  792. /* Computing MAX */
  793. i__1 = wrkbl, i__2 = *m * 3 + lwork_sormbr_prt_mm__;
  794. wrkbl = f2cmax(i__1,i__2);
  795. /* Computing MAX */
  796. i__1 = wrkbl, i__2 = *m * 3 + bdspac;
  797. wrkbl = f2cmax(i__1,i__2);
  798. maxwrk = wrkbl + *m * *m;
  799. minwrk = bdspac + *m * *m + *m * 3;
  800. } else if (wntqa) {
  801. /* Path 4t (N >> M, JOBZ='A') */
  802. wrkbl = *m + lwork_sgelqf_mn__;
  803. /* Computing MAX */
  804. i__1 = wrkbl, i__2 = *m + lwork_sorglq_nn__;
  805. wrkbl = f2cmax(i__1,i__2);
  806. /* Computing MAX */
  807. i__1 = wrkbl, i__2 = *m * 3 + lwork_sgebrd_mm__;
  808. wrkbl = f2cmax(i__1,i__2);
  809. /* Computing MAX */
  810. i__1 = wrkbl, i__2 = *m * 3 + lwork_sormbr_qln_mm__;
  811. wrkbl = f2cmax(i__1,i__2);
  812. /* Computing MAX */
  813. i__1 = wrkbl, i__2 = *m * 3 + lwork_sormbr_prt_mm__;
  814. wrkbl = f2cmax(i__1,i__2);
  815. /* Computing MAX */
  816. i__1 = wrkbl, i__2 = *m * 3 + bdspac;
  817. wrkbl = f2cmax(i__1,i__2);
  818. maxwrk = wrkbl + *m * *m;
  819. /* Computing MAX */
  820. i__1 = *m * 3 + bdspac, i__2 = *m + *n;
  821. minwrk = *m * *m + f2cmax(i__1,i__2);
  822. }
  823. } else {
  824. /* Path 5t (N > M, but not much larger) */
  825. wrkbl = *m * 3 + lwork_sgebrd_mn__;
  826. if (wntqn) {
  827. /* Path 5tn (N > M, jobz='N') */
  828. /* Computing MAX */
  829. i__1 = wrkbl, i__2 = *m * 3 + bdspac;
  830. maxwrk = f2cmax(i__1,i__2);
  831. minwrk = *m * 3 + f2cmax(*n,bdspac);
  832. } else if (wntqo) {
  833. /* Path 5to (N > M, jobz='O') */
  834. /* Computing MAX */
  835. i__1 = wrkbl, i__2 = *m * 3 + lwork_sormbr_qln_mm__;
  836. wrkbl = f2cmax(i__1,i__2);
  837. /* Computing MAX */
  838. i__1 = wrkbl, i__2 = *m * 3 + lwork_sormbr_prt_mn__;
  839. wrkbl = f2cmax(i__1,i__2);
  840. /* Computing MAX */
  841. i__1 = wrkbl, i__2 = *m * 3 + bdspac;
  842. wrkbl = f2cmax(i__1,i__2);
  843. maxwrk = wrkbl + *m * *n;
  844. /* Computing MAX */
  845. i__1 = *n, i__2 = *m * *m + bdspac;
  846. minwrk = *m * 3 + f2cmax(i__1,i__2);
  847. } else if (wntqs) {
  848. /* Path 5ts (N > M, jobz='S') */
  849. /* Computing MAX */
  850. i__1 = wrkbl, i__2 = *m * 3 + lwork_sormbr_qln_mm__;
  851. wrkbl = f2cmax(i__1,i__2);
  852. /* Computing MAX */
  853. i__1 = wrkbl, i__2 = *m * 3 + lwork_sormbr_prt_mn__;
  854. wrkbl = f2cmax(i__1,i__2);
  855. /* Computing MAX */
  856. i__1 = wrkbl, i__2 = *m * 3 + bdspac;
  857. maxwrk = f2cmax(i__1,i__2);
  858. minwrk = *m * 3 + f2cmax(*n,bdspac);
  859. } else if (wntqa) {
  860. /* Path 5ta (N > M, jobz='A') */
  861. /* Computing MAX */
  862. i__1 = wrkbl, i__2 = *m * 3 + lwork_sormbr_qln_mm__;
  863. wrkbl = f2cmax(i__1,i__2);
  864. /* Computing MAX */
  865. i__1 = wrkbl, i__2 = *m * 3 + lwork_sormbr_prt_nn__;
  866. wrkbl = f2cmax(i__1,i__2);
  867. /* Computing MAX */
  868. i__1 = wrkbl, i__2 = *m * 3 + bdspac;
  869. maxwrk = f2cmax(i__1,i__2);
  870. minwrk = *m * 3 + f2cmax(*n,bdspac);
  871. }
  872. }
  873. }
  874. maxwrk = f2cmax(maxwrk,minwrk);
  875. work[1] = (real) maxwrk;
  876. if (*lwork < minwrk && ! lquery) {
  877. *info = -12;
  878. }
  879. }
  880. if (*info != 0) {
  881. i__1 = -(*info);
  882. xerbla_("SGESDD", &i__1, (ftnlen)6);
  883. return;
  884. } else if (lquery) {
  885. return;
  886. }
  887. /* Quick return if possible */
  888. if (*m == 0 || *n == 0) {
  889. return;
  890. }
  891. /* Get machine constants */
  892. eps = slamch_("P");
  893. smlnum = sqrt(slamch_("S")) / eps;
  894. bignum = 1.f / smlnum;
  895. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  896. anrm = slange_("M", m, n, &a[a_offset], lda, dum);
  897. if (sisnan_(&anrm)) {
  898. *info = -4;
  899. return;
  900. }
  901. iscl = 0;
  902. if (anrm > 0.f && anrm < smlnum) {
  903. iscl = 1;
  904. slascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, &
  905. ierr);
  906. } else if (anrm > bignum) {
  907. iscl = 1;
  908. slascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, &
  909. ierr);
  910. }
  911. if (*m >= *n) {
  912. /* A has at least as many rows as columns. If A has sufficiently */
  913. /* more rows than columns, first reduce using the QR */
  914. /* decomposition (if sufficient workspace available) */
  915. if (*m >= mnthr) {
  916. if (wntqn) {
  917. /* Path 1 (M >> N, JOBZ='N') */
  918. /* No singular vectors to be computed */
  919. itau = 1;
  920. nwork = itau + *n;
  921. /* Compute A=Q*R */
  922. /* Workspace: need N [tau] + N [work] */
  923. /* Workspace: prefer N [tau] + N*NB [work] */
  924. i__1 = *lwork - nwork + 1;
  925. sgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
  926. i__1, &ierr);
  927. /* Zero out below R */
  928. i__1 = *n - 1;
  929. i__2 = *n - 1;
  930. slaset_("L", &i__1, &i__2, &c_b63, &c_b63, &a[a_dim1 + 2],
  931. lda);
  932. ie = 1;
  933. itauq = ie + *n;
  934. itaup = itauq + *n;
  935. nwork = itaup + *n;
  936. /* Bidiagonalize R in A */
  937. /* Workspace: need 3*N [e, tauq, taup] + N [work] */
