You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgelss.c 44 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__6 = 6;
  485. static integer c_n1 = -1;
  486. static integer c__0 = 0;
  487. static doublereal c_b46 = 0.;
  488. static integer c__1 = 1;
  489. static doublereal c_b79 = 1.;
  490. /* > \brief <b> DGELSS solves overdetermined or underdetermined systems for GE matrices</b> */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download DGELSS + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgelss.
  497. f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgelss.
  500. f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgelss.
  503. f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE DGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, */
  509. /* WORK, LWORK, INFO ) */
  510. /* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK */
  511. /* DOUBLE PRECISION RCOND */
  512. /* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), S( * ), WORK( * ) */
  513. /* > \par Purpose: */
  514. /* ============= */
  515. /* > */
  516. /* > \verbatim */
  517. /* > */
  518. /* > DGELSS computes the minimum norm solution to a real linear least */
  519. /* > squares problem: */
  520. /* > */
  521. /* > Minimize 2-norm(| b - A*x |). */
  522. /* > */
  523. /* > using the singular value decomposition (SVD) of A. A is an M-by-N */
  524. /* > matrix which may be rank-deficient. */
  525. /* > */
  526. /* > Several right hand side vectors b and solution vectors x can be */
  527. /* > handled in a single call; they are stored as the columns of the */
  528. /* > M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix */
  529. /* > X. */
  530. /* > */
  531. /* > The effective rank of A is determined by treating as zero those */
  532. /* > singular values which are less than RCOND times the largest singular */
  533. /* > value. */
  534. /* > \endverbatim */
  535. /* Arguments: */
  536. /* ========== */
  537. /* > \param[in] M */
  538. /* > \verbatim */
  539. /* > M is INTEGER */
  540. /* > The number of rows of the matrix A. M >= 0. */
  541. /* > \endverbatim */
  542. /* > */
  543. /* > \param[in] N */
  544. /* > \verbatim */
  545. /* > N is INTEGER */
  546. /* > The number of columns of the matrix A. N >= 0. */
  547. /* > \endverbatim */
  548. /* > */
  549. /* > \param[in] NRHS */
  550. /* > \verbatim */
  551. /* > NRHS is INTEGER */
  552. /* > The number of right hand sides, i.e., the number of columns */
  553. /* > of the matrices B and X. NRHS >= 0. */
  554. /* > \endverbatim */
  555. /* > */
  556. /* > \param[in,out] A */
  557. /* > \verbatim */
  558. /* > A is DOUBLE PRECISION array, dimension (LDA,N) */
  559. /* > On entry, the M-by-N matrix A. */
  560. /* > On exit, the first f2cmin(m,n) rows of A are overwritten with */
  561. /* > its right singular vectors, stored rowwise. */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in] LDA */
  565. /* > \verbatim */
  566. /* > LDA is INTEGER */
  567. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in,out] B */
  571. /* > \verbatim */
  572. /* > B is DOUBLE PRECISION array, dimension (LDB,NRHS) */
  573. /* > On entry, the M-by-NRHS right hand side matrix B. */
  574. /* > On exit, B is overwritten by the N-by-NRHS solution */
  575. /* > matrix X. If m >= n and RANK = n, the residual */
  576. /* > sum-of-squares for the solution in the i-th column is given */
  577. /* > by the sum of squares of elements n+1:m in that column. */
  578. /* > \endverbatim */
  579. /* > */
  580. /* > \param[in] LDB */
  581. /* > \verbatim */
  582. /* > LDB is INTEGER */
