You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlaqr4.c 42 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__13 = 13;
  485. static integer c__15 = 15;
  486. static integer c_n1 = -1;
  487. static integer c__12 = 12;
  488. static integer c__14 = 14;
  489. static integer c__16 = 16;
  490. static logical c_false = FALSE_;
  491. static integer c__1 = 1;
  492. static integer c__3 = 3;
  493. /* > \brief \b DLAQR4 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Sc
  494. hur decomposition. */
  495. /* =========== DOCUMENTATION =========== */
  496. /* Online html documentation available at */
  497. /* http://www.netlib.org/lapack/explore-html/ */
  498. /* > \htmlonly */
  499. /* > Download DLAQR4 + dependencies */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqr4.
  501. f"> */
  502. /* > [TGZ]</a> */
  503. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqr4.
  504. f"> */
  505. /* > [ZIP]</a> */
  506. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqr4.
  507. f"> */
  508. /* > [TXT]</a> */
  509. /* > \endhtmlonly */
  510. /* Definition: */
  511. /* =========== */
  512. /* SUBROUTINE DLAQR4( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, */
  513. /* ILOZ, IHIZ, Z, LDZ, WORK, LWORK, INFO ) */
  514. /* INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N */
  515. /* LOGICAL WANTT, WANTZ */
  516. /* DOUBLE PRECISION H( LDH, * ), WI( * ), WORK( * ), WR( * ), */
  517. /* $ Z( LDZ, * ) */
  518. /* > \par Purpose: */
  519. /* ============= */
  520. /* > */
  521. /* > \verbatim */
  522. /* > */
  523. /* > DLAQR4 implements one level of recursion for DLAQR0. */
  524. /* > It is a complete implementation of the small bulge multi-shift */
  525. /* > QR algorithm. It may be called by DLAQR0 and, for large enough */
  526. /* > deflation window size, it may be called by DLAQR3. This */
  527. /* > subroutine is identical to DLAQR0 except that it calls DLAQR2 */
  528. /* > instead of DLAQR3. */
  529. /* > */
  530. /* > DLAQR4 computes the eigenvalues of a Hessenberg matrix H */
  531. /* > and, optionally, the matrices T and Z from the Schur decomposition */
  532. /* > H = Z T Z**T, where T is an upper quasi-triangular matrix (the */
  533. /* > Schur form), and Z is the orthogonal matrix of Schur vectors. */
  534. /* > */
  535. /* > Optionally Z may be postmultiplied into an input orthogonal */
  536. /* > matrix Q so that this routine can give the Schur factorization */
  537. /* > of a matrix A which has been reduced to the Hessenberg form H */
  538. /* > by the orthogonal matrix Q: A = Q*H*Q**T = (QZ)*T*(QZ)**T. */
  539. /* > \endverbatim */
  540. /* Arguments: */
  541. /* ========== */
  542. /* > \param[in] WANTT */
  543. /* > \verbatim */
  544. /* > WANTT is LOGICAL */
  545. /* > = .TRUE. : the full Schur form T is required; */
  546. /* > = .FALSE.: only eigenvalues are required. */
  547. /* > \endverbatim */
  548. /* > */
  549. /* > \param[in] WANTZ */
  550. /* > \verbatim */
  551. /* > WANTZ is LOGICAL */
  552. /* > = .TRUE. : the matrix of Schur vectors Z is required; */
  553. /* > = .FALSE.: Schur vectors are not required. */
  554. /* > \endverbatim */
  555. /* > */
  556. /* > \param[in] N */
  557. /* > \verbatim */
  558. /* > N is INTEGER */
  559. /* > The order of the matrix H. N >= 0. */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in] ILO */
  563. /* > \verbatim */
  564. /* > ILO is INTEGER */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in] IHI */
  568. /* > \verbatim */
  569. /* > IHI is INTEGER */
  570. /* > It is assumed that H is already upper triangular in rows */