  938. /* Workspace: prefer 3*N [e, tauq, taup] + 2*N*NB [work] */
  939. i__1 = *lwork - nwork + 1;
  940. sgebrd_(n, n, &a[a_offset], lda, &s[1], &work[ie], &work[
  941. itauq], &work[itaup], &work[nwork], &i__1, &ierr);
  942. nwork = ie + *n;
  943. /* Perform bidiagonal SVD, computing singular values only */
  944. /* Workspace: need N [e] + BDSPAC */
  945. sbdsdc_("U", "N", n, &s[1], &work[ie], dum, &c__1, dum, &c__1,
  946. dum, idum, &work[nwork], &iwork[1], info);
  947. } else if (wntqo) {
  948. /* Path 2 (M >> N, JOBZ = 'O') */
  949. /* N left singular vectors to be overwritten on A and */
  950. /* N right singular vectors to be computed in VT */
  951. ir = 1;
  952. /* WORK(IR) is LDWRKR by N */
  953. if (*lwork >= *lda * *n + *n * *n + *n * 3 + bdspac) {
  954. ldwrkr = *lda;
  955. } else {
  956. ldwrkr = (*lwork - *n * *n - *n * 3 - bdspac) / *n;
  957. }
  958. itau = ir + ldwrkr * *n;
  959. nwork = itau + *n;
  960. /* Compute A=Q*R */
  961. /* Workspace: need N*N [R] + N [tau] + N [work] */
  962. /* Workspace: prefer N*N [R] + N [tau] + N*NB [work] */
  963. i__1 = *lwork - nwork + 1;
  964. sgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
  965. i__1, &ierr);
  966. /* Copy R to WORK(IR), zeroing out below it */
  967. slacpy_("U", n, n, &a[a_offset], lda, &work[ir], &ldwrkr);
  968. i__1 = *n - 1;
  969. i__2 = *n - 1;
  970. slaset_("L", &i__1, &i__2, &c_b63, &c_b63, &work[ir + 1], &
  971. ldwrkr);
  972. /* Generate Q in A */
  973. /* Workspace: need N*N [R] + N [tau] + N [work] */
  974. /* Workspace: prefer N*N [R] + N [tau] + N*NB [work] */
  975. i__1 = *lwork - nwork + 1;
  976. sorgqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[nwork],
  977. &i__1, &ierr);
  978. ie = itau;
  979. itauq = ie + *n;
  980. itaup = itauq + *n;
  981. nwork = itaup + *n;
  982. /* Bidiagonalize R in WORK(IR) */
  983. /* Workspace: need N*N [R] + 3*N [e, tauq, taup] + N [work] */
  984. /* Workspace: prefer N*N [R] + 3*N [e, tauq, taup] + 2*N*NB [work] */
  985. i__1 = *lwork - nwork + 1;
  986. sgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &work[ie], &work[
  987. itauq], &work[itaup], &work[nwork], &i__1, &ierr);
  988. /* WORK(IU) is N by N */
  989. iu = nwork;
  990. nwork = iu + *n * *n;
  991. /* Perform bidiagonal SVD, computing left singular vectors */
  992. /* of bidiagonal matrix in WORK(IU) and computing right */
  993. /* singular vectors of bidiagonal matrix in VT */
  994. /* Workspace: need N*N [R] + 3*N [e, tauq, taup] + N*N [U] + BDSPAC */
  995. sbdsdc_("U", "I", n, &s[1], &work[ie], &work[iu], n, &vt[
  996. vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
  997. info);
  998. /* Overwrite WORK(IU) by left singular vectors of R */
  999. /* and VT by right singular vectors of R */
  1000. /* Workspace: need N*N [R] + 3*N [e, tauq, taup] + N*N [U] + N [work] */
  1001. /* Workspace: prefer N*N [R] + 3*N [e, tauq, taup] + N*N [U] + N*NB [work] */
  1002. i__1 = *lwork - nwork + 1;
  1003. sormbr_("Q", "L", "N", n, n, n, &work[ir], &ldwrkr, &work[
  1004. itauq], &work[iu], n, &work[nwork], &i__1, &ierr);
  1005. i__1 = *lwork - nwork + 1;
  1006. sormbr_("P", "R", "T", n, n, n, &work[ir], &ldwrkr, &work[
  1007. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
  1008. ierr);
  1009. /* Multiply Q in A by left singular vectors of R in */
  1010. /* WORK(IU), storing result in WORK(IR) and copying to A */
  1011. /* Workspace: need N*N [R] + 3*N [e, tauq, taup] + N*N [U] */
  1012. /* Workspace: prefer M*N [R] + 3*N [e, tauq, taup] + N*N [U] */
  1013. i__1 = *m;
  1014. i__2 = ldwrkr;
  1015. for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ +=
  1016. i__2) {
  1017. /* Computing MIN */
  1018. i__3 = *m - i__ + 1;
  1019. chunk = f2cmin(i__3,ldwrkr);
  1020. sgemm_("N", "N", &chunk, n, n, &c_b84, &a[i__ + a_dim1],
  1021. lda, &work[iu], n, &c_b63, &work[ir], &ldwrkr);
  1022. slacpy_("F", &chunk, n, &work[ir], &ldwrkr, &a[i__ +
  1023. a_dim1], lda);
  1024. /* L10: */
  1025. }
  1026. } else if (wntqs) {
  1027. /* Path 3 (M >> N, JOBZ='S') */
  1028. /* N left singular vectors to be computed in U and */
  1029. /* N right singular vectors to be computed in VT */
  1030. ir = 1;
  1031. /* WORK(IR) is N by N */
  1032. ldwrkr = *n;
  1033. itau = ir + ldwrkr * *n;
  1034. nwork = itau + *n;
  1035. /* Compute A=Q*R */
  1036. /* Workspace: need N*N [R] + N [tau] + N [work] */
  1037. /* Workspace: prefer N*N [R] + N [tau] + N*NB [work] */
  1038. i__2 = *lwork - nwork + 1;
  1039. sgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
  1040. i__2, &ierr);
  1041. /* Copy R to WORK(IR), zeroing out below it */
  1042. slacpy_("U", n, n, &a[a_offset], lda, &work[ir], &ldwrkr);
  1043. i__2 = *n - 1;
  1044. i__1 = *n - 1;
  1045. slaset_("L", &i__2, &i__1, &c_b63, &c_b63, &work[ir + 1], &
  1046. ldwrkr);
  1047. /* Generate Q in A */