  583. /* > The leading dimension of the array B. LDB >= f2cmax(1,f2cmax(M,N)). */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[out] S */
  587. /* > \verbatim */
  588. /* > S is DOUBLE PRECISION array, dimension (f2cmin(M,N)) */
  589. /* > The singular values of A in decreasing order. */
  590. /* > The condition number of A in the 2-norm = S(1)/S(f2cmin(m,n)). */
  591. /* > \endverbatim */
  592. /* > */
  593. /* > \param[in] RCOND */
  594. /* > \verbatim */
  595. /* > RCOND is DOUBLE PRECISION */
  596. /* > RCOND is used to determine the effective rank of A. */
  597. /* > Singular values S(i) <= RCOND*S(1) are treated as zero. */
  598. /* > If RCOND < 0, machine precision is used instead. */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[out] RANK */
  602. /* > \verbatim */
  603. /* > RANK is INTEGER */
  604. /* > The effective rank of A, i.e., the number of singular values */
  605. /* > which are greater than RCOND*S(1). */
  606. /* > \endverbatim */
  607. /* > */
  608. /* > \param[out] WORK */
  609. /* > \verbatim */
  610. /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
  611. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  612. /* > \endverbatim */
  613. /* > */
  614. /* > \param[in] LWORK */
  615. /* > \verbatim */
  616. /* > LWORK is INTEGER */
  617. /* > The dimension of the array WORK. LWORK >= 1, and also: */
  618. /* > LWORK >= 3*f2cmin(M,N) + f2cmax( 2*f2cmin(M,N), f2cmax(M,N), NRHS ) */
  619. /* > For good performance, LWORK should generally be larger. */
  620. /* > */
  621. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  622. /* > only calculates the optimal size of the WORK array, returns */
  623. /* > this value as the first entry of the WORK array, and no error */
  624. /* > message related to LWORK is issued by XERBLA. */
  625. /* > \endverbatim */
  626. /* > */
  627. /* > \param[out] INFO */
  628. /* > \verbatim */
  629. /* > INFO is INTEGER */
  630. /* > = 0: successful exit */
  631. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  632. /* > > 0: the algorithm for computing the SVD failed to converge; */
  633. /* > if INFO = i, i off-diagonal elements of an intermediate */
  634. /* > bidiagonal form did not converge to zero. */
  635. /* > \endverbatim */
  636. /* Authors: */
  637. /* ======== */
  638. /* > \author Univ. of Tennessee */
  639. /* > \author Univ. of California Berkeley */
  640. /* > \author Univ. of Colorado Denver */
  641. /* > \author NAG Ltd. */
  642. /* > \date December 2016 */
  643. /* > \ingroup doubleGEsolve */
  644. /* ===================================================================== */
  645. /* Subroutine */ void dgelss_(integer *m, integer *n, integer *nrhs,
  646. doublereal *a, integer *lda, doublereal *b, integer *ldb, doublereal *
  647. s, doublereal *rcond, integer *rank, doublereal *work, integer *lwork,
  648. integer *info)
  649. {
  650. /* System generated locals */
  651. integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
  652. doublereal d__1;
  653. /* Local variables */
  654. doublereal anrm, bnrm;
  655. integer itau, lwork_dgebrd__, lwork_dgelqf__, lwork_dgeqrf__,
  656. lwork_dorgbr__, lwork_dormbr__, i__, lwork_dormlq__,
  657. lwork_dormqr__;
  658. extern /* Subroutine */ void dgemm_(char *, char *, integer *, integer *,
  659. integer *, doublereal *, doublereal *, integer *, doublereal *,
  660. integer *, doublereal *, doublereal *, integer *);
  661. integer iascl, ibscl;
  662. extern /* Subroutine */ void dgemv_(char *, integer *, integer *,
  663. doublereal *, doublereal *, integer *, doublereal *, integer *,
  664. doublereal *, doublereal *, integer *), drscl_(integer *,
