You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sbdsqr.c 42 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static doublereal c_b15 = -.125;
  485. static integer c__1 = 1;
  486. static real c_b49 = 1.f;
  487. static real c_b72 = -1.f;
  488. /* > \brief \b SBDSQR */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download SBDSQR + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sbdsqr.
  495. f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sbdsqr.
  498. f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sbdsqr.
  501. f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE SBDSQR( UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U, */
  507. /* LDU, C, LDC, WORK, INFO ) */
  508. /* CHARACTER UPLO */
  509. /* INTEGER INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU */
  510. /* REAL C( LDC, * ), D( * ), E( * ), U( LDU, * ), */
  511. /* $ VT( LDVT, * ), WORK( * ) */
  512. /* > \par Purpose: */
  513. /* ============= */
  514. /* > */
  515. /* > \verbatim */
  516. /* > */
  517. /* > SBDSQR computes the singular values and, optionally, the right and/or */
  518. /* > left singular vectors from the singular value decomposition (SVD) of */
  519. /* > a real N-by-N (upper or lower) bidiagonal matrix B using the implicit */
  520. /* > zero-shift QR algorithm. The SVD of B has the form */
  521. /* > */
  522. /* > B = Q * S * P**T */
  523. /* > */
  524. /* > where S is the diagonal matrix of singular values, Q is an orthogonal */
  525. /* > matrix of left singular vectors, and P is an orthogonal matrix of */
  526. /* > right singular vectors. If left singular vectors are requested, this */
  527. /* > subroutine actually returns U*Q instead of Q, and, if right singular */
  528. /* > vectors are requested, this subroutine returns P**T*VT instead of */
  529. /* > P**T, for given real input matrices U and VT. When U and VT are the */
  530. /* > orthogonal matrices that reduce a general matrix A to bidiagonal */
  531. /* > form: A = U*B*VT, as computed by SGEBRD, then */
  532. /* > */
  533. /* > A = (U*Q) * S * (P**T*VT) */
  534. /* > */
  535. /* > is the SVD of A. Optionally, the subroutine may also compute Q**T*C */
  536. /* > for a given real input matrix C. */
  537. /* > */
  538. /* > See "Computing Small Singular Values of Bidiagonal Matrices With */
  539. /* > Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan, */
  540. /* > LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. vol. 11, */
  541. /* > no. 5, pp. 873-912, Sept 1990) and */
  542. /* > "Accurate singular values and differential qd algorithms," by */
  543. /* > B. Parlett and V. Fernando, Technical Report CPAM-554, Mathematics */
  544. /* > Department, University of California at Berkeley, July 1992 */
  545. /* > for a detailed description of the algorithm. */
  546. /* > \endverbatim */
  547. /* Arguments: */
  548. /* ========== */
  549. /* > \param[in] UPLO */
  550. /* > \verbatim */
  551. /* > UPLO is CHARACTER*1 */
  552. /* > = 'U': B is upper bidiagonal; */
  553. /* > = 'L': B is lower bidiagonal. */
  554. /* > \endverbatim */
  555. /* > */
  556. /* > \param[in] N */
  557. /* > \verbatim */
  558. /* > N is INTEGER */
  559. /* > The order of the matrix B. N >= 0. */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in] NCVT */
  563. /* > \verbatim */
  564. /* > NCVT is INTEGER */
  565. /* > The number of columns of the matrix VT. NCVT >= 0. */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in] NRU */
  569. /* > \verbatim */
  570. /* > NRU is INTEGER */
  571. /* > The number of rows of the matrix U. NRU >= 0. */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[in] NCC */
  575. /* > \verbatim */
  576. /* > NCC is INTEGER */