  1048. /* Workspace: need N*N [R] + N [tau] + N [work] */
  1049. /* Workspace: prefer N*N [R] + N [tau] + N*NB [work] */
  1050. i__2 = *lwork - nwork + 1;
  1051. sorgqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[nwork],
  1052. &i__2, &ierr);
  1053. ie = itau;
  1054. itauq = ie + *n;
  1055. itaup = itauq + *n;
  1056. nwork = itaup + *n;
  1057. /* Bidiagonalize R in WORK(IR) */
  1058. /* Workspace: need N*N [R] + 3*N [e, tauq, taup] + N [work] */
  1059. /* Workspace: prefer N*N [R] + 3*N [e, tauq, taup] + 2*N*NB [work] */
  1060. i__2 = *lwork - nwork + 1;
  1061. sgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &work[ie], &work[
  1062. itauq], &work[itaup], &work[nwork], &i__2, &ierr);
  1063. /* Perform bidiagonal SVD, computing left singular vectors */
  1064. /* of bidiagoal matrix in U and computing right singular */
  1065. /* vectors of bidiagonal matrix in VT */
  1066. /* Workspace: need N*N [R] + 3*N [e, tauq, taup] + BDSPAC */
  1067. sbdsdc_("U", "I", n, &s[1], &work[ie], &u[u_offset], ldu, &vt[
  1068. vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
  1069. info);
  1070. /* Overwrite U by left singular vectors of R and VT */
  1071. /* by right singular vectors of R */
  1072. /* Workspace: need N*N [R] + 3*N [e, tauq, taup] + N [work] */
  1073. /* Workspace: prefer N*N [R] + 3*N [e, tauq, taup] + N*NB [work] */
  1074. i__2 = *lwork - nwork + 1;
  1075. sormbr_("Q", "L", "N", n, n, n, &work[ir], &ldwrkr, &work[
  1076. itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr);
  1077. i__2 = *lwork - nwork + 1;
  1078. sormbr_("P", "R", "T", n, n, n, &work[ir], &ldwrkr, &work[
  1079. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, &
  1080. ierr);
  1081. /* Multiply Q in A by left singular vectors of R in */
  1082. /* WORK(IR), storing result in U */
  1083. /* Workspace: need N*N [R] */
  1084. slacpy_("F", n, n, &u[u_offset], ldu, &work[ir], &ldwrkr);
  1085. sgemm_("N", "N", m, n, n, &c_b84, &a[a_offset], lda, &work[ir]
  1086. , &ldwrkr, &c_b63, &u[u_offset], ldu);
  1087. } else if (wntqa) {
  1088. /* Path 4 (M >> N, JOBZ='A') */
  1089. /* M left singular vectors to be computed in U and */
  1090. /* N right singular vectors to be computed in VT */
  1091. iu = 1;
  1092. /* WORK(IU) is N by N */
  1093. ldwrku = *n;
  1094. itau = iu + ldwrku * *n;
  1095. nwork = itau + *n;
  1096. /* Compute A=Q*R, copying result to U */
  1097. /* Workspace: need N*N [U] + N [tau] + N [work] */
  1098. /* Workspace: prefer N*N [U] + N [tau] + N*NB [work] */
  1099. i__2 = *lwork - nwork + 1;
  1100. sgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
  1101. i__2, &ierr);
  1102. slacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], ldu);
  1103. /* Generate Q in U */
  1104. /* Workspace: need N*N [U] + N [tau] + M [work] */
  1105. /* Workspace: prefer N*N [U] + N [tau] + M*NB [work] */
  1106. i__2 = *lwork - nwork + 1;
  1107. sorgqr_(m, m, n, &u[u_offset], ldu, &work[itau], &work[nwork],
  1108. &i__2, &ierr);
  1109. /* Produce R in A, zeroing out other entries */
  1110. i__2 = *n - 1;
  1111. i__1 = *n - 1;
  1112. slaset_("L", &i__2, &i__1, &c_b63, &c_b63, &a[a_dim1 + 2],
  1113. lda);
  1114. ie = itau;
  1115. itauq = ie + *n;
  1116. itaup = itauq + *n;
  1117. nwork = itaup + *n;
  1118. /* Bidiagonalize R in A */
  1119. /* Workspace: need N*N [U] + 3*N [e, tauq, taup] + N [work] */
  1120. /* Workspace: prefer N*N [U] + 3*N [e, tauq, taup] + 2*N*NB [work] */
  1121. i__2 = *lwork - nwork + 1;
  1122. sgebrd_(n, n, &a[a_offset], lda, &s[1], &work[ie], &work[
  1123. itauq], &work[itaup], &work[nwork], &i__2, &ierr);
  1124. /* Perform bidiagonal SVD, computing left singular vectors */
  1125. /* of bidiagonal matrix in WORK(IU) and computing right */
  1126. /* singular vectors of bidiagonal matrix in VT */
  1127. /* Workspace: need N*N [U] + 3*N [e, tauq, taup] + BDSPAC */
  1128. sbdsdc_("U", "I", n, &s[1], &work[ie], &work[iu], n, &vt[
  1129. vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
  1130. info);
  1131. /* Overwrite WORK(IU) by left singular vectors of R and VT */
  1132. /* by right singular vectors of R */
  1133. /* Workspace: need N*N [U] + 3*N [e, tauq, taup] + N [work] */
  1134. /* Workspace: prefer N*N [U] + 3*N [e, tauq, taup] + N*NB [work] */
  1135. i__2 = *lwork - nwork + 1;
  1136. sormbr_("Q", "L", "N", n, n, n, &a[a_offset], lda, &work[
  1137. itauq], &work[iu], &ldwrku, &work[nwork], &i__2, &
  1138. ierr);
  1139. i__2 = *lwork - nwork + 1;
  1140. sormbr_("P", "R", "T", n, n, n, &a[a_offset], lda, &work[
  1141. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, &
  1142. ierr);
  1143. /* Multiply Q in U by left singular vectors of R in */
  1144. /* WORK(IU), storing result in A */
  1145. /* Workspace: need N*N [U] */
  1146. sgemm_("N", "N", m, n, n, &c_b84, &u[u_offset], ldu, &work[iu]
  1147. , &ldwrku, &c_b63, &a[a_offset], lda);
  1148. /* Copy left singular vectors of A from A to U */