  571. /* > and columns 1:ILO-1 and IHI+1:N and, if ILO > 1, */
  572. /* > H(ILO,ILO-1) is zero. ILO and IHI are normally set by a */
  573. /* > previous call to DGEBAL, and then passed to DGEHRD when the */
  574. /* > matrix output by DGEBAL is reduced to Hessenberg form. */
  575. /* > Otherwise, ILO and IHI should be set to 1 and N, */
  576. /* > respectively. If N > 0, then 1 <= ILO <= IHI <= N. */
  577. /* > If N = 0, then ILO = 1 and IHI = 0. */
  578. /* > \endverbatim */
  579. /* > */
  580. /* > \param[in,out] H */
  581. /* > \verbatim */
  582. /* > H is DOUBLE PRECISION array, dimension (LDH,N) */
  583. /* > On entry, the upper Hessenberg matrix H. */
  584. /* > On exit, if INFO = 0 and WANTT is .TRUE., then H contains */
  585. /* > the upper quasi-triangular matrix T from the Schur */
  586. /* > decomposition (the Schur form); 2-by-2 diagonal blocks */
  587. /* > (corresponding to complex conjugate pairs of eigenvalues) */
  588. /* > are returned in standard form, with H(i,i) = H(i+1,i+1) */
  589. /* > and H(i+1,i)*H(i,i+1) < 0. If INFO = 0 and WANTT is */
  590. /* > .FALSE., then the contents of H are unspecified on exit. */
  591. /* > (The output value of H when INFO > 0 is given under the */
  592. /* > description of INFO below.) */
  593. /* > */
  594. /* > This subroutine may explicitly set H(i,j) = 0 for i > j and */
  595. /* > j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N. */
  596. /* > \endverbatim */
  597. /* > */
  598. /* > \param[in] LDH */
  599. /* > \verbatim */
  600. /* > LDH is INTEGER */
  601. /* > The leading dimension of the array H. LDH >= f2cmax(1,N). */
  602. /* > \endverbatim */
  603. /* > */
  604. /* > \param[out] WR */
  605. /* > \verbatim */
  606. /* > WR is DOUBLE PRECISION array, dimension (IHI) */
  607. /* > \endverbatim */
  608. /* > */
  609. /* > \param[out] WI */
  610. /* > \verbatim */
  611. /* > WI is DOUBLE PRECISION array, dimension (IHI) */
  612. /* > The real and imaginary parts, respectively, of the computed */
  613. /* > eigenvalues of H(ILO:IHI,ILO:IHI) are stored in WR(ILO:IHI) */
  614. /* > and WI(ILO:IHI). If two eigenvalues are computed as a */
  615. /* > complex conjugate pair, they are stored in consecutive */
  616. /* > elements of WR and WI, say the i-th and (i+1)th, with */
  617. /* > WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., then */
  618. /* > the eigenvalues are stored in the same order as on the */
  619. /* > diagonal of the Schur form returned in H, with */
  620. /* > WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal */
  621. /* > block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and */
  622. /* > WI(i+1) = -WI(i). */
  623. /* > \endverbatim */
  624. /* > */
  625. /* > \param[in] ILOZ */
  626. /* > \verbatim */
  627. /* > ILOZ is INTEGER */
  628. /* > \endverbatim */
  629. /* > */
  630. /* > \param[in] IHIZ */
  631. /* > \verbatim */
  632. /* > IHIZ is INTEGER */
  633. /* > Specify the rows of Z to which transformations must be */
  634. /* > applied if WANTZ is .TRUE.. */
  635. /* > 1 <= ILOZ <= ILO; IHI <= IHIZ <= N. */
  636. /* > \endverbatim */
  637. /* > */
  638. /* > \param[in,out] Z */
  639. /* > \verbatim */
  640. /* > Z is DOUBLE PRECISION array, dimension (LDZ,IHI) */
  641. /* > If WANTZ is .FALSE., then Z is not referenced. */
  642. /* > If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is */
  643. /* > replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the */
  644. /* > orthogonal Schur factor of H(ILO:IHI,ILO:IHI). */
  645. /* > (The output value of Z when INFO > 0 is given under */