  577. /* > The number of columns of the matrix C. NCC >= 0. */
  578. /* > \endverbatim */
  579. /* > */
  580. /* > \param[in,out] D */
  581. /* > \verbatim */
  582. /* > D is REAL array, dimension (N) */
  583. /* > On entry, the n diagonal elements of the bidiagonal matrix B. */
  584. /* > On exit, if INFO=0, the singular values of B in decreasing */
  585. /* > order. */
  586. /* > \endverbatim */
  587. /* > */
  588. /* > \param[in,out] E */
  589. /* > \verbatim */
  590. /* > E is REAL array, dimension (N-1) */
  591. /* > On entry, the N-1 offdiagonal elements of the bidiagonal */
  592. /* > matrix B. */
  593. /* > On exit, if INFO = 0, E is destroyed; if INFO > 0, D and E */
  594. /* > will contain the diagonal and superdiagonal elements of a */
  595. /* > bidiagonal matrix orthogonally equivalent to the one given */
  596. /* > as input. */
  597. /* > \endverbatim */
  598. /* > */
  599. /* > \param[in,out] VT */
  600. /* > \verbatim */
  601. /* > VT is REAL array, dimension (LDVT, NCVT) */
  602. /* > On entry, an N-by-NCVT matrix VT. */
  603. /* > On exit, VT is overwritten by P**T * VT. */
  604. /* > Not referenced if NCVT = 0. */
  605. /* > \endverbatim */
  606. /* > */
  607. /* > \param[in] LDVT */
  608. /* > \verbatim */
  609. /* > LDVT is INTEGER */
  610. /* > The leading dimension of the array VT. */
  611. /* > LDVT >= f2cmax(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0. */
  612. /* > \endverbatim */
  613. /* > */
  614. /* > \param[in,out] U */
  615. /* > \verbatim */
  616. /* > U is REAL array, dimension (LDU, N) */
  617. /* > On entry, an NRU-by-N matrix U. */
  618. /* > On exit, U is overwritten by U * Q. */
  619. /* > Not referenced if NRU = 0. */
  620. /* > \endverbatim */
  621. /* > */
  622. /* > \param[in] LDU */
  623. /* > \verbatim */
  624. /* > LDU is INTEGER */
  625. /* > The leading dimension of the array U. LDU >= f2cmax(1,NRU). */
  626. /* > \endverbatim */
  627. /* > */
  628. /* > \param[in,out] C */
  629. /* > \verbatim */
  630. /* > C is REAL array, dimension (LDC, NCC) */
  631. /* > On entry, an N-by-NCC matrix C. */
  632. /* > On exit, C is overwritten by Q**T * C. */
  633. /* > Not referenced if NCC = 0. */
  634. /* > \endverbatim */
  635. /* > */
  636. /* > \param[in] LDC */
  637. /* > \verbatim */
  638. /* > LDC is INTEGER */
  639. /* > The leading dimension of the array C. */
  640. /* > LDC >= f2cmax(1,N) if NCC > 0; LDC >=1 if NCC = 0. */
  641. /* > \endverbatim */
  642. /* > */
  643. /* > \param[out] WORK */
  644. /* > \verbatim */
  645. /* > WORK is REAL array, dimension (4*N) */
  646. /* > \endverbatim */
  647. /* > */
  648. /* > \param[out] INFO */
  649. /* > \verbatim */
  650. /* > INFO is INTEGER */
  651. /* > = 0: successful exit */
  652. /* > < 0: If INFO = -i, the i-th argument had an illegal value */
  653. /* > > 0: */
  654. /* > if NCVT = NRU = NCC = 0, */
  655. /* > = 1, a split was marked by a positive value in E */
  656. /* > = 2, current block of Z not diagonalized after 30*N */
  657. /* > iterations (in inner while loop) */
  658. /* > = 3, termination criterion of outer while loop not met */
  659. /* > (program created more than N unreduced blocks) */
  660. /* > else NCVT = NRU = NCC = 0, */
  661. /* > the algorithm did not converge; D and E contain the */
  662. /* > elements of a bidiagonal matrix which is orthogonally */
  663. /* > similar to the input matrix B; if INFO = i, i */
  664. /* > elements of E have not converged to zero. */
  665. /* > \endverbatim */
  666. /* > \par Internal Parameters: */
  667. /* ========================= */
  668. /* > */
  669. /* > \verbatim */
  670. /* > TOLMUL REAL, default = f2cmax(10,f2cmin(100,EPS**(-1/8))) */