  1149. slacpy_("F", m, n, &a[a_offset], lda, &u[u_offset], ldu);
  1150. }
  1151. } else {
  1152. /* M .LT. MNTHR */
  1153. /* Path 5 (M >= N, but not much larger) */
  1154. /* Reduce to bidiagonal form without QR decomposition */
  1155. ie = 1;
  1156. itauq = ie + *n;
  1157. itaup = itauq + *n;
  1158. nwork = itaup + *n;
  1159. /* Bidiagonalize A */
  1160. /* Workspace: need 3*N [e, tauq, taup] + M [work] */
  1161. /* Workspace: prefer 3*N [e, tauq, taup] + (M+N)*NB [work] */
  1162. i__2 = *lwork - nwork + 1;
  1163. sgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], &
  1164. work[itaup], &work[nwork], &i__2, &ierr);
  1165. if (wntqn) {
  1166. /* Path 5n (M >= N, JOBZ='N') */
  1167. /* Perform bidiagonal SVD, only computing singular values */
  1168. /* Workspace: need 3*N [e, tauq, taup] + BDSPAC */
  1169. sbdsdc_("U", "N", n, &s[1], &work[ie], dum, &c__1, dum, &c__1,
  1170. dum, idum, &work[nwork], &iwork[1], info);
  1171. } else if (wntqo) {
  1172. /* Path 5o (M >= N, JOBZ='O') */
  1173. iu = nwork;
  1174. if (*lwork >= *m * *n + *n * 3 + bdspac) {
  1175. /* WORK( IU ) is M by N */
  1176. ldwrku = *m;
  1177. nwork = iu + ldwrku * *n;
  1178. slaset_("F", m, n, &c_b63, &c_b63, &work[iu], &ldwrku);
  1179. /* IR is unused; silence compile warnings */
  1180. ir = -1;
  1181. } else {
  1182. /* WORK( IU ) is N by N */
  1183. ldwrku = *n;
  1184. nwork = iu + ldwrku * *n;
  1185. /* WORK(IR) is LDWRKR by N */
  1186. ir = nwork;
  1187. ldwrkr = (*lwork - *n * *n - *n * 3) / *n;
  1188. }
  1189. nwork = iu + ldwrku * *n;
  1190. /* Perform bidiagonal SVD, computing left singular vectors */
  1191. /* of bidiagonal matrix in WORK(IU) and computing right */
  1192. /* singular vectors of bidiagonal matrix in VT */
  1193. /* Workspace: need 3*N [e, tauq, taup] + N*N [U] + BDSPAC */
  1194. sbdsdc_("U", "I", n, &s[1], &work[ie], &work[iu], &ldwrku, &
  1195. vt[vt_offset], ldvt, dum, idum, &work[nwork], &iwork[
  1196. 1], info);
  1197. /* Overwrite VT by right singular vectors of A */
  1198. /* Workspace: need 3*N [e, tauq, taup] + N*N [U] + N [work] */
  1199. /* Workspace: prefer 3*N [e, tauq, taup] + N*N [U] + N*NB [work] */
  1200. i__2 = *lwork - nwork + 1;
  1201. sormbr_("P", "R", "T", n, n, n, &a[a_offset], lda, &work[
  1202. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, &
  1203. ierr);
  1204. if (*lwork >= *m * *n + *n * 3 + bdspac) {
  1205. /* Path 5o-fast */
  1206. /* Overwrite WORK(IU) by left singular vectors of A */
  1207. /* Workspace: need 3*N [e, tauq, taup] + M*N [U] + N [work] */
  1208. /* Workspace: prefer 3*N [e, tauq, taup] + M*N [U] + N*NB [work] */
  1209. i__2 = *lwork - nwork + 1;
  1210. sormbr_("Q", "L", "N", m, n, n, &a[a_offset], lda, &work[
  1211. itauq], &work[iu], &ldwrku, &work[nwork], &i__2, &
  1212. ierr);
  1213. /* Copy left singular vectors of A from WORK(IU) to A */
  1214. slacpy_("F", m, n, &work[iu], &ldwrku, &a[a_offset], lda);
  1215. } else {
  1216. /* Path 5o-slow */
  1217. /* Generate Q in A */
  1218. /* Workspace: need 3*N [e, tauq, taup] + N*N [U] + N [work] */
  1219. /* Workspace: prefer 3*N [e, tauq, taup] + N*N [U] + N*NB [work] */
  1220. i__2 = *lwork - nwork + 1;
  1221. sorgbr_("Q", m, n, n, &a[a_offset], lda, &work[itauq], &
  1222. work[nwork], &i__2, &ierr);
  1223. /* Multiply Q in A by left singular vectors of */
  1224. /* bidiagonal matrix in WORK(IU), storing result in */
  1225. /* WORK(IR) and copying to A */
  1226. /* Workspace: need 3*N [e, tauq, taup] + N*N [U] + NB*N [R] */
  1227. /* Workspace: prefer 3*N [e, tauq, taup] + N*N [U] + M*N [R] */
  1228. i__2 = *m;
  1229. i__1 = ldwrkr;
  1230. for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ +=
  1231. i__1) {
  1232. /* Computing MIN */
  1233. i__3 = *m - i__ + 1;
  1234. chunk = f2cmin(i__3,ldwrkr);
  1235. sgemm_("N", "N", &chunk, n, n, &c_b84, &a[i__ +
  1236. a_dim1], lda, &work[iu], &ldwrku, &c_b63, &
  1237. work[ir], &ldwrkr);
  1238. slacpy_("F", &chunk, n, &work[ir], &ldwrkr, &a[i__ +
  1239. a_dim1], lda);
  1240. /* L20: */
  1241. }
  1242. }
  1243. } else if (wntqs) {
  1244. /* Path 5s (M >= N, JOBZ='S') */
  1245. /* Perform bidiagonal SVD, computing left singular vectors */
  1246. /* of bidiagonal matrix in U and computing right singular */
  1247. /* vectors of bidiagonal matrix in VT */
  1248. /* Workspace: need 3*N [e, tauq, taup] + BDSPAC */
  1249. slaset_("F", m, n, &c_b63, &c_b63, &u[u_offset], ldu);
  1250. sbdsdc_("U", "I", n, &s[1], &work[ie], &u[u_offset], ldu, &vt[
  1251. vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
  1252. info);
  1253. /* Overwrite U by left singular vectors of A and VT */
  1254. /* by right singular vectors of A */
  1255. /* Workspace: need 3*N [e, tauq, taup] + N [work] */
  1256. /* Workspace: prefer 3*N [e, tauq, taup] + N*NB [work] */
  1257. i__1 = *lwork - nwork + 1;
  1258. sormbr_("Q", "L", "N", m, n, n, &a[a_offset], lda, &work[