  646. /* > the description of INFO below.) */
  647. /* > \endverbatim */
  648. /* > */
  649. /* > \param[in] LDZ */
  650. /* > \verbatim */
  651. /* > LDZ is INTEGER */
  652. /* > The leading dimension of the array Z. if WANTZ is .TRUE. */
  653. /* > then LDZ >= MAX(1,IHIZ). Otherwise, LDZ >= 1. */
  654. /* > \endverbatim */
  655. /* > */
  656. /* > \param[out] WORK */
  657. /* > \verbatim */
  658. /* > WORK is DOUBLE PRECISION array, dimension LWORK */
  659. /* > On exit, if LWORK = -1, WORK(1) returns an estimate of */
  660. /* > the optimal value for LWORK. */
  661. /* > \endverbatim */
  662. /* > */
  663. /* > \param[in] LWORK */
  664. /* > \verbatim */
  665. /* > LWORK is INTEGER */
  666. /* > The dimension of the array WORK. LWORK >= f2cmax(1,N) */
  667. /* > is sufficient, but LWORK typically as large as 6*N may */
  668. /* > be required for optimal performance. A workspace query */
  669. /* > to determine the optimal workspace size is recommended. */
  670. /* > */
  671. /* > If LWORK = -1, then DLAQR4 does a workspace query. */
  672. /* > In this case, DLAQR4 checks the input parameters and */
  673. /* > estimates the optimal workspace size for the given */
  674. /* > values of N, ILO and IHI. The estimate is returned */
  675. /* > in WORK(1). No error message related to LWORK is */
  676. /* > issued by XERBLA. Neither H nor Z are accessed. */
  677. /* > \endverbatim */
  678. /* > */
  679. /* > \param[out] INFO */
  680. /* > \verbatim */
  681. /* > INFO is INTEGER */
  682. /* > = 0: successful exit */
  683. /* > > 0: if INFO = i, DLAQR4 failed to compute all of */
  684. /* > the eigenvalues. Elements 1:ilo-1 and i+1:n of WR */
  685. /* > and WI contain those eigenvalues which have been */
  686. /* > successfully computed. (Failures are rare.) */
  687. /* > */
  688. /* > If INFO > 0 and WANT is .FALSE., then on exit, */
  689. /* > the remaining unconverged eigenvalues are the eigen- */
  690. /* > values of the upper Hessenberg matrix rows and */
  691. /* > columns ILO through INFO of the final, output */
  692. /* > value of H. */
  693. /* > */
  694. /* > If INFO > 0 and WANTT is .TRUE., then on exit */
  695. /* > */
  696. /* > (*) (initial value of H)*U = U*(final value of H) */
  697. /* > */
  698. /* > where U is a orthogonal matrix. The final */
  699. /* > value of H is upper Hessenberg and triangular in */
  700. /* > rows and columns INFO+1 through IHI. */
  701. /* > */
  702. /* > If INFO > 0 and WANTZ is .TRUE., then on exit */
  703. /* > */
  704. /* > (final value of Z(ILO:IHI,ILOZ:IHIZ) */
  705. /* > = (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U */
  706. /* > */
  707. /* > where U is the orthogonal matrix in (*) (regard- */
  708. /* > less of the value of WANTT.) */
  709. /* > */
  710. /* > If INFO > 0 and WANTZ is .FALSE., then Z is not */
  711. /* > accessed. */
  712. /* > \endverbatim */
  713. /* Authors: */
  714. /* ======== */
  715. /* > \author Univ. of Tennessee */
  716. /* > \author Univ. of California Berkeley */
  717. /* > \author Univ. of Colorado Denver */
  718. /* > \author NAG Ltd. */
  719. /* > \date December 2016 */
  720. /* > \ingroup doubleOTHERauxiliary */
  721. /* > \par Contributors: */
  722. /* ================== */
  723. /* > */
  724. /* > Karen Braman and Ralph Byers, Department of Mathematics, */
  725. /* > University of Kansas, USA */
  726. /* > \par References: */
  727. /* ================ */
  728. /* > */
  729. /* > K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */
  730. /* > Algorithm Part I: Maintaining Well Focused Shifts, and Level 3 */