  665. doublereal *, doublereal *, integer *);
  666. integer chunk;
  667. doublereal sfmin;
  668. integer minmn;
  669. extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
  670. doublereal *, integer *);
  671. integer maxmn, itaup, itauq, mnthr, iwork;
  672. extern /* Subroutine */ void dlabad_(doublereal *, doublereal *);
  673. integer bl, ie, il;
  674. extern /* Subroutine */ void dgebrd_(integer *, integer *, doublereal *,
  675. integer *, doublereal *, doublereal *, doublereal *, doublereal *,
  676. doublereal *, integer *, integer *);
  677. extern doublereal dlamch_(char *);
  678. integer mm;
  679. extern doublereal dlange_(char *, integer *, integer *, doublereal *,
  680. integer *, doublereal *);
  681. integer bdspac;
  682. extern /* Subroutine */ void dgelqf_(integer *, integer *, doublereal *,
  683. integer *, doublereal *, doublereal *, integer *, integer *),
  684. dlascl_(char *, integer *, integer *, doublereal *, doublereal *,
  685. integer *, integer *, doublereal *, integer *, integer *),
  686. dgeqrf_(integer *, integer *, doublereal *, integer *,
  687. doublereal *, doublereal *, integer *, integer *), dlacpy_(char *,
  688. integer *, integer *, doublereal *, integer *, doublereal *,
  689. integer *), dlaset_(char *, integer *, integer *,
  690. doublereal *, doublereal *, doublereal *, integer *);
  691. extern int xerbla_(char *, integer *, ftnlen);
  692. extern void dbdsqr_(char *, integer *,
  693. integer *, integer *, integer *, doublereal *, doublereal *,
  694. doublereal *, integer *, doublereal *, integer *, doublereal *,
  695. integer *, doublereal *, integer *), dorgbr_(char *,
  696. integer *, integer *, integer *, doublereal *, integer *,
  697. doublereal *, doublereal *, integer *, integer *);
  698. doublereal bignum;
  699. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  700. integer *, integer *, ftnlen, ftnlen);
  701. extern /* Subroutine */ void dormbr_(char *, char *, char *, integer *,
  702. integer *, integer *, doublereal *, integer *, doublereal *,
  703. doublereal *, integer *, doublereal *, integer *, integer *), dormlq_(char *, char *, integer *,
  704. integer *, integer *, doublereal *, integer *, doublereal *,
  705. doublereal *, integer *, doublereal *, integer *, integer *);
  706. integer ldwork;
  707. extern /* Subroutine */ void dormqr_(char *, char *, integer *, integer *,
  708. integer *, doublereal *, integer *, doublereal *, doublereal *,
  709. integer *, doublereal *, integer *, integer *);
  710. integer minwrk, maxwrk;
  711. doublereal smlnum;
  712. logical lquery;
  713. doublereal dum[1], eps, thr;
  714. /* -- LAPACK driver routine (version 3.7.0) -- */
  715. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  716. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  717. /* December 2016 */
  718. /* ===================================================================== */
  719. /* Test the input arguments */
  720. /* Parameter adjustments */
  721. a_dim1 = *lda;
  722. a_offset = 1 + a_dim1 * 1;
  723. a -= a_offset;
  724. b_dim1 = *ldb;
  725. b_offset = 1 + b_dim1 * 1;
  726. b -= b_offset;
  727. --s;
  728. --work;
  729. /* Function Body */
  730. *info = 0;
  731. minmn = f2cmin(*m,*n);
  732. maxmn = f2cmax(*m,*n);
  733. lquery = *lwork == -1;
  734. if (*m < 0) {
  735. *info = -1;
  736. } else if (*n < 0) {
  737. *info = -2;
  738. } else if (*nrhs < 0) {
  739. *info = -3;
  740. } else if (*lda < f2cmax(1,*m)) {
  741. *info = -5;
  742. } else if (*ldb < f2cmax(1,maxmn)) {
  743. *info = -7;
  744. }
  745. /* Compute workspace */
  746. /* (Note: Comments in the code beginning "Workspace:" describe the */