  1259. itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr);
  1260. i__1 = *lwork - nwork + 1;
  1261. sormbr_("P", "R", "T", n, n, n, &a[a_offset], lda, &work[
  1262. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
  1263. ierr);
  1264. } else if (wntqa) {
  1265. /* Path 5a (M >= N, JOBZ='A') */
  1266. /* Perform bidiagonal SVD, computing left singular vectors */
  1267. /* of bidiagonal matrix in U and computing right singular */
  1268. /* vectors of bidiagonal matrix in VT */
  1269. /* Workspace: need 3*N [e, tauq, taup] + BDSPAC */
  1270. slaset_("F", m, m, &c_b63, &c_b63, &u[u_offset], ldu);
  1271. sbdsdc_("U", "I", n, &s[1], &work[ie], &u[u_offset], ldu, &vt[
  1272. vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
  1273. info);
  1274. /* Set the right corner of U to identity matrix */
  1275. if (*m > *n) {
  1276. i__1 = *m - *n;
  1277. i__2 = *m - *n;
  1278. slaset_("F", &i__1, &i__2, &c_b63, &c_b84, &u[*n + 1 + (*
  1279. n + 1) * u_dim1], ldu);
  1280. }
  1281. /* Overwrite U by left singular vectors of A and VT */
  1282. /* by right singular vectors of A */
  1283. /* Workspace: need 3*N [e, tauq, taup] + M [work] */
  1284. /* Workspace: prefer 3*N [e, tauq, taup] + M*NB [work] */
  1285. i__1 = *lwork - nwork + 1;
  1286. sormbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[
  1287. itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr);
  1288. i__1 = *lwork - nwork + 1;
  1289. sormbr_("P", "R", "T", n, n, m, &a[a_offset], lda, &work[
  1290. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
  1291. ierr);
  1292. }
  1293. }
  1294. } else {
  1295. /* A has more columns than rows. If A has sufficiently more */
  1296. /* columns than rows, first reduce using the LQ decomposition (if */
  1297. /* sufficient workspace available) */
  1298. if (*n >= mnthr) {
  1299. if (wntqn) {
  1300. /* Path 1t (N >> M, JOBZ='N') */
  1301. /* No singular vectors to be computed */
  1302. itau = 1;
  1303. nwork = itau + *m;
  1304. /* Compute A=L*Q */
  1305. /* Workspace: need M [tau] + M [work] */
  1306. /* Workspace: prefer M [tau] + M*NB [work] */
  1307. i__1 = *lwork - nwork + 1;
  1308. sgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
  1309. i__1, &ierr);
  1310. /* Zero out above L */
  1311. i__1 = *m - 1;
  1312. i__2 = *m - 1;
  1313. slaset_("U", &i__1, &i__2, &c_b63, &c_b63, &a[(a_dim1 << 1) +
  1314. 1], lda);
  1315. ie = 1;
  1316. itauq = ie + *m;
  1317. itaup = itauq + *m;
  1318. nwork = itaup + *m;
  1319. /* Bidiagonalize L in A */
  1320. /* Workspace: need 3*M [e, tauq, taup] + M [work] */
  1321. /* Workspace: prefer 3*M [e, tauq, taup] + 2*M*NB [work] */
  1322. i__1 = *lwork - nwork + 1;
  1323. sgebrd_(m, m, &a[a_offset], lda, &s[1], &work[ie], &work[
  1324. itauq], &work[itaup], &work[nwork], &i__1, &ierr);
  1325. nwork = ie + *m;
  1326. /* Perform bidiagonal SVD, computing singular values only */
  1327. /* Workspace: need M [e] + BDSPAC */
  1328. sbdsdc_("U", "N", m, &s[1], &work[ie], dum, &c__1, dum, &c__1,
  1329. dum, idum, &work[nwork], &iwork[1], info);
  1330. } else if (wntqo) {
  1331. /* Path 2t (N >> M, JOBZ='O') */
  1332. /* M right singular vectors to be overwritten on A and */
  1333. /* M left singular vectors to be computed in U */
  1334. ivt = 1;
  1335. /* WORK(IVT) is M by M */
  1336. /* WORK(IL) is M by M; it is later resized to M by chunk for gemm */
  1337. il = ivt + *m * *m;
  1338. if (*lwork >= *m * *n + *m * *m + *m * 3 + bdspac) {
  1339. ldwrkl = *m;
  1340. chunk = *n;
  1341. } else {
  1342. ldwrkl = *m;
  1343. chunk = (*lwork - *m * *m) / *m;
  1344. }
  1345. itau = il + ldwrkl * *m;
  1346. nwork = itau + *m;
  1347. /* Compute A=L*Q */
  1348. /* Workspace: need M*M [VT] + M*M [L] + M [tau] + M [work] */
  1349. /* Workspace: prefer M*M [VT] + M*M [L] + M [tau] + M*NB [work] */
  1350. i__1 = *lwork - nwork + 1;
  1351. sgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
  1352. i__1, &ierr);
  1353. /* Copy L to WORK(IL), zeroing about above it */
  1354. slacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwrkl);
  1355. i__1 = *m - 1;
  1356. i__2 = *m - 1;
  1357. slaset_("U", &i__1, &i__2, &c_b63, &c_b63, &work[il + ldwrkl],
  1358. &ldwrkl);
  1359. /* Generate Q in A */
  1360. /* Workspace: need M*M [VT] + M*M [L] + M [tau] + M [work] */
  1361. /* Workspace: prefer M*M [VT] + M*M [L] + M [tau] + M*NB [work] */
  1362. i__1 = *lwork - nwork + 1;
  1363. sorglq_(m, n, m, &a[a_offset], lda, &work[itau], &work[nwork],
  1364. &i__1, &ierr);
  1365. ie = itau;
  1366. itauq = ie + *m;
  1367. itaup = itauq + *m;
  1368. nwork = itaup + *m;
  1369. /* Bidiagonalize L in WORK(IL) */
  1370. /* Workspace: need M*M [VT] + M*M [L] + 3*M [e, tauq, taup] + M [work] */
  1371. /* Workspace: prefer M*M [VT] + M*M [L] + 3*M [e, tauq, taup] + 2*M*NB [work] */
  1372. i__1 = *lwork - nwork + 1;