  731. /* > Performance, SIAM Journal of Matrix Analysis, volume 23, pages */
  732. /* > 929--947, 2002. */
  733. /* > \n */
  734. /* > K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */
  735. /* > Algorithm Part II: Aggressive Early Deflation, SIAM Journal */
  736. /* > of Matrix Analysis, volume 23, pages 948--973, 2002. */
  737. /* > */
  738. /* ===================================================================== */
  739. /* Subroutine */ void dlaqr4_(logical *wantt, logical *wantz, integer *n,
  740. integer *ilo, integer *ihi, doublereal *h__, integer *ldh, doublereal
  741. *wr, doublereal *wi, integer *iloz, integer *ihiz, doublereal *z__,
  742. integer *ldz, doublereal *work, integer *lwork, integer *info)
  743. {
  744. /* System generated locals */
  745. integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5;
  746. doublereal d__1, d__2, d__3, d__4;
  747. /* Local variables */
  748. integer ndec, ndfl, kbot, nmin;
  749. doublereal swap;
  750. integer ktop;
  751. doublereal zdum[1] /* was [1][1] */;
  752. integer kacc22, i__, k, itmax, nsmax, nwmax, kwtop;
  753. extern /* Subroutine */ void dlaqr2_(logical *, logical *, integer *,
  754. integer *, integer *, integer *, doublereal *, integer *, integer
  755. *, integer *, doublereal *, integer *, integer *, integer *,
  756. doublereal *, doublereal *, doublereal *, integer *, integer *,
  757. doublereal *, integer *, integer *, doublereal *, integer *,
  758. doublereal *, integer *), dlanv2_(doublereal *, doublereal *,
  759. doublereal *, doublereal *, doublereal *, doublereal *,
  760. doublereal *, doublereal *, doublereal *, doublereal *), dlaqr5_(
  761. logical *, logical *, integer *, integer *, integer *, integer *,
  762. integer *, doublereal *, doublereal *, doublereal *, integer *,
  763. integer *, integer *, doublereal *, integer *, doublereal *,
  764. integer *, doublereal *, integer *, integer *, doublereal *,
  765. integer *, integer *, doublereal *, integer *);
  766. doublereal aa, bb, cc, dd;
  767. integer ld;
  768. doublereal cs;
  769. integer nh, nibble, it, ks, kt;
  770. doublereal sn;
  771. integer ku, kv, ls, ns;
  772. doublereal ss;
  773. integer nw;
  774. extern /* Subroutine */ void dlahqr_(logical *, logical *, integer *,
  775. integer *, integer *, doublereal *, integer *, doublereal *,
  776. doublereal *, integer *, integer *, doublereal *, integer *,
  777. integer *), dlacpy_(char *, integer *, integer *, doublereal *,
  778. integer *, doublereal *, integer *);
  779. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  780. integer *, integer *, ftnlen, ftnlen);
  781. char jbcmpz[2];
  782. integer nwupbd;
  783. logical sorted;
  784. integer lwkopt, inf, kdu, nho, nve, kwh, nsr, nwr, kwv;
  785. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  786. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  787. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  788. /* December 2016 */
  789. /* ================================================================ */
  790. /* ==== Matrices of order NTINY or smaller must be processed by */
  791. /* . DLAHQR because of insufficient subdiagonal scratch space. */
  792. /* . (This is a hard limit.) ==== */
  793. /* ==== Exceptional deflation windows: try to cure rare */
  794. /* . slow convergence by varying the size of the */
  795. /* . deflation window after KEXNW iterations. ==== */
  796. /* ==== Exceptional shifts: try to cure rare slow convergence */
  797. /* . with ad-hoc exceptional shifts every KEXSH iterations. */
  798. /* . ==== */
  799. /* ==== The constants WILK1 and WILK2 are used to form the */