  671. /* > TOLMUL controls the convergence criterion of the QR loop. */
  672. /* > If it is positive, TOLMUL*EPS is the desired relative */
  673. /* > precision in the computed singular values. */
  674. /* > If it is negative, abs(TOLMUL*EPS*sigma_max) is the */
  675. /* > desired absolute accuracy in the computed singular */
  676. /* > values (corresponds to relative accuracy */
  677. /* > abs(TOLMUL*EPS) in the largest singular value. */
  678. /* > abs(TOLMUL) should be between 1 and 1/EPS, and preferably */
  679. /* > between 10 (for fast convergence) and .1/EPS */
  680. /* > (for there to be some accuracy in the results). */
  681. /* > Default is to lose at either one eighth or 2 of the */
  682. /* > available decimal digits in each computed singular value */
  683. /* > (whichever is smaller). */
  684. /* > */
  685. /* > MAXITR INTEGER, default = 6 */
  686. /* > MAXITR controls the maximum number of passes of the */
  687. /* > algorithm through its inner loop. The algorithms stops */
  688. /* > (and so fails to converge) if the number of passes */
  689. /* > through the inner loop exceeds MAXITR*N**2. */
  690. /* > \endverbatim */
  691. /* > \par Note: */
  692. /* =========== */
  693. /* > */
  694. /* > \verbatim */
  695. /* > Bug report from Cezary Dendek. */
  696. /* > On March 23rd 2017, the INTEGER variable MAXIT = MAXITR*N**2 is */
  697. /* > removed since it can overflow pretty easily (for N larger or equal */
  698. /* > than 18,919). We instead use MAXITDIVN = MAXITR*N. */
  699. /* > \endverbatim */
  700. /* Authors: */
  701. /* ======== */
  702. /* > \author Univ. of Tennessee */
  703. /* > \author Univ. of California Berkeley */
  704. /* > \author Univ. of Colorado Denver */
  705. /* > \author NAG Ltd. */
  706. /* > \date June 2017 */
  707. /* > \ingroup auxOTHERcomputational */
  708. /* ===================================================================== */
  709. /* Subroutine */ void sbdsqr_(char *uplo, integer *n, integer *ncvt, integer *
  710. nru, integer *ncc, real *d__, real *e, real *vt, integer *ldvt, real *
  711. u, integer *ldu, real *c__, integer *ldc, real *work, integer *info)
  712. {
  713. /* System generated locals */
  714. integer c_dim1, c_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1,
  715. i__2;
  716. real r__1, r__2, r__3, r__4;
  717. doublereal d__1;
  718. /* Local variables */
  719. real abse;
  720. integer idir;
  721. real abss;
  722. integer oldm;
  723. real cosl;
  724. integer isub, iter;
  725. real unfl, sinl, cosr, smin, smax, sinr;
  726. extern /* Subroutine */ void srot_(integer *, real *, integer *, real *,
  727. integer *, real *, real *);
  728. integer iterdivn;
  729. extern /* Subroutine */ void slas2_(real *, real *, real *, real *, real *)
  730. ;
  731. real f, g, h__;
  732. integer i__, j, m;
  733. real r__;
  734. extern logical lsame_(char *, char *);
  735. real oldcs;
  736. extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *);
  737. integer oldll;
  738. real shift, sigmn, oldsn, sminl;
  739. extern /* Subroutine */ void slasr_(char *, char *, char *, integer *,
  740. integer *, real *, real *, real *, integer *);
  741. real sigmx;
  742. logical lower;
  743. extern /* Subroutine */ void sswap_(integer *, real *, integer *, real *,
  744. integer *);
  745. integer maxitdivn;
  746. extern /* Subroutine */ void slasq1_(integer *, real *, real *, real *,
  747. integer *), slasv2_(real *, real *, real *, real *, real *, real *
  748. , real *, real *, real *);
  749. real cs;
  750. integer ll;
  751. real sn, mu;
  752. extern real slamch_(char *);
  753. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  754. real sminoa;
  755. extern /* Subroutine */ void slartg_(real *, real *, real *, real *, real *