  747. /* minimal amount of workspace needed at that point in the code, */
  748. /* as well as the preferred amount for good performance. */
  749. /* NB refers to the optimal block size for the immediately */
  750. /* following subroutine, as returned by ILAENV.) */
  751. if (*info == 0) {
  752. minwrk = 1;
  753. maxwrk = 1;
  754. if (minmn > 0) {
  755. mm = *m;
  756. mnthr = ilaenv_(&c__6, "DGELSS", " ", m, n, nrhs, &c_n1, (ftnlen)
  757. 6, (ftnlen)1);
  758. if (*m >= *n && *m >= mnthr) {
  759. /* Path 1a - overdetermined, with many more rows than */
  760. /* columns */
  761. /* Compute space needed for DGEQRF */
  762. dgeqrf_(m, n, &a[a_offset], lda, dum, dum, &c_n1, info);
  763. lwork_dgeqrf__ = (integer) dum[0];
  764. /* Compute space needed for DORMQR */
  765. dormqr_("L", "T", m, nrhs, n, &a[a_offset], lda, dum, &b[
  766. b_offset], ldb, dum, &c_n1, info);
  767. lwork_dormqr__ = (integer) dum[0];
  768. mm = *n;
  769. /* Computing MAX */
  770. i__1 = maxwrk, i__2 = *n + lwork_dgeqrf__;
  771. maxwrk = f2cmax(i__1,i__2);
  772. /* Computing MAX */
  773. i__1 = maxwrk, i__2 = *n + lwork_dormqr__;
  774. maxwrk = f2cmax(i__1,i__2);
  775. }
  776. if (*m >= *n) {
  777. /* Path 1 - overdetermined or exactly determined */
  778. /* Compute workspace needed for DBDSQR */
  779. /* Computing MAX */
  780. i__1 = 1, i__2 = *n * 5;
  781. bdspac = f2cmax(i__1,i__2);
  782. /* Compute space needed for DGEBRD */
  783. dgebrd_(&mm, n, &a[a_offset], lda, &s[1], dum, dum, dum, dum,
  784. &c_n1, info);
  785. lwork_dgebrd__ = (integer) dum[0];
  786. /* Compute space needed for DORMBR */
  787. dormbr_("Q", "L", "T", &mm, nrhs, n, &a[a_offset], lda, dum, &
  788. b[b_offset], ldb, dum, &c_n1, info);
  789. lwork_dormbr__ = (integer) dum[0];
  790. /* Compute space needed for DORGBR */
  791. dorgbr_("P", n, n, n, &a[a_offset], lda, dum, dum, &c_n1,
  792. info);
  793. lwork_dorgbr__ = (integer) dum[0];
  794. /* Compute total workspace needed */
  795. /* Computing MAX */
  796. i__1 = maxwrk, i__2 = *n * 3 + lwork_dgebrd__;
  797. maxwrk = f2cmax(i__1,i__2);
  798. /* Computing MAX */
  799. i__1 = maxwrk, i__2 = *n * 3 + lwork_dormbr__;
  800. maxwrk = f2cmax(i__1,i__2);
  801. /* Computing MAX */
  802. i__1 = maxwrk, i__2 = *n * 3 + lwork_dorgbr__;
  803. maxwrk = f2cmax(i__1,i__2);
  804. maxwrk = f2cmax(maxwrk,bdspac);
  805. /* Computing MAX */
  806. i__1 = maxwrk, i__2 = *n * *nrhs;
  807. maxwrk = f2cmax(i__1,i__2);
  808. /* Computing MAX */
  809. i__1 = *n * 3 + mm, i__2 = *n * 3 + *nrhs, i__1 = f2cmax(i__1,
  810. i__2);
  811. minwrk = f2cmax(i__1,bdspac);
  812. maxwrk = f2cmax(minwrk,maxwrk);
  813. }
  814. if (*n > *m) {
  815. /* Compute workspace needed for DBDSQR */
  816. /* Computing MAX */
  817. i__1 = 1, i__2 = *m * 5;
  818. bdspac = f2cmax(i__1,i__2);
  819. /* Computing MAX */
  820. i__1 = *m * 3 + *nrhs, i__2 = *m * 3 + *n, i__1 = f2cmax(i__1,
  821. i__2);
  822. minwrk = f2cmax(i__1,bdspac);
  823. if (*n >= mnthr) {
  824. /* Path 2a - underdetermined, with many more columns */
  825. /* than rows */
  826. /* Compute space needed for DGELQF */
  827. dgelqf_(m, n, &a[a_offset], lda, dum, dum, &c_n1, info);
  828. lwork_dgelqf__ = (integer) dum[0];
  829. /* Compute space needed for DGEBRD */
  830. dgebrd_(m, m, &a[a_offset], lda, &s[1], dum, dum, dum,
  831. dum, &c_n1, info);
  832. lwork_dgebrd__ = (integer) dum[0];
  833. /* Compute space needed for DORMBR */
  834. dormbr_("Q", "L", "T", m, nrhs, n, &a[a_offset], lda, dum,
  835. &b[b_offset], ldb, dum, &c_n1, info);
  836. lwork_dormbr__ = (integer) dum[0];
  837. /* Compute space needed for DORGBR */