  800. /* . exceptional shifts. ==== */
  801. /* Parameter adjustments */
  802. h_dim1 = *ldh;
  803. h_offset = 1 + h_dim1 * 1;
  804. h__ -= h_offset;
  805. --wr;
  806. --wi;
  807. z_dim1 = *ldz;
  808. z_offset = 1 + z_dim1 * 1;
  809. z__ -= z_offset;
  810. --work;
  811. /* Function Body */
  812. *info = 0;
  813. /* ==== Quick return for N = 0: nothing to do. ==== */
  814. if (*n == 0) {
  815. work[1] = 1.;
  816. return;
  817. }
  818. if (*n <= 15) {
  819. /* ==== Tiny matrices must use DLAHQR. ==== */
  820. lwkopt = 1;
  821. if (*lwork != -1) {
  822. dlahqr_(wantt, wantz, n, ilo, ihi, &h__[h_offset], ldh, &wr[1], &
  823. wi[1], iloz, ihiz, &z__[z_offset], ldz, info);
  824. }
  825. } else {
  826. /* ==== Use small bulge multi-shift QR with aggressive early */
  827. /* . deflation on larger-than-tiny matrices. ==== */
  828. /* ==== Hope for the best. ==== */
  829. *info = 0;
  830. /* ==== Set up job flags for ILAENV. ==== */
  831. if (*wantt) {
  832. *(unsigned char *)jbcmpz = 'S';
  833. } else {
  834. *(unsigned char *)jbcmpz = 'E';
  835. }
  836. if (*wantz) {
  837. *(unsigned char *)&jbcmpz[1] = 'V';
  838. } else {
  839. *(unsigned char *)&jbcmpz[1] = 'N';
  840. }
  841. /* ==== NWR = recommended deflation window size. At this */
  842. /* . point, N .GT. NTINY = 15, so there is enough */
  843. /* . subdiagonal workspace for NWR.GE.2 as required. */
  844. /* . (In fact, there is enough subdiagonal space for */
  845. /* . NWR.GE.4.) ==== */
  846. nwr = ilaenv_(&c__13, "DLAQR4", jbcmpz, n, ilo, ihi, lwork, (ftnlen)6,
  847. (ftnlen)2);
  848. nwr = f2cmax(2,nwr);
  849. /* Computing MIN */
  850. i__1 = *ihi - *ilo + 1, i__2 = (*n - 1) / 3, i__1 = f2cmin(i__1,i__2);
  851. nwr = f2cmin(i__1,nwr);
  852. /* ==== NSR = recommended number of simultaneous shifts. */
  853. /* . At this point N .GT. NTINY = 15, so there is at */
  854. /* . enough subdiagonal workspace for NSR to be even */
  855. /* . and greater than or equal to two as required. ==== */
  856. nsr = ilaenv_(&c__15, "DLAQR4", jbcmpz, n, ilo, ihi, lwork, (ftnlen)6,
  857. (ftnlen)2);
  858. /* Computing MIN */
  859. i__1 = nsr, i__2 = (*n - 3) / 6, i__1 = f2cmin(i__1,i__2), i__2 = *ihi -
  860. *ilo;
  861. nsr = f2cmin(i__1,i__2);
  862. /* Computing MAX */
  863. i__1 = 2, i__2 = nsr - nsr % 2;
  864. nsr = f2cmax(i__1,i__2);
  865. /* ==== Estimate optimal workspace ==== */
  866. /* ==== Workspace query call to DLAQR2 ==== */
  867. i__1 = nwr + 1;
  868. dlaqr2_(wantt, wantz, n, ilo, ihi, &i__1, &h__[h_offset], ldh, iloz,
  869. ihiz, &z__[z_offset], ldz, &ls, &ld, &wr[1], &wi[1], &h__[
  870. h_offset], ldh, n, &h__[h_offset], ldh, n, &h__[h_offset],
  871. ldh, &work[1], &c_n1);
  872. /* ==== Optimal workspace = MAX(DLAQR5, DLAQR2) ==== */
  873. /* Computing MAX */
  874. i__1 = nsr * 3 / 2, i__2 = (integer) work[1];
  875. lwkopt = f2cmax(i__1,i__2);
  876. /* ==== Quick return in case of workspace query. ==== */
  877. if (*lwork == -1) {
  878. work[1] = (doublereal) lwkopt;
  879. return;
  880. }
  881. /* ==== DLAHQR/DLAQR0 crossover point ==== */
  882. nmin = ilaenv_(&c__12, "DLAQR4", jbcmpz, n, ilo, ihi, lwork, (ftnlen)
  883. 6, (ftnlen)2);
  884. nmin = f2cmax(15,nmin);
  885. /* ==== Nibble crossover point ==== */
  886. nibble = ilaenv_(&c__14, "DLAQR4", jbcmpz, n, ilo, ihi, lwork, (
  887. ftnlen)6, (ftnlen)2);
  888. nibble = f2cmax(0,nibble);
  889. /* ==== Accumulate reflections during ttswp? Use block */
  890. /* . 2-by-2 structure during matrix-matrix multiply? ==== */
  891. kacc22 = ilaenv_(&c__16, "DLAQR4", jbcmpz, n, ilo, ihi, lwork, (