  756. );
  757. real thresh;
  758. logical rotate;
  759. integer nm1;
  760. real tolmul;
  761. integer nm12, nm13, lll;
  762. real eps, sll, tol;
  763. /* -- LAPACK computational routine (version 3.7.1) -- */
  764. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  765. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  766. /* June 2017 */
  767. /* ===================================================================== */
  768. /* Test the input parameters. */
  769. /* Parameter adjustments */
  770. --d__;
  771. --e;
  772. vt_dim1 = *ldvt;
  773. vt_offset = 1 + vt_dim1 * 1;
  774. vt -= vt_offset;
  775. u_dim1 = *ldu;
  776. u_offset = 1 + u_dim1 * 1;
  777. u -= u_offset;
  778. c_dim1 = *ldc;
  779. c_offset = 1 + c_dim1 * 1;
  780. c__ -= c_offset;
  781. --work;
  782. /* Function Body */
  783. *info = 0;
  784. lower = lsame_(uplo, "L");
  785. if (! lsame_(uplo, "U") && ! lower) {
  786. *info = -1;
  787. } else if (*n < 0) {
  788. *info = -2;
  789. } else if (*ncvt < 0) {
  790. *info = -3;
  791. } else if (*nru < 0) {
  792. *info = -4;
  793. } else if (*ncc < 0) {
  794. *info = -5;
  795. } else if (*ncvt == 0 && *ldvt < 1 || *ncvt > 0 && *ldvt < f2cmax(1,*n)) {
  796. *info = -9;
  797. } else if (*ldu < f2cmax(1,*nru)) {
  798. *info = -11;
  799. } else if (*ncc == 0 && *ldc < 1 || *ncc > 0 && *ldc < f2cmax(1,*n)) {
  800. *info = -13;
  801. }
  802. if (*info != 0) {
  803. i__1 = -(*info);
  804. xerbla_("SBDSQR", &i__1, (ftnlen)6);
  805. return;
  806. }
  807. if (*n == 0) {
  808. return;
  809. }
  810. if (*n == 1) {
  811. goto L160;
  812. }
  813. /* ROTATE is true if any singular vectors desired, false otherwise */
  814. rotate = *ncvt > 0 || *nru > 0 || *ncc > 0;
  815. /* If no singular vectors desired, use qd algorithm */
  816. if (! rotate) {
  817. slasq1_(n, &d__[1], &e[1], &work[1], info);
  818. /* If INFO equals 2, dqds didn't finish, try to finish */
  819. if (*info != 2) {
  820. return;
  821. }
  822. *info = 0;
  823. }
  824. nm1 = *n - 1;
  825. nm12 = nm1 + nm1;
  826. nm13 = nm12 + nm1;
  827. idir = 0;
  828. /* Get machine constants */
  829. eps = slamch_("Epsilon");
  830. unfl = slamch_("Safe minimum");
  831. /* If matrix lower bidiagonal, rotate to be upper bidiagonal */
  832. /* by applying Givens rotations on the left */
  833. if (lower) {
  834. i__1 = *n - 1;
  835. for (i__ = 1; i__ <= i__1; ++i__) {
  836. slartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
  837. d__[i__] = r__;
  838. e[i__] = sn * d__[i__ + 1];
  839. d__[i__ + 1] = cs * d__[i__ + 1];
  840. work[i__] = cs;
  841. work[nm1 + i__] = sn;
  842. /* L10: */
  843. }
  844. /* Update singular vectors if desired */
  845. if (*nru > 0) {
  846. slasr_("R", "V", "F", nru, n, &work[1], &work[*n], &u[u_offset],
  847. ldu);
  848. }
  849. if (*ncc > 0) {
  850. slasr_("L", "V", "F", n, ncc, &work[1], &work[*n], &c__[c_offset],
  851. ldc);
  852. }
  853. }
  854. /* Compute singular values to relative accuracy TOL */
  855. /* (By setting TOL to be negative, algorithm will compute */
  856. /* singular values to absolute accuracy ABS(TOL)*norm(input matrix)) */
  857. /* Computing MAX */
  858. /* Computing MIN */
  859. d__1 = (doublereal) eps;
  860. r__3 = 100.f, r__4 = pow_dd(&d__1, &c_b15);
  861. r__1 = 10.f, r__2 = f2cmin(r__3,r__4);
  862. tolmul = f2cmax(r__1,r__2);
  863. tol = tolmul * eps;
  864. /* Compute approximate maximum, minimum singular values */
  865. smax = 0.f;
  866. i__1 = *n;
  867. for (i__ = 1; i__ <= i__1; ++i__) {
  868. /* Computing MAX */
  869. r__2 = smax, r__3 = (r__1 = d__[i__], abs(r__1));
  870. smax = f2cmax(r__2,r__3);
  871. /* L20: */
  872. }
  873. i__1 = *n - 1;