  838. dorgbr_("P", m, m, m, &a[a_offset], lda, dum, dum, &c_n1,
  839. info);
  840. lwork_dorgbr__ = (integer) dum[0];
  841. /* Compute space needed for DORMLQ */
  842. dormlq_("L", "T", n, nrhs, m, &a[a_offset], lda, dum, &b[
  843. b_offset], ldb, dum, &c_n1, info);
  844. lwork_dormlq__ = (integer) dum[0];
  845. /* Compute total workspace needed */
  846. maxwrk = *m + lwork_dgelqf__;
  847. /* Computing MAX */
  848. i__1 = maxwrk, i__2 = *m * *m + (*m << 2) +
  849. lwork_dgebrd__;
  850. maxwrk = f2cmax(i__1,i__2);
  851. /* Computing MAX */
  852. i__1 = maxwrk, i__2 = *m * *m + (*m << 2) +
  853. lwork_dormbr__;
  854. maxwrk = f2cmax(i__1,i__2);
  855. /* Computing MAX */
  856. i__1 = maxwrk, i__2 = *m * *m + (*m << 2) +
  857. lwork_dorgbr__;
  858. maxwrk = f2cmax(i__1,i__2);
  859. /* Computing MAX */
  860. i__1 = maxwrk, i__2 = *m * *m + *m + bdspac;
  861. maxwrk = f2cmax(i__1,i__2);
  862. if (*nrhs > 1) {
  863. /* Computing MAX */
  864. i__1 = maxwrk, i__2 = *m * *m + *m + *m * *nrhs;
  865. maxwrk = f2cmax(i__1,i__2);
  866. } else {
  867. /* Computing MAX */
  868. i__1 = maxwrk, i__2 = *m * *m + (*m << 1);
  869. maxwrk = f2cmax(i__1,i__2);
  870. }
  871. /* Computing MAX */
  872. i__1 = maxwrk, i__2 = *m + lwork_dormlq__;
  873. maxwrk = f2cmax(i__1,i__2);
  874. } else {
  875. /* Path 2 - underdetermined */
  876. /* Compute space needed for DGEBRD */
  877. dgebrd_(m, n, &a[a_offset], lda, &s[1], dum, dum, dum,
  878. dum, &c_n1, info);
  879. lwork_dgebrd__ = (integer) dum[0];
  880. /* Compute space needed for DORMBR */
  881. dormbr_("Q", "L", "T", m, nrhs, m, &a[a_offset], lda, dum,
  882. &b[b_offset], ldb, dum, &c_n1, info);
  883. lwork_dormbr__ = (integer) dum[0];
  884. /* Compute space needed for DORGBR */
  885. dorgbr_("P", m, n, m, &a[a_offset], lda, dum, dum, &c_n1,
  886. info);
  887. lwork_dorgbr__ = (integer) dum[0];
  888. maxwrk = *m * 3 + lwork_dgebrd__;
  889. /* Computing MAX */
  890. i__1 = maxwrk, i__2 = *m * 3 + lwork_dormbr__;
  891. maxwrk = f2cmax(i__1,i__2);
  892. /* Computing MAX */
  893. i__1 = maxwrk, i__2 = *m * 3 + lwork_dorgbr__;
  894. maxwrk = f2cmax(i__1,i__2);
  895. maxwrk = f2cmax(maxwrk,bdspac);
  896. /* Computing MAX */
  897. i__1 = maxwrk, i__2 = *n * *nrhs;
  898. maxwrk = f2cmax(i__1,i__2);
  899. }
  900. }
  901. maxwrk = f2cmax(minwrk,maxwrk);
  902. }
  903. work[1] = (doublereal) maxwrk;
  904. if (*lwork < minwrk && ! lquery) {
  905. *info = -12;
  906. }
  907. }
  908. if (*info != 0) {
  909. i__1 = -(*info);
  910. xerbla_("DGELSS", &i__1, (ftnlen)6);
  911. return;
  912. } else if (lquery) {
  913. return;
  914. }
  915. /* Quick return if possible */
  916. if (*m == 0 || *n == 0) {
  917. *rank = 0;
  918. return;
  919. }
  920. /* Get machine parameters */
  921. eps = dlamch_("P");
  922. sfmin = dlamch_("S");
  923. smlnum = sfmin / eps;
  924. bignum = 1. / smlnum;
  925. dlabad_(&smlnum, &bignum);
  926. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  927. anrm = dlange_("M", m, n, &a[a_offset], lda, &work[1]);
  928. iascl = 0;
  929. if (anrm > 0. && anrm < smlnum) {
  930. /* Scale matrix norm up to SMLNUM */
  931. dlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
  932. info);
  933. iascl = 1;
  934. } else if (anrm > bignum) {
  935. /* Scale matrix norm down to BIGNUM */
  936. dlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
  937. info);
  938. iascl = 2;
  939. } else if (anrm == 0.) {
  940. /* Matrix all zero. Return zero solution. */
  941. i__1 = f2cmax(*m,*n);
  942. dlaset_("F", &i__1, nrhs, &c_b46, &c_b46, &b[b_offset], ldb);
  943. dlaset_("F", &minmn, &c__1, &c_b46, &c_b46, &s[1], &minmn);