  1373. sgebrd_(m, m, &work[il], &ldwrkl, &s[1], &work[ie], &work[
  1374. itauq], &work[itaup], &work[nwork], &i__1, &ierr);
  1375. /* Perform bidiagonal SVD, computing left singular vectors */
  1376. /* of bidiagonal matrix in U, and computing right singular */
  1377. /* vectors of bidiagonal matrix in WORK(IVT) */
  1378. /* Workspace: need M*M [VT] + M*M [L] + 3*M [e, tauq, taup] + BDSPAC */
  1379. sbdsdc_("U", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &
  1380. work[ivt], m, dum, idum, &work[nwork], &iwork[1],
  1381. info);
  1382. /* Overwrite U by left singular vectors of L and WORK(IVT) */
  1383. /* by right singular vectors of L */
  1384. /* Workspace: need M*M [VT] + M*M [L] + 3*M [e, tauq, taup] + M [work] */
  1385. /* Workspace: prefer M*M [VT] + M*M [L] + 3*M [e, tauq, taup] + M*NB [work] */
  1386. i__1 = *lwork - nwork + 1;
  1387. sormbr_("Q", "L", "N", m, m, m, &work[il], &ldwrkl, &work[
  1388. itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr);
  1389. i__1 = *lwork - nwork + 1;
  1390. sormbr_("P", "R", "T", m, m, m, &work[il], &ldwrkl, &work[
  1391. itaup], &work[ivt], m, &work[nwork], &i__1, &ierr);
  1392. /* Multiply right singular vectors of L in WORK(IVT) by Q */
  1393. /* in A, storing result in WORK(IL) and copying to A */
  1394. /* Workspace: need M*M [VT] + M*M [L] */
  1395. /* Workspace: prefer M*M [VT] + M*N [L] */
  1396. /* At this point, L is resized as M by chunk. */
  1397. i__1 = *n;
  1398. i__2 = chunk;
  1399. for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ +=
  1400. i__2) {
  1401. /* Computing MIN */
  1402. i__3 = *n - i__ + 1;
  1403. blk = f2cmin(i__3,chunk);
  1404. sgemm_("N", "N", m, &blk, m, &c_b84, &work[ivt], m, &a[
  1405. i__ * a_dim1 + 1], lda, &c_b63, &work[il], &
  1406. ldwrkl);
  1407. slacpy_("F", m, &blk, &work[il], &ldwrkl, &a[i__ * a_dim1
  1408. + 1], lda);
  1409. /* L30: */
  1410. }
  1411. } else if (wntqs) {
  1412. /* Path 3t (N >> M, JOBZ='S') */
  1413. /* M right singular vectors to be computed in VT and */
  1414. /* M left singular vectors to be computed in U */
  1415. il = 1;
  1416. /* WORK(IL) is M by M */
  1417. ldwrkl = *m;
  1418. itau = il + ldwrkl * *m;
  1419. nwork = itau + *m;
  1420. /* Compute A=L*Q */
  1421. /* Workspace: need M*M [L] + M [tau] + M [work] */
  1422. /* Workspace: prefer M*M [L] + M [tau] + M*NB [work] */
  1423. i__2 = *lwork - nwork + 1;
  1424. sgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
  1425. i__2, &ierr);
  1426. /* Copy L to WORK(IL), zeroing out above it */
  1427. slacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwrkl);
  1428. i__2 = *m - 1;
  1429. i__1 = *m - 1;
  1430. slaset_("U", &i__2, &i__1, &c_b63, &c_b63, &work[il + ldwrkl],
  1431. &ldwrkl);
  1432. /* Generate Q in A */
  1433. /* Workspace: need M*M [L] + M [tau] + M [work] */
  1434. /* Workspace: prefer M*M [L] + M [tau] + M*NB [work] */
  1435. i__2 = *lwork - nwork + 1;
  1436. sorglq_(m, n, m, &a[a_offset], lda, &work[itau], &work[nwork],
  1437. &i__2, &ierr);
  1438. ie = itau;
  1439. itauq = ie + *m;
  1440. itaup = itauq + *m;
  1441. nwork = itaup + *m;
  1442. /* Bidiagonalize L in WORK(IU). */
  1443. /* Workspace: need M*M [L] + 3*M [e, tauq, taup] + M [work] */
  1444. /* Workspace: prefer M*M [L] + 3*M [e, tauq, taup] + 2*M*NB [work] */
  1445. i__2 = *lwork - nwork + 1;
  1446. sgebrd_(m, m, &work[il], &ldwrkl, &s[1], &work[ie], &work[
  1447. itauq], &work[itaup], &work[nwork], &i__2, &ierr);
  1448. /* Perform bidiagonal SVD, computing left singular vectors */
  1449. /* of bidiagonal matrix in U and computing right singular */
  1450. /* vectors of bidiagonal matrix in VT */
  1451. /* Workspace: need M*M [L] + 3*M [e, tauq, taup] + BDSPAC */
  1452. sbdsdc_("U", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &vt[
  1453. vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
  1454. info);
  1455. /* Overwrite U by left singular vectors of L and VT */
  1456. /* by right singular vectors of L */
  1457. /* Workspace: need M*M [L] + 3*M [e, tauq, taup] + M [work] */
  1458. /* Workspace: prefer M*M [L] + 3*M [e, tauq, taup] + M*NB [work] */
  1459. i__2 = *lwork - nwork + 1;
  1460. sormbr_("Q", "L", "N", m, m, m, &work[il], &ldwrkl, &work[
  1461. itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr);
  1462. i__2 = *lwork - nwork + 1;
  1463. sormbr_("P", "R", "T", m, m, m, &work[il], &ldwrkl, &work[
  1464. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, &
  1465. ierr);
  1466. /* Multiply right singular vectors of L in WORK(IL) by */
  1467. /* Q in A, storing result in VT */
  1468. /* Workspace: need M*M [L] */
  1469. slacpy_("F", m, m, &vt[vt_offset], ldvt, &work[il], &ldwrkl);
  1470. sgemm_("N", "N", m, n, m, &c_b84, &work[il], &ldwrkl, &a[
  1471. a_offset], lda, &c_b63, &vt[vt_offset], ldvt);
  1472. } else if (wntqa) {
  1473. /* Path 4t (N >> M, JOBZ='A') */
  1474. /* N right singular vectors to be computed in VT and */