  874. for (i__ = 1; i__ <= i__1; ++i__) {
  875. /* Computing MAX */
  876. r__2 = smax, r__3 = (r__1 = e[i__], abs(r__1));
  877. smax = f2cmax(r__2,r__3);
  878. /* L30: */
  879. }
  880. sminl = 0.f;
  881. if (tol >= 0.f) {
  882. /* Relative accuracy desired */
  883. sminoa = abs(d__[1]);
  884. if (sminoa == 0.f) {
  885. goto L50;
  886. }
  887. mu = sminoa;
  888. i__1 = *n;
  889. for (i__ = 2; i__ <= i__1; ++i__) {
  890. mu = (r__2 = d__[i__], abs(r__2)) * (mu / (mu + (r__1 = e[i__ - 1]
  891. , abs(r__1))));
  892. sminoa = f2cmin(sminoa,mu);
  893. if (sminoa == 0.f) {
  894. goto L50;
  895. }
  896. /* L40: */
  897. }
  898. L50:
  899. sminoa /= sqrt((real) (*n));
  900. /* Computing MAX */
  901. r__1 = tol * sminoa, r__2 = *n * (*n * unfl) * 6;
  902. thresh = f2cmax(r__1,r__2);
  903. } else {
  904. /* Absolute accuracy desired */
  905. /* Computing MAX */
  906. r__1 = abs(tol) * smax, r__2 = *n * (*n * unfl) * 6;
  907. thresh = f2cmax(r__1,r__2);
  908. }
  909. /* Prepare for main iteration loop for the singular values */
  910. /* (MAXIT is the maximum number of passes through the inner */
  911. /* loop permitted before nonconvergence signalled.) */
  912. maxitdivn = *n * 6;
  913. iterdivn = 0;
  914. iter = -1;
  915. oldll = -1;
  916. oldm = -1;
  917. /* M points to last element of unconverged part of matrix */
  918. m = *n;
  919. /* Begin main iteration loop */
  920. L60:
  921. /* Check for convergence or exceeding iteration count */
  922. if (m <= 1) {
  923. goto L160;
  924. }
  925. if (iter >= *n) {
  926. iter -= *n;
  927. ++iterdivn;
  928. if (iterdivn >= maxitdivn) {
  929. goto L200;
  930. }
  931. }
  932. /* Find diagonal block of matrix to work on */
  933. if (tol < 0.f && (r__1 = d__[m], abs(r__1)) <= thresh) {
  934. d__[m] = 0.f;
  935. }
  936. smax = (r__1 = d__[m], abs(r__1));
  937. smin = smax;
  938. i__1 = m - 1;
  939. for (lll = 1; lll <= i__1; ++lll) {
  940. ll = m - lll;
  941. abss = (r__1 = d__[ll], abs(r__1));
  942. abse = (r__1 = e[ll], abs(r__1));
  943. if (tol < 0.f && abss <= thresh) {
  944. d__[ll] = 0.f;
  945. }
  946. if (abse <= thresh) {
  947. goto L80;
  948. }
  949. smin = f2cmin(smin,abss);
  950. /* Computing MAX */
  951. r__1 = f2cmax(smax,abss);
  952. smax = f2cmax(r__1,abse);
  953. /* L70: */
  954. }
  955. ll = 0;
  956. goto L90;
  957. L80:
  958. e[ll] = 0.f;
  959. /* Matrix splits since E(LL) = 0 */
  960. if (ll == m - 1) {
  961. /* Convergence of bottom singular value, return to top of loop */
  962. --m;
  963. goto L60;
  964. }
  965. L90:
  966. ++ll;
  967. /* E(LL) through E(M-1) are nonzero, E(LL-1) is zero */
  968. if (ll == m - 1) {
  969. /* 2 by 2 block, handle separately */
  970. slasv2_(&d__[m - 1], &e[m - 1], &d__[m], &sigmn, &sigmx, &sinr, &cosr,
  971. &sinl, &cosl);
  972. d__[m - 1] = sigmx;
  973. e[m - 1] = 0.f;
  974. d__[m] = sigmn;
  975. /* Compute singular vectors, if desired */
  976. if (*ncvt > 0) {
  977. srot_(ncvt, &vt[m - 1 + vt_dim1], ldvt, &vt[m + vt_dim1], ldvt, &
  978. cosr, &sinr);
  979. }
  980. if (*nru > 0) {
  981. srot_(nru, &u[(m - 1) * u_dim1 + 1], &c__1, &u[m * u_dim1 + 1], &
  982. c__1, &cosl, &sinl);
  983. }
  984. if (*ncc > 0) {
  985. srot_(ncc, &c__[m - 1 + c_dim1], ldc, &c__[m + c_dim1], ldc, &
  986. cosl, &sinl);
  987. }
  988. m += -2;
  989. goto L60;
  990. }
  991. /* If working on new submatrix, choose shift direction */
  992. /* (from larger end diagonal element towards smaller) */
  993. if (ll > oldm || m < oldll) {
  994. if ((r__1 = d__[ll], abs(r__1)) >= (r__2 = d__[m], abs(r__2))) {
  995. /* Chase bulge from top (big end) to bottom (small end) */
  996. idir = 1;
  997. } else {
  998. /* Chase bulge from bottom (big end) to top (small end) */