  944. *rank = 0;
  945. goto L70;
  946. }
  947. /* Scale B if f2cmax element outside range [SMLNUM,BIGNUM] */
  948. bnrm = dlange_("M", m, nrhs, &b[b_offset], ldb, &work[1]);
  949. ibscl = 0;
  950. if (bnrm > 0. && bnrm < smlnum) {
  951. /* Scale matrix norm up to SMLNUM */
  952. dlascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
  953. info);
  954. ibscl = 1;
  955. } else if (bnrm > bignum) {
  956. /* Scale matrix norm down to BIGNUM */
  957. dlascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
  958. info);
  959. ibscl = 2;
  960. }
  961. /* Overdetermined case */
  962. if (*m >= *n) {
  963. /* Path 1 - overdetermined or exactly determined */
  964. mm = *m;
  965. if (*m >= mnthr) {
  966. /* Path 1a - overdetermined, with many more rows than columns */
  967. mm = *n;
  968. itau = 1;
  969. iwork = itau + *n;
  970. /* Compute A=Q*R */
  971. /* (Workspace: need 2*N, prefer N+N*NB) */
  972. i__1 = *lwork - iwork + 1;
  973. dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork], &i__1,
  974. info);
  975. /* Multiply B by transpose(Q) */
  976. /* (Workspace: need N+NRHS, prefer N+NRHS*NB) */
  977. i__1 = *lwork - iwork + 1;
  978. dormqr_("L", "T", m, nrhs, n, &a[a_offset], lda, &work[itau], &b[
  979. b_offset], ldb, &work[iwork], &i__1, info);
  980. /* Zero out below R */
  981. if (*n > 1) {
  982. i__1 = *n - 1;
  983. i__2 = *n - 1;
  984. dlaset_("L", &i__1, &i__2, &c_b46, &c_b46, &a[a_dim1 + 2],
  985. lda);
  986. }
  987. }
  988. ie = 1;
  989. itauq = ie + *n;
  990. itaup = itauq + *n;
  991. iwork = itaup + *n;
  992. /* Bidiagonalize R in A */
  993. /* (Workspace: need 3*N+MM, prefer 3*N+(MM+N)*NB) */
  994. i__1 = *lwork - iwork + 1;
  995. dgebrd_(&mm, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], &
  996. work[itaup], &work[iwork], &i__1, info);
  997. /* Multiply B by transpose of left bidiagonalizing vectors of R */
  998. /* (Workspace: need 3*N+NRHS, prefer 3*N+NRHS*NB) */
  999. i__1 = *lwork - iwork + 1;
  1000. dormbr_("Q", "L", "T", &mm, nrhs, n, &a[a_offset], lda, &work[itauq],
  1001. &b[b_offset], ldb, &work[iwork], &i__1, info);
  1002. /* Generate right bidiagonalizing vectors of R in A */
  1003. /* (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB) */
  1004. i__1 = *lwork - iwork + 1;
  1005. dorgbr_("P", n, n, n, &a[a_offset], lda, &work[itaup], &work[iwork], &
  1006. i__1, info);
  1007. iwork = ie + *n;
  1008. /* Perform bidiagonal QR iteration */
  1009. /* multiply B by transpose of left singular vectors */
  1010. /* compute right singular vectors in A */
  1011. /* (Workspace: need BDSPAC) */
  1012. dbdsqr_("U", n, n, &c__0, nrhs, &s[1], &work[ie], &a[a_offset], lda,
  1013. dum, &c__1, &b[b_offset], ldb, &work[iwork], info);
  1014. if (*info != 0) {
  1015. goto L70;
  1016. }
  1017. /* Multiply B by reciprocals of singular values */
  1018. /* Computing MAX */
  1019. d__1 = *rcond * s[1];
  1020. thr = f2cmax(d__1,sfmin);
  1021. if (*rcond < 0.) {
  1022. /* Computing MAX */
  1023. d__1 = eps * s[1];
  1024. thr = f2cmax(d__1,sfmin);
  1025. }
  1026. *rank = 0;
  1027. i__1 = *n;
  1028. for (i__ = 1; i__ <= i__1; ++i__) {
  1029. if (s[i__] > thr) {
  1030. drscl_(nrhs, &s[i__], &b[i__ + b_dim1], ldb);
  1031. ++(*rank);
  1032. } else {
  1033. dlaset_("F", &c__1, nrhs, &c_b46, &c_b46, &b[i__ + b_dim1],
  1034. ldb);
  1035. }
  1036. /* L10: */
  1037. }
  1038. /* Multiply B by right singular vectors */
  1039. /* (Workspace: need N, prefer N*NRHS) */
  1040. if (*lwork >= *ldb * *nrhs && *nrhs > 1) {
  1041. dgemm_("T", "N", n, nrhs, n, &c_b79, &a[a_offset], lda, &b[
  1042. b_offset], ldb, &c_b46, &work[1], ldb);