  1475. /* M left singular vectors to be computed in U */
  1476. ivt = 1;
  1477. /* WORK(IVT) is M by M */
  1478. ldwkvt = *m;
  1479. itau = ivt + ldwkvt * *m;
  1480. nwork = itau + *m;
  1481. /* Compute A=L*Q, copying result to VT */
  1482. /* Workspace: need M*M [VT] + M [tau] + M [work] */
  1483. /* Workspace: prefer M*M [VT] + M [tau] + M*NB [work] */
  1484. i__2 = *lwork - nwork + 1;
  1485. sgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
  1486. i__2, &ierr);
  1487. slacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt);
  1488. /* Generate Q in VT */
  1489. /* Workspace: need M*M [VT] + M [tau] + N [work] */
  1490. /* Workspace: prefer M*M [VT] + M [tau] + N*NB [work] */
  1491. i__2 = *lwork - nwork + 1;
  1492. sorglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], &work[
  1493. nwork], &i__2, &ierr);
  1494. /* Produce L in A, zeroing out other entries */
  1495. i__2 = *m - 1;
  1496. i__1 = *m - 1;
  1497. slaset_("U", &i__2, &i__1, &c_b63, &c_b63, &a[(a_dim1 << 1) +
  1498. 1], lda);
  1499. ie = itau;
  1500. itauq = ie + *m;
  1501. itaup = itauq + *m;
  1502. nwork = itaup + *m;
  1503. /* Bidiagonalize L in A */
  1504. /* Workspace: need M*M [VT] + 3*M [e, tauq, taup] + M [work] */
  1505. /* Workspace: prefer M*M [VT] + 3*M [e, tauq, taup] + 2*M*NB [work] */
  1506. i__2 = *lwork - nwork + 1;
  1507. sgebrd_(m, m, &a[a_offset], lda, &s[1], &work[ie], &work[
  1508. itauq], &work[itaup], &work[nwork], &i__2, &ierr);
  1509. /* Perform bidiagonal SVD, computing left singular vectors */
  1510. /* of bidiagonal matrix in U and computing right singular */
  1511. /* vectors of bidiagonal matrix in WORK(IVT) */
  1512. /* Workspace: need M*M [VT] + 3*M [e, tauq, taup] + BDSPAC */
  1513. sbdsdc_("U", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &
  1514. work[ivt], &ldwkvt, dum, idum, &work[nwork], &iwork[1]
  1515. , info);
  1516. /* Overwrite U by left singular vectors of L and WORK(IVT) */
  1517. /* by right singular vectors of L */
  1518. /* Workspace: need M*M [VT] + 3*M [e, tauq, taup]+ M [work] */
  1519. /* Workspace: prefer M*M [VT] + 3*M [e, tauq, taup]+ M*NB [work] */
  1520. i__2 = *lwork - nwork + 1;
  1521. sormbr_("Q", "L", "N", m, m, m, &a[a_offset], lda, &work[
  1522. itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr);
  1523. i__2 = *lwork - nwork + 1;
  1524. sormbr_("P", "R", "T", m, m, m, &a[a_offset], lda, &work[
  1525. itaup], &work[ivt], &ldwkvt, &work[nwork], &i__2, &
  1526. ierr);
  1527. /* Multiply right singular vectors of L in WORK(IVT) by */
  1528. /* Q in VT, storing result in A */
  1529. /* Workspace: need M*M [VT] */
  1530. sgemm_("N", "N", m, n, m, &c_b84, &work[ivt], &ldwkvt, &vt[
  1531. vt_offset], ldvt, &c_b63, &a[a_offset], lda);
  1532. /* Copy right singular vectors of A from A to VT */
  1533. slacpy_("F", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt);
  1534. }
  1535. } else {
  1536. /* N .LT. MNTHR */
  1537. /* Path 5t (N > M, but not much larger) */
  1538. /* Reduce to bidiagonal form without LQ decomposition */
  1539. ie = 1;
  1540. itauq = ie + *m;
  1541. itaup = itauq + *m;
  1542. nwork = itaup + *m;
  1543. /* Bidiagonalize A */
  1544. /* Workspace: need 3*M [e, tauq, taup] + N [work] */
  1545. /* Workspace: prefer 3*M [e, tauq, taup] + (M+N)*NB [work] */
  1546. i__2 = *lwork - nwork + 1;
  1547. sgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], &
  1548. work[itaup], &work[nwork], &i__2, &ierr);
  1549. if (wntqn) {
  1550. /* Path 5tn (N > M, JOBZ='N') */
  1551. /* Perform bidiagonal SVD, only computing singular values */
  1552. /* Workspace: need 3*M [e, tauq, taup] + BDSPAC */
  1553. sbdsdc_("L", "N", m, &s[1], &work[ie], dum, &c__1, dum, &c__1,
  1554. dum, idum, &work[nwork], &iwork[1], info);
  1555. } else if (wntqo) {
  1556. /* Path 5to (N > M, JOBZ='O') */
  1557. ldwkvt = *m;
  1558. ivt = nwork;
  1559. if (*lwork >= *m * *n + *m * 3 + bdspac) {
  1560. /* WORK( IVT ) is M by N */
  1561. slaset_("F", m, n, &c_b63, &c_b63, &work[ivt], &ldwkvt);
  1562. nwork = ivt + ldwkvt * *n;
  1563. /* IL is unused; silence compile warnings */
  1564. il = -1;
  1565. } else {
  1566. /* WORK( IVT ) is M by M */
  1567. nwork = ivt + ldwkvt * *m;
  1568. il = nwork;
  1569. /* WORK(IL) is M by CHUNK */
  1570. chunk = (*lwork - *m * *m - *m * 3) / *m;
  1571. }
  1572. /* Perform bidiagonal SVD, computing left singular vectors */
  1573. /* of bidiagonal matrix in U and computing right singular */
  1574. /* vectors of bidiagonal matrix in WORK(IVT) */
  1575. /* Workspace: need 3*M [e, tauq, taup] + M*M [VT] + BDSPAC */
  1576. sbdsdc_("L", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &
  1577. work[ivt], &ldwkvt, dum, idum, &work[nwork], &iwork[1]
  1578. , info);
  1579. /* Overwrite U by left singular vectors of A */
  1580. /* Workspace: need 3*M [e, tauq, taup] + M*M [VT] + M [work] */