  999. idir = 2;
  1000. }
  1001. }
  1002. /* Apply convergence tests */
  1003. if (idir == 1) {
  1004. /* Run convergence test in forward direction */
  1005. /* First apply standard test to bottom of matrix */
  1006. if ((r__2 = e[m - 1], abs(r__2)) <= abs(tol) * (r__1 = d__[m], abs(
  1007. r__1)) || tol < 0.f && (r__3 = e[m - 1], abs(r__3)) <= thresh)
  1008. {
  1009. e[m - 1] = 0.f;
  1010. goto L60;
  1011. }
  1012. if (tol >= 0.f) {
  1013. /* If relative accuracy desired, */
  1014. /* apply convergence criterion forward */
  1015. mu = (r__1 = d__[ll], abs(r__1));
  1016. sminl = mu;
  1017. i__1 = m - 1;
  1018. for (lll = ll; lll <= i__1; ++lll) {
  1019. if ((r__1 = e[lll], abs(r__1)) <= tol * mu) {
  1020. e[lll] = 0.f;
  1021. goto L60;
  1022. }
  1023. mu = (r__2 = d__[lll + 1], abs(r__2)) * (mu / (mu + (r__1 = e[
  1024. lll], abs(r__1))));
  1025. sminl = f2cmin(sminl,mu);
  1026. /* L100: */
  1027. }
  1028. }
  1029. } else {
  1030. /* Run convergence test in backward direction */
  1031. /* First apply standard test to top of matrix */
  1032. if ((r__2 = e[ll], abs(r__2)) <= abs(tol) * (r__1 = d__[ll], abs(r__1)
  1033. ) || tol < 0.f && (r__3 = e[ll], abs(r__3)) <= thresh) {
  1034. e[ll] = 0.f;
  1035. goto L60;
  1036. }
  1037. if (tol >= 0.f) {
  1038. /* If relative accuracy desired, */
  1039. /* apply convergence criterion backward */
  1040. mu = (r__1 = d__[m], abs(r__1));
  1041. sminl = mu;
  1042. i__1 = ll;
  1043. for (lll = m - 1; lll >= i__1; --lll) {
  1044. if ((r__1 = e[lll], abs(r__1)) <= tol * mu) {
  1045. e[lll] = 0.f;
  1046. goto L60;
  1047. }
  1048. mu = (r__2 = d__[lll], abs(r__2)) * (mu / (mu + (r__1 = e[lll]
  1049. , abs(r__1))));
  1050. sminl = f2cmin(sminl,mu);
  1051. /* L110: */
  1052. }
  1053. }
  1054. }
  1055. oldll = ll;
  1056. oldm = m;
  1057. /* Compute shift. First, test if shifting would ruin relative */
  1058. /* accuracy, and if so set the shift to zero. */
  1059. /* Computing MAX */
  1060. r__1 = eps, r__2 = tol * .01f;
  1061. if (tol >= 0.f && *n * tol * (sminl / smax) <= f2cmax(r__1,r__2)) {
  1062. /* Use a zero shift to avoid loss of relative accuracy */
  1063. shift = 0.f;
  1064. } else {
  1065. /* Compute the shift from 2-by-2 block at end of matrix */
  1066. if (idir == 1) {
  1067. sll = (r__1 = d__[ll], abs(r__1));
  1068. slas2_(&d__[m - 1], &e[m - 1], &d__[m], &shift, &r__);
  1069. } else {
  1070. sll = (r__1 = d__[m], abs(r__1));
  1071. slas2_(&d__[ll], &e[ll], &d__[ll + 1], &shift, &r__);
  1072. }
  1073. /* Test if shift negligible, and if so set to zero */
  1074. if (sll > 0.f) {
  1075. /* Computing 2nd power */
  1076. r__1 = shift / sll;
  1077. if (r__1 * r__1 < eps) {
  1078. shift = 0.f;
  1079. }
  1080. }
  1081. }
  1082. /* Increment iteration count */
  1083. iter = iter + m - ll;
  1084. /* If SHIFT = 0, do simplified QR iteration */
  1085. if (shift == 0.f) {
  1086. if (idir == 1) {
  1087. /* Chase bulge from top to bottom */
  1088. /* Save cosines and sines for later singular vector updates */
  1089. cs = 1.f;
  1090. oldcs = 1.f;
  1091. i__1 = m - 1;
  1092. for (i__ = ll; i__ <= i__1; ++i__) {
  1093. r__1 = d__[i__] * cs;
  1094. slartg_(&r__1, &e[i__], &cs, &sn, &r__);
  1095. if (i__ > ll) {
  1096. e[i__ - 1] = oldsn * r__;
  1097. }
  1098. r__1 = oldcs * r__;
  1099. r__2 = d__[i__ + 1] * sn;
  1100. slartg_(&r__1, &r__2, &oldcs, &oldsn, &d__[i__]);
  1101. work[i__ - ll + 1] = cs;
  1102. work[i__ - ll + 1 + nm1] = sn;
  1103. work[i__ - ll + 1 + nm12] = oldcs;
  1104. work[i__ - ll + 1 + nm13] = oldsn;
  1105. /* L120: */
  1106. }
  1107. h__ = d__[m] * cs;
  1108. d__[m] = h__ * oldcs;
  1109. e[m - 1] = h__ * oldsn;
  1110. /* Update singular vectors */