  1043. dlacpy_("G", n, nrhs, &work[1], ldb, &b[b_offset], ldb)
  1044. ;
  1045. } else if (*nrhs > 1) {
  1046. chunk = *lwork / *n;
  1047. i__1 = *nrhs;
  1048. i__2 = chunk;
  1049. for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
  1050. /* Computing MIN */
  1051. i__3 = *nrhs - i__ + 1;
  1052. bl = f2cmin(i__3,chunk);
  1053. dgemm_("T", "N", n, &bl, n, &c_b79, &a[a_offset], lda, &b[i__
  1054. * b_dim1 + 1], ldb, &c_b46, &work[1], n);
  1055. dlacpy_("G", n, &bl, &work[1], n, &b[i__ * b_dim1 + 1], ldb);
  1056. /* L20: */
  1057. }
  1058. } else {
  1059. dgemv_("T", n, n, &c_b79, &a[a_offset], lda, &b[b_offset], &c__1,
  1060. &c_b46, &work[1], &c__1);
  1061. dcopy_(n, &work[1], &c__1, &b[b_offset], &c__1);
  1062. }
  1063. } else /* if(complicated condition) */ {
  1064. /* Computing MAX */
  1065. i__2 = *m, i__1 = (*m << 1) - 4, i__2 = f2cmax(i__2,i__1), i__2 = f2cmax(
  1066. i__2,*nrhs), i__1 = *n - *m * 3;
  1067. if (*n >= mnthr && *lwork >= (*m << 2) + *m * *m + f2cmax(i__2,i__1)) {
  1068. /* Path 2a - underdetermined, with many more columns than rows */
  1069. /* and sufficient workspace for an efficient algorithm */
  1070. ldwork = *m;
  1071. /* Computing MAX */
  1072. /* Computing MAX */
  1073. i__3 = *m, i__4 = (*m << 1) - 4, i__3 = f2cmax(i__3,i__4), i__3 =
  1074. f2cmax(i__3,*nrhs), i__4 = *n - *m * 3;
  1075. i__2 = (*m << 2) + *m * *lda + f2cmax(i__3,i__4), i__1 = *m * *lda +
  1076. *m + *m * *nrhs;
  1077. if (*lwork >= f2cmax(i__2,i__1)) {
  1078. ldwork = *lda;
  1079. }
  1080. itau = 1;
  1081. iwork = *m + 1;
  1082. /* Compute A=L*Q */
  1083. /* (Workspace: need 2*M, prefer M+M*NB) */
  1084. i__2 = *lwork - iwork + 1;
  1085. dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork], &i__2,
  1086. info);
  1087. il = iwork;
  1088. /* Copy L to WORK(IL), zeroing out above it */
  1089. dlacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwork);
  1090. i__2 = *m - 1;
  1091. i__1 = *m - 1;
  1092. dlaset_("U", &i__2, &i__1, &c_b46, &c_b46, &work[il + ldwork], &
  1093. ldwork);
  1094. ie = il + ldwork * *m;
  1095. itauq = ie + *m;
  1096. itaup = itauq + *m;
  1097. iwork = itaup + *m;
  1098. /* Bidiagonalize L in WORK(IL) */
  1099. /* (Workspace: need M*M+5*M, prefer M*M+4*M+2*M*NB) */
  1100. i__2 = *lwork - iwork + 1;
  1101. dgebrd_(m, m, &work[il], &ldwork, &s[1], &work[ie], &work[itauq],
  1102. &work[itaup], &work[iwork], &i__2, info);
  1103. /* Multiply B by transpose of left bidiagonalizing vectors of L */
  1104. /* (Workspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB) */
  1105. i__2 = *lwork - iwork + 1;
  1106. dormbr_("Q", "L", "T", m, nrhs, m, &work[il], &ldwork, &work[
  1107. itauq], &b[b_offset], ldb, &work[iwork], &i__2, info);
  1108. /* Generate right bidiagonalizing vectors of R in WORK(IL) */
  1109. /* (Workspace: need M*M+5*M-1, prefer M*M+4*M+(M-1)*NB) */
  1110. i__2 = *lwork - iwork + 1;
  1111. dorgbr_("P", m, m, m, &work[il], &ldwork, &work[itaup], &work[
  1112. iwork], &i__2, info);
  1113. iwork = ie + *m;
  1114. /* Perform bidiagonal QR iteration, */
  1115. /* computing right singular vectors of L in WORK(IL) and */
  1116. /* multiplying B by transpose of left singular vectors */
  1117. /* (Workspace: need M*M+M+BDSPAC) */
  1118. dbdsqr_("U", m, m, &c__0, nrhs, &s[1], &work[ie], &work[il], &
  1119. ldwork, &a[a_offset], lda, &b[b_offset], ldb, &work[iwork]
  1120. , info);
  1121. if (*info != 0) {
  1122. goto L70;
  1123. }
  1124. /* Multiply B by reciprocals of singular values */
  1125. /* Computing MAX */
  1126. d__1 = *rcond * s[1];
  1127. thr = f2cmax(d__1,sfmin);
  1128. if (*rcond < 0.) {