  892. ftnlen)6, (ftnlen)2);
  893. kacc22 = f2cmax(0,kacc22);
  894. kacc22 = f2cmin(2,kacc22);
  895. /* ==== NWMAX = the largest possible deflation window for */
  896. /* . which there is sufficient workspace. ==== */
  897. /* Computing MIN */
  898. i__1 = (*n - 1) / 3, i__2 = *lwork / 2;
  899. nwmax = f2cmin(i__1,i__2);
  900. nw = nwmax;
  901. /* ==== NSMAX = the Largest number of simultaneous shifts */
  902. /* . for which there is sufficient workspace. ==== */
  903. /* Computing MIN */
  904. i__1 = (*n - 3) / 6, i__2 = (*lwork << 1) / 3;
  905. nsmax = f2cmin(i__1,i__2);
  906. nsmax -= nsmax % 2;
  907. /* ==== NDFL: an iteration count restarted at deflation. ==== */
  908. ndfl = 1;
  909. /* ==== ITMAX = iteration limit ==== */
  910. /* Computing MAX */
  911. i__1 = 10, i__2 = *ihi - *ilo + 1;
  912. itmax = 30 * f2cmax(i__1,i__2);
  913. /* ==== Last row and column in the active block ==== */
  914. kbot = *ihi;
  915. /* ==== Main Loop ==== */
  916. i__1 = itmax;
  917. for (it = 1; it <= i__1; ++it) {
  918. /* ==== Done when KBOT falls below ILO ==== */
  919. if (kbot < *ilo) {
  920. goto L90;
  921. }
  922. /* ==== Locate active block ==== */
  923. i__2 = *ilo + 1;
  924. for (k = kbot; k >= i__2; --k) {
  925. if (h__[k + (k - 1) * h_dim1] == 0.) {
  926. goto L20;
  927. }
  928. /* L10: */
  929. }
  930. k = *ilo;
  931. L20:
  932. ktop = k;
  933. /* ==== Select deflation window size: */
  934. /* . Typical Case: */
  935. /* . If possible and advisable, nibble the entire */
  936. /* . active block. If not, use size MIN(NWR,NWMAX) */
  937. /* . or MIN(NWR+1,NWMAX) depending upon which has */
  938. /* . the smaller corresponding subdiagonal entry */
  939. /* . (a heuristic). */
  940. /* . */
  941. /* . Exceptional Case: */
  942. /* . If there have been no deflations in KEXNW or */
  943. /* . more iterations, then vary the deflation window */
  944. /* . size. At first, because, larger windows are, */
  945. /* . in general, more powerful than smaller ones, */
  946. /* . rapidly increase the window to the maximum possible. */
  947. /* . Then, gradually reduce the window size. ==== */
  948. nh = kbot - ktop + 1;
  949. nwupbd = f2cmin(nh,nwmax);
  950. if (ndfl < 5) {
  951. nw = f2cmin(nwupbd,nwr);
  952. } else {
  953. /* Computing MIN */
  954. i__2 = nwupbd, i__3 = nw << 1;
  955. nw = f2cmin(i__2,i__3);
  956. }
  957. if (nw < nwmax) {
  958. if (nw >= nh - 1) {
  959. nw = nh;
  960. } else {
  961. kwtop = kbot - nw + 1;
  962. if ((d__1 = h__[kwtop + (kwtop - 1) * h_dim1], abs(d__1))
  963. > (d__2 = h__[kwtop - 1 + (kwtop - 2) * h_dim1],
  964. abs(d__2))) {
  965. ++nw;
  966. }
  967. }
  968. }
  969. if (ndfl < 5) {
  970. ndec = -1;
  971. } else if (ndec >= 0 || nw >= nwupbd) {
  972. ++ndec;
  973. if (nw - ndec < 2) {
  974. ndec = 0;
  975. }
  976. nw -= ndec;
  977. }
  978. /* ==== Aggressive early deflation: */
  979. /* . split workspace under the subdiagonal into */
  980. /* . - an nw-by-nw work array V in the lower */
  981. /* . left-hand-corner, */
  982. /* . - an NW-by-at-least-NW-but-more-is-better */
  983. /* . (NW-by-NHO) horizontal work array along */
  984. /* . the bottom edge, */
  985. /* . - an at-least-NW-but-more-is-better (NHV-by-NW) */
  986. /* . vertical work array along the left-hand-edge. */
  987. /* . ==== */
  988. kv = *n - nw + 1;
  989. kt = nw + 1;
  990. nho = *n - nw - 1 - kt + 1;
  991. kwv = nw + 2;
  992. nve = *n - nw - kwv + 1;
  993. /* ==== Aggressive early deflation ==== */
  994. dlaqr2_(wantt, wantz, n, &ktop, &kbot, &nw, &h__[h_offset], ldh,