  1581. /* Workspace: prefer 3*M [e, tauq, taup] + M*M [VT] + M*NB [work] */
  1582. i__2 = *lwork - nwork + 1;
  1583. sormbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[
  1584. itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr);
  1585. if (*lwork >= *m * *n + *m * 3 + bdspac) {
  1586. /* Path 5to-fast */
  1587. /* Overwrite WORK(IVT) by left singular vectors of A */
  1588. /* Workspace: need 3*M [e, tauq, taup] + M*N [VT] + M [work] */
  1589. /* Workspace: prefer 3*M [e, tauq, taup] + M*N [VT] + M*NB [work] */
  1590. i__2 = *lwork - nwork + 1;
  1591. sormbr_("P", "R", "T", m, n, m, &a[a_offset], lda, &work[
  1592. itaup], &work[ivt], &ldwkvt, &work[nwork], &i__2,
  1593. &ierr);
  1594. /* Copy right singular vectors of A from WORK(IVT) to A */
  1595. slacpy_("F", m, n, &work[ivt], &ldwkvt, &a[a_offset], lda);
  1596. } else {
  1597. /* Path 5to-slow */
  1598. /* Generate P**T in A */
  1599. /* Workspace: need 3*M [e, tauq, taup] + M*M [VT] + M [work] */
  1600. /* Workspace: prefer 3*M [e, tauq, taup] + M*M [VT] + M*NB [work] */
  1601. i__2 = *lwork - nwork + 1;
  1602. sorgbr_("P", m, n, m, &a[a_offset], lda, &work[itaup], &
  1603. work[nwork], &i__2, &ierr);
  1604. /* Multiply Q in A by right singular vectors of */
  1605. /* bidiagonal matrix in WORK(IVT), storing result in */
  1606. /* WORK(IL) and copying to A */
  1607. /* Workspace: need 3*M [e, tauq, taup] + M*M [VT] + M*NB [L] */
  1608. /* Workspace: prefer 3*M [e, tauq, taup] + M*M [VT] + M*N [L] */
  1609. i__2 = *n;
  1610. i__1 = chunk;
  1611. for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ +=
  1612. i__1) {
  1613. /* Computing MIN */
  1614. i__3 = *n - i__ + 1;
  1615. blk = f2cmin(i__3,chunk);
  1616. sgemm_("N", "N", m, &blk, m, &c_b84, &work[ivt], &
  1617. ldwkvt, &a[i__ * a_dim1 + 1], lda, &c_b63, &
  1618. work[il], m);
  1619. slacpy_("F", m, &blk, &work[il], m, &a[i__ * a_dim1 +
  1620. 1], lda);
  1621. /* L40: */
  1622. }
  1623. }
  1624. } else if (wntqs) {
  1625. /* Path 5ts (N > M, JOBZ='S') */
  1626. /* Perform bidiagonal SVD, computing left singular vectors */
  1627. /* of bidiagonal matrix in U and computing right singular */
  1628. /* vectors of bidiagonal matrix in VT */
  1629. /* Workspace: need 3*M [e, tauq, taup] + BDSPAC */
  1630. slaset_("F", m, n, &c_b63, &c_b63, &vt[vt_offset], ldvt);
  1631. sbdsdc_("L", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &vt[
  1632. vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
  1633. info);
  1634. /* Overwrite U by left singular vectors of A and VT */
  1635. /* by right singular vectors of A */
  1636. /* Workspace: need 3*M [e, tauq, taup] + M [work] */
  1637. /* Workspace: prefer 3*M [e, tauq, taup] + M*NB [work] */
  1638. i__1 = *lwork - nwork + 1;
  1639. sormbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[
  1640. itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr);
  1641. i__1 = *lwork - nwork + 1;
  1642. sormbr_("P", "R", "T", m, n, m, &a[a_offset], lda, &work[
  1643. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
  1644. ierr);
  1645. } else if (wntqa) {
  1646. /* Path 5ta (N > M, JOBZ='A') */
  1647. /* Perform bidiagonal SVD, computing left singular vectors */
  1648. /* of bidiagonal matrix in U and computing right singular */
  1649. /* vectors of bidiagonal matrix in VT */
  1650. /* Workspace: need 3*M [e, tauq, taup] + BDSPAC */
  1651. slaset_("F", n, n, &c_b63, &c_b63, &vt[vt_offset], ldvt);
  1652. sbdsdc_("L", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &vt[
  1653. vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
  1654. info);
  1655. /* Set the right corner of VT to identity matrix */
  1656. if (*n > *m) {
  1657. i__1 = *n - *m;
  1658. i__2 = *n - *m;
  1659. slaset_("F", &i__1, &i__2, &c_b63, &c_b84, &vt[*m + 1 + (*
  1660. m + 1) * vt_dim1], ldvt);
  1661. }
  1662. /* Overwrite U by left singular vectors of A and VT */
  1663. /* by right singular vectors of A */
  1664. /* Workspace: need 3*M [e, tauq, taup] + N [work] */
  1665. /* Workspace: prefer 3*M [e, tauq, taup] + N*NB [work] */
  1666. i__1 = *lwork - nwork + 1;
  1667. sormbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[
  1668. itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr);
  1669. i__1 = *lwork - nwork + 1;
  1670. sormbr_("P", "R", "T", n, n, m, &a[a_offset], lda, &work[
  1671. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
  1672. ierr);
  1673. }
  1674. }
  1675. }
  1676. /* Undo scaling if necessary */
  1677. if (iscl == 1) {
  1678. if (anrm > bignum) {
  1679. slascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
  1680. minmn, &ierr);
  1681. }
  1682. if (anrm < smlnum) {
  1683. slascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
  1684. minmn, &ierr);
  1685. }
  1686. }
  1687. /* Return optimal workspace in WORK(1) */
  1688. work[1] = (real) maxwrk;
  1689. return;
  1690. /* End of SGESDD */
  1691. } /* sgesdd_ */