  1111. if (*ncvt > 0) {
  1112. i__1 = m - ll + 1;
  1113. slasr_("L", "V", "F", &i__1, ncvt, &work[1], &work[*n], &vt[
  1114. ll + vt_dim1], ldvt);
  1115. }
  1116. if (*nru > 0) {
  1117. i__1 = m - ll + 1;
  1118. slasr_("R", "V", "F", nru, &i__1, &work[nm12 + 1], &work[nm13
  1119. + 1], &u[ll * u_dim1 + 1], ldu);
  1120. }
  1121. if (*ncc > 0) {
  1122. i__1 = m - ll + 1;
  1123. slasr_("L", "V", "F", &i__1, ncc, &work[nm12 + 1], &work[nm13
  1124. + 1], &c__[ll + c_dim1], ldc);
  1125. }
  1126. /* Test convergence */
  1127. if ((r__1 = e[m - 1], abs(r__1)) <= thresh) {
  1128. e[m - 1] = 0.f;
  1129. }
  1130. } else {
  1131. /* Chase bulge from bottom to top */
  1132. /* Save cosines and sines for later singular vector updates */
  1133. cs = 1.f;
  1134. oldcs = 1.f;
  1135. i__1 = ll + 1;
  1136. for (i__ = m; i__ >= i__1; --i__) {
  1137. r__1 = d__[i__] * cs;
  1138. slartg_(&r__1, &e[i__ - 1], &cs, &sn, &r__);
  1139. if (i__ < m) {
  1140. e[i__] = oldsn * r__;
  1141. }
  1142. r__1 = oldcs * r__;
  1143. r__2 = d__[i__ - 1] * sn;
  1144. slartg_(&r__1, &r__2, &oldcs, &oldsn, &d__[i__]);
  1145. work[i__ - ll] = cs;
  1146. work[i__ - ll + nm1] = -sn;
  1147. work[i__ - ll + nm12] = oldcs;
  1148. work[i__ - ll + nm13] = -oldsn;
  1149. /* L130: */
  1150. }
  1151. h__ = d__[ll] * cs;
  1152. d__[ll] = h__ * oldcs;
  1153. e[ll] = h__ * oldsn;
  1154. /* Update singular vectors */
  1155. if (*ncvt > 0) {
  1156. i__1 = m - ll + 1;
  1157. slasr_("L", "V", "B", &i__1, ncvt, &work[nm12 + 1], &work[
  1158. nm13 + 1], &vt[ll + vt_dim1], ldvt);
  1159. }
  1160. if (*nru > 0) {
  1161. i__1 = m - ll + 1;
  1162. slasr_("R", "V", "B", nru, &i__1, &work[1], &work[*n], &u[ll *
  1163. u_dim1 + 1], ldu);
  1164. }
  1165. if (*ncc > 0) {
  1166. i__1 = m - ll + 1;
  1167. slasr_("L", "V", "B", &i__1, ncc, &work[1], &work[*n], &c__[
  1168. ll + c_dim1], ldc);
  1169. }
  1170. /* Test convergence */
  1171. if ((r__1 = e[ll], abs(r__1)) <= thresh) {
  1172. e[ll] = 0.f;
  1173. }
  1174. }
  1175. } else {
  1176. /* Use nonzero shift */
  1177. if (idir == 1) {
  1178. /* Chase bulge from top to bottom */
  1179. /* Save cosines and sines for later singular vector updates */
  1180. f = ((r__1 = d__[ll], abs(r__1)) - shift) * (r_sign(&c_b49, &d__[
  1181. ll]) + shift / d__[ll]);
  1182. g = e[ll];
  1183. i__1 = m - 1;
  1184. for (i__ = ll; i__ <= i__1; ++i__) {
  1185. slartg_(&f, &g, &cosr, &sinr, &r__);
  1186. if (i__ > ll) {
  1187. e[i__ - 1] = r__;
  1188. }
  1189. f = cosr * d__[i__] + sinr * e[i__];
  1190. e[i__] = cosr * e[i__] - sinr * d__[i__];
  1191. g = sinr * d__[i__ + 1];
  1192. d__[i__ + 1] = cosr * d__[i__ + 1];
  1193. slartg_(&f, &g, &cosl, &sinl, &r__);
  1194. d__[i__] = r__;
  1195. f = cosl * e[i__] + sinl * d__[i__ + 1];
  1196. d__[i__ + 1] = cosl * d__[i__ + 1] - sinl * e[i__];
  1197. if (i__ < m - 1) {
  1198. g = sinl * e[i__ + 1];
  1199. e[i__ + 1] = cosl * e[i__ + 1];
  1200. }
  1201. work[i__ - ll + 1] = cosr;
  1202. work[i__ - ll + 1 + nm1] = sinr;
  1203. work[i__ - ll + 1 + nm12] = cosl;
  1204. work[i__ - ll + 1 + nm13] = sinl;
  1205. /* L140: */
  1206. }
  1207. e[m - 1] = f;
  1208. /* Update singular vectors */
  1209. if (*ncvt > 0) {
  1210. i__1 = m - ll + 1;
  1211. slasr_("L", "V", "F", &i__1, ncvt, &work[1], &work[*n], &vt[
  1212. ll + vt_dim1], ldvt);
  1213. }
  1214. if (*nru > 0) {
  1215. i__1 = m - ll + 1;
  1216. slasr_("R", "V", "F", nru, &i__1, &work[nm12 + 1], &work[nm13
  1217. + 1], &u[ll * u_dim1 + 1], ldu);
  1218. }
  1219. if (*ncc > 0) {
  1220. i__1 = m - ll + 1;
  1221. slasr_("L", "V", "F", &i__1, ncc, &work[nm12 + 1], &work[nm13
  1222. + 1], &c__[ll + c_dim1], ldc);
  1223. }
  1224. /* Test convergence */