  995. iloz, ihiz, &z__[z_offset], ldz, &ls, &ld, &wr[1], &wi[1],
  996. &h__[kv + h_dim1], ldh, &nho, &h__[kv + kt * h_dim1],
  997. ldh, &nve, &h__[kwv + h_dim1], ldh, &work[1], lwork);
  998. /* ==== Adjust KBOT accounting for new deflations. ==== */
  999. kbot -= ld;
  1000. /* ==== KS points to the shifts. ==== */
  1001. ks = kbot - ls + 1;
  1002. /* ==== Skip an expensive QR sweep if there is a (partly */
  1003. /* . heuristic) reason to expect that many eigenvalues */
  1004. /* . will deflate without it. Here, the QR sweep is */
  1005. /* . skipped if many eigenvalues have just been deflated */
  1006. /* . or if the remaining active block is small. */
  1007. if (ld == 0 || ld * 100 <= nw * nibble && kbot - ktop + 1 > f2cmin(
  1008. nmin,nwmax)) {
  1009. /* ==== NS = nominal number of simultaneous shifts. */
  1010. /* . This may be lowered (slightly) if DLAQR2 */
  1011. /* . did not provide that many shifts. ==== */
  1012. /* Computing MIN */
  1013. /* Computing MAX */
  1014. i__4 = 2, i__5 = kbot - ktop;
  1015. i__2 = f2cmin(nsmax,nsr), i__3 = f2cmax(i__4,i__5);
  1016. ns = f2cmin(i__2,i__3);
  1017. ns -= ns % 2;
  1018. /* ==== If there have been no deflations */
  1019. /* . in a multiple of KEXSH iterations, */
  1020. /* . then try exceptional shifts. */
  1021. /* . Otherwise use shifts provided by */
  1022. /* . DLAQR2 above or from the eigenvalues */
  1023. /* . of a trailing principal submatrix. ==== */
  1024. if (ndfl % 6 == 0) {
  1025. ks = kbot - ns + 1;
  1026. /* Computing MAX */
  1027. i__3 = ks + 1, i__4 = ktop + 2;
  1028. i__2 = f2cmax(i__3,i__4);
  1029. for (i__ = kbot; i__ >= i__2; i__ += -2) {
  1030. ss = (d__1 = h__[i__ + (i__ - 1) * h_dim1], abs(d__1))
  1031. + (d__2 = h__[i__ - 1 + (i__ - 2) * h_dim1],
  1032. abs(d__2));
  1033. aa = ss * .75 + h__[i__ + i__ * h_dim1];
  1034. bb = ss;
  1035. cc = ss * -.4375;
  1036. dd = aa;
  1037. dlanv2_(&aa, &bb, &cc, &dd, &wr[i__ - 1], &wi[i__ - 1]
  1038. , &wr[i__], &wi[i__], &cs, &sn);
  1039. /* L30: */
  1040. }
  1041. if (ks == ktop) {
  1042. wr[ks + 1] = h__[ks + 1 + (ks + 1) * h_dim1];
  1043. wi[ks + 1] = 0.;
  1044. wr[ks] = wr[ks + 1];
  1045. wi[ks] = wi[ks + 1];
  1046. }
  1047. } else {
  1048. /* ==== Got NS/2 or fewer shifts? Use DLAHQR */
  1049. /* . on a trailing principal submatrix to */
  1050. /* . get more. (Since NS.LE.NSMAX.LE.(N-3)/6, */
  1051. /* . there is enough space below the subdiagonal */
  1052. /* . to fit an NS-by-NS scratch array.) ==== */
  1053. if (kbot - ks + 1 <= ns / 2) {
  1054. ks = kbot - ns + 1;
  1055. kt = *n - ns + 1;
  1056. dlacpy_("A", &ns, &ns, &h__[ks + ks * h_dim1], ldh, &
  1057. h__[kt + h_dim1], ldh);
  1058. dlahqr_(&c_false, &c_false, &ns, &c__1, &ns, &h__[kt
  1059. + h_dim1], ldh, &wr[ks], &wi[ks], &c__1, &
  1060. c__1, zdum, &c__1, &inf);
  1061. ks += inf;
  1062. /* ==== In case of a rare QR failure use */
  1063. /* . eigenvalues of the trailing 2-by-2 */
  1064. /* . principal submatrix. ==== */
  1065. if (ks >= kbot) {
  1066. aa = h__[kbot - 1 + (kbot - 1) * h_dim1];
  1067. cc = h__[kbot + (kbot - 1) * h_dim1];
  1068. bb = h__[kbot - 1 + kbot * h_dim1];
  1069. dd = h__[kbot + kbot * h_dim1];
  1070. dlanv2_(&aa, &bb, &cc, &dd, &wr[kbot - 1], &wi[
  1071. kbot - 1], &wr[kbot], &wi[kbot], &cs, &sn)
  1072. ;
  1073. ks = kbot - 1;
  1074. }
  1075. }
  1076. if (kbot - ks + 1 > ns) {
  1077. /* ==== Sort the shifts (Helps a little) */
  1078. /* . Bubble sort keeps complex conjugate */
  1079. /* . pairs together. ==== */
  1080. sorted = FALSE_;
  1081. i__2 = ks + 1;
  1082. for (k = kbot; k >= i__2; --k) {
  1083. if (sorted) {