  1129. /* Computing MAX */
  1130. d__1 = eps * s[1];
  1131. thr = f2cmax(d__1,sfmin);
  1132. }
  1133. *rank = 0;
  1134. i__2 = *m;
  1135. for (i__ = 1; i__ <= i__2; ++i__) {
  1136. if (s[i__] > thr) {
  1137. drscl_(nrhs, &s[i__], &b[i__ + b_dim1], ldb);
  1138. ++(*rank);
  1139. } else {
  1140. dlaset_("F", &c__1, nrhs, &c_b46, &c_b46, &b[i__ + b_dim1]
  1141. , ldb);
  1142. }
  1143. /* L30: */
  1144. }
  1145. iwork = ie;
  1146. /* Multiply B by right singular vectors of L in WORK(IL) */
  1147. /* (Workspace: need M*M+2*M, prefer M*M+M+M*NRHS) */
  1148. if (*lwork >= *ldb * *nrhs + iwork - 1 && *nrhs > 1) {
  1149. dgemm_("T", "N", m, nrhs, m, &c_b79, &work[il], &ldwork, &b[
  1150. b_offset], ldb, &c_b46, &work[iwork], ldb);
  1151. dlacpy_("G", m, nrhs, &work[iwork], ldb, &b[b_offset], ldb);
  1152. } else if (*nrhs > 1) {
  1153. chunk = (*lwork - iwork + 1) / *m;
  1154. i__2 = *nrhs;
  1155. i__1 = chunk;
  1156. for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ +=
  1157. i__1) {
  1158. /* Computing MIN */
  1159. i__3 = *nrhs - i__ + 1;
  1160. bl = f2cmin(i__3,chunk);
  1161. dgemm_("T", "N", m, &bl, m, &c_b79, &work[il], &ldwork, &
  1162. b[i__ * b_dim1 + 1], ldb, &c_b46, &work[iwork], m);
  1163. dlacpy_("G", m, &bl, &work[iwork], m, &b[i__ * b_dim1 + 1]
  1164. , ldb);
  1165. /* L40: */
  1166. }
  1167. } else {
  1168. dgemv_("T", m, m, &c_b79, &work[il], &ldwork, &b[b_dim1 + 1],
  1169. &c__1, &c_b46, &work[iwork], &c__1);
  1170. dcopy_(m, &work[iwork], &c__1, &b[b_dim1 + 1], &c__1);
  1171. }
  1172. /* Zero out below first M rows of B */
  1173. i__1 = *n - *m;
  1174. dlaset_("F", &i__1, nrhs, &c_b46, &c_b46, &b[*m + 1 + b_dim1],
  1175. ldb);
  1176. iwork = itau + *m;
  1177. /* Multiply transpose(Q) by B */
  1178. /* (Workspace: need M+NRHS, prefer M+NRHS*NB) */
  1179. i__1 = *lwork - iwork + 1;
  1180. dormlq_("L", "T", n, nrhs, m, &a[a_offset], lda, &work[itau], &b[
  1181. b_offset], ldb, &work[iwork], &i__1, info);
  1182. } else {
  1183. /* Path 2 - remaining underdetermined cases */
  1184. ie = 1;
  1185. itauq = ie + *m;
  1186. itaup = itauq + *m;
  1187. iwork = itaup + *m;
  1188. /* Bidiagonalize A */
  1189. /* (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB) */
  1190. i__1 = *lwork - iwork + 1;
  1191. dgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], &
  1192. work[itaup], &work[iwork], &i__1, info);
  1193. /* Multiply B by transpose of left bidiagonalizing vectors */
  1194. /* (Workspace: need 3*M+NRHS, prefer 3*M+NRHS*NB) */
  1195. i__1 = *lwork - iwork + 1;
  1196. dormbr_("Q", "L", "T", m, nrhs, n, &a[a_offset], lda, &work[itauq]
  1197. , &b[b_offset], ldb, &work[iwork], &i__1, info);
  1198. /* Generate right bidiagonalizing vectors in A */
  1199. /* (Workspace: need 4*M, prefer 3*M+M*NB) */
  1200. i__1 = *lwork - iwork + 1;
  1201. dorgbr_("P", m, n, m, &a[a_offset], lda, &work[itaup], &work[
  1202. iwork], &i__1, info);
  1203. iwork = ie + *m;
  1204. /* Perform bidiagonal QR iteration, */
  1205. /* computing right singular vectors of A in A and */
  1206. /* multiplying B by transpose of left singular vectors */
  1207. /* (Workspace: need BDSPAC) */
  1208. dbdsqr_("L", m, n, &c__0, nrhs, &s[1], &work[ie], &a[a_offset],
  1209. lda, dum, &c__1, &b[b_offset], ldb, &work[iwork], info);
  1210. if (*info != 0) {
  1211. goto L70;
  1212. }
  1213. /* Multiply B by reciprocals of singular values */
  1214. /* Computing MAX */
  1215. d__1 = *rcond * s[1];
  1216. thr = f2cmax(d__1,sfmin);
  1217. if (*rcond < 0.) {
  1218. /* Computing MAX */
  1219. d__1 = eps * s[1];
  1220. thr = f2cmax(d__1,sfmin);
  1221. }
  