  1225. if ((r__1 = e[m - 1], abs(r__1)) <= thresh) {
  1226. e[m - 1] = 0.f;
  1227. }
  1228. } else {
  1229. /* Chase bulge from bottom to top */
  1230. /* Save cosines and sines for later singular vector updates */
  1231. f = ((r__1 = d__[m], abs(r__1)) - shift) * (r_sign(&c_b49, &d__[m]
  1232. ) + shift / d__[m]);
  1233. g = e[m - 1];
  1234. i__1 = ll + 1;
  1235. for (i__ = m; i__ >= i__1; --i__) {
  1236. slartg_(&f, &g, &cosr, &sinr, &r__);
  1237. if (i__ < m) {
  1238. e[i__] = r__;
  1239. }
  1240. f = cosr * d__[i__] + sinr * e[i__ - 1];
  1241. e[i__ - 1] = cosr * e[i__ - 1] - sinr * d__[i__];
  1242. g = sinr * d__[i__ - 1];
  1243. d__[i__ - 1] = cosr * d__[i__ - 1];
  1244. slartg_(&f, &g, &cosl, &sinl, &r__);
  1245. d__[i__] = r__;
  1246. f = cosl * e[i__ - 1] + sinl * d__[i__ - 1];
  1247. d__[i__ - 1] = cosl * d__[i__ - 1] - sinl * e[i__ - 1];
  1248. if (i__ > ll + 1) {
  1249. g = sinl * e[i__ - 2];
  1250. e[i__ - 2] = cosl * e[i__ - 2];
  1251. }
  1252. work[i__ - ll] = cosr;
  1253. work[i__ - ll + nm1] = -sinr;
  1254. work[i__ - ll + nm12] = cosl;
  1255. work[i__ - ll + nm13] = -sinl;
  1256. /* L150: */
  1257. }
  1258. e[ll] = f;
  1259. /* Test convergence */
  1260. if ((r__1 = e[ll], abs(r__1)) <= thresh) {
  1261. e[ll] = 0.f;
  1262. }
  1263. /* Update singular vectors if desired */
  1264. if (*ncvt > 0) {
  1265. i__1 = m - ll + 1;
  1266. slasr_("L", "V", "B", &i__1, ncvt, &work[nm12 + 1], &work[
  1267. nm13 + 1], &vt[ll + vt_dim1], ldvt);
  1268. }
  1269. if (*nru > 0) {
  1270. i__1 = m - ll + 1;
  1271. slasr_("R", "V", "B", nru, &i__1, &work[1], &work[*n], &u[ll *
  1272. u_dim1 + 1], ldu);
  1273. }
  1274. if (*ncc > 0) {
  1275. i__1 = m - ll + 1;
  1276. slasr_("L", "V", "B", &i__1, ncc, &work[1], &work[*n], &c__[
  1277. ll + c_dim1], ldc);
  1278. }
  1279. }
  1280. }
  1281. /* QR iteration finished, go back and check convergence */
  1282. goto L60;
  1283. /* All singular values converged, so make them positive */
  1284. L160:
  1285. i__1 = *n;
  1286. for (i__ = 1; i__ <= i__1; ++i__) {
  1287. if (d__[i__] < 0.f) {
  1288. d__[i__] = -d__[i__];
  1289. /* Change sign of singular vectors, if desired */
  1290. if (*ncvt > 0) {
  1291. sscal_(ncvt, &c_b72, &vt[i__ + vt_dim1], ldvt);
  1292. }
  1293. }
  1294. /* L170: */
  1295. }
  1296. /* Sort the singular values into decreasing order (insertion sort on */
  1297. /* singular values, but only one transposition per singular vector) */
  1298. i__1 = *n - 1;
  1299. for (i__ = 1; i__ <= i__1; ++i__) {
  1300. /* Scan for smallest D(I) */
  1301. isub = 1;
  1302. smin = d__[1];
  1303. i__2 = *n + 1 - i__;
  1304. for (j = 2; j <= i__2; ++j) {
  1305. if (d__[j] <= smin) {
  1306. isub = j;
  1307. smin = d__[j];
  1308. }
  1309. /* L180: */
  1310. }
  1311. if (isub != *n + 1 - i__) {
  1312. /* Swap singular values and vectors */
  1313. d__[isub] = d__[*n + 1 - i__];
  1314. d__[*n + 1 - i__] = smin;
  1315. if (*ncvt > 0) {
  1316. sswap_(ncvt, &vt[isub + vt_dim1], ldvt, &vt[*n + 1 - i__ +
  1317. vt_dim1], ldvt);
  1318. }
  1319. if (*nru > 0) {
  1320. sswap_(nru, &u[isub * u_dim1 + 1], &c__1, &u[(*n + 1 - i__) *
  1321. u_dim1 + 1], &c__1);
  1322. }
  1323. if (*ncc > 0) {
  1324. sswap_(ncc, &c__[isub + c_dim1], ldc, &c__[*n + 1 - i__ +
  1325. c_dim1], ldc);
  1326. }
  1327. }
  1328. /* L190: */
  1329. }
  1330. goto L220;
  1331. /* Maximum number of iterations exceeded, failure to converge */
  1332. L200:
  1333. *info = 0;
  1334. i__1 = *n - 1;
  1335. for (i__ = 1; i__ <= i__1; ++i__) {
  1336. if (e[i__] != 0.f) {
  1337. ++(*info);
  1338. }
  1339. /* L210: */
  1340. }
  1341. L220:
  1342. return;
  1343. /* End of SBDSQR */
  1344. } /* sbdsqr_ */