  1084. goto L60;
  1085. }
  1086. sorted = TRUE_;
  1087. i__3 = k - 1;
  1088. for (i__ = ks; i__ <= i__3; ++i__) {
  1089. if ((d__1 = wr[i__], abs(d__1)) + (d__2 = wi[
  1090. i__], abs(d__2)) < (d__3 = wr[i__ + 1]
  1091. , abs(d__3)) + (d__4 = wi[i__ + 1],
  1092. abs(d__4))) {
  1093. sorted = FALSE_;
  1094. swap = wr[i__];
  1095. wr[i__] = wr[i__ + 1];
  1096. wr[i__ + 1] = swap;
  1097. swap = wi[i__];
  1098. wi[i__] = wi[i__ + 1];
  1099. wi[i__ + 1] = swap;
  1100. }
  1101. /* L40: */
  1102. }
  1103. /* L50: */
  1104. }
  1105. L60:
  1106. ;
  1107. }
  1108. /* ==== Shuffle shifts into pairs of real shifts */
  1109. /* . and pairs of complex conjugate shifts */
  1110. /* . assuming complex conjugate shifts are */
  1111. /* . already adjacent to one another. (Yes, */
  1112. /* . they are.) ==== */
  1113. i__2 = ks + 2;
  1114. for (i__ = kbot; i__ >= i__2; i__ += -2) {
  1115. if (wi[i__] != -wi[i__ - 1]) {
  1116. swap = wr[i__];
  1117. wr[i__] = wr[i__ - 1];
  1118. wr[i__ - 1] = wr[i__ - 2];
  1119. wr[i__ - 2] = swap;
  1120. swap = wi[i__];
  1121. wi[i__] = wi[i__ - 1];
  1122. wi[i__ - 1] = wi[i__ - 2];
  1123. wi[i__ - 2] = swap;
  1124. }
  1125. /* L70: */
  1126. }
  1127. }
  1128. /* ==== If there are only two shifts and both are */
  1129. /* . real, then use only one. ==== */
  1130. if (kbot - ks + 1 == 2) {
  1131. if (wi[kbot] == 0.) {
  1132. if ((d__1 = wr[kbot] - h__[kbot + kbot * h_dim1], abs(
  1133. d__1)) < (d__2 = wr[kbot - 1] - h__[kbot +
  1134. kbot * h_dim1], abs(d__2))) {
  1135. wr[kbot - 1] = wr[kbot];
  1136. } else {
  1137. wr[kbot] = wr[kbot - 1];
  1138. }
  1139. }
  1140. }
  1141. /* ==== Use up to NS of the the smallest magnitude */
  1142. /* . shifts. If there aren't NS shifts available, */
  1143. /* . then use them all, possibly dropping one to */
  1144. /* . make the number of shifts even. ==== */
  1145. /* Computing MIN */
  1146. i__2 = ns, i__3 = kbot - ks + 1;
  1147. ns = f2cmin(i__2,i__3);
  1148. ns -= ns % 2;
  1149. ks = kbot - ns + 1;
  1150. /* ==== Small-bulge multi-shift QR sweep: */
  1151. /* . split workspace under the subdiagonal into */
  1152. /* . - a KDU-by-KDU work array U in the lower */
  1153. /* . left-hand-corner, */
  1154. /* . - a KDU-by-at-least-KDU-but-more-is-better */
  1155. /* . (KDU-by-NHo) horizontal work array WH along */
  1156. /* . the bottom edge, */
  1157. /* . - and an at-least-KDU-but-more-is-better-by-KDU */
  1158. /* . (NVE-by-KDU) vertical work WV arrow along */
  1159. /* . the left-hand-edge. ==== */
  1160. kdu = ns << 1;
  1161. ku = *n - kdu + 1;
  1162. kwh = kdu + 1;
  1163. nho = *n - kdu - 3 - (kdu + 1) + 1;
  1164. kwv = kdu + 4;
  1165. nve = *n - kdu - kwv + 1;
  1166. /* ==== Small-bulge multi-shift QR sweep ==== */
  1167. dlaqr5_(wantt, wantz, &kacc22, n, &ktop, &kbot, &ns, &wr[ks],
  1168. &wi[ks], &h__[h_offset], ldh, iloz, ihiz, &z__[
  1169. z_offset], ldz, &work[1], &c__3, &h__[ku + h_dim1],
  1170. ldh, &nve, &h__[kwv + h_dim1], ldh, &nho, &h__[ku +
  1171. kwh * h_dim1], ldh);
  1172. }
  1173. /* ==== Note progress (or the lack of it). ==== */
  1174. if (ld > 0) {
  1175. ndfl = 1;
  1176. } else {
  1177. ++ndfl;
  1178. }
  1179. /* ==== End of main loop ==== */
  1180. /* L80: */
  1181. }
  1182. /* ==== Iteration limit exceeded. Set INFO to show where */
  1183. /* . the problem occurred and exit. ==== */
  1184. *info = kbot;
  1185. L90:
  1186. ;
  1187. }
  1188. /* ==== Return the optimal value of LWORK. ==== */
  1189. work[1] = (doublereal) lwkopt;
  1190. /* ==== End of DLAQR4 ==== */
  1191. return;
  1192. } /* dlaqr4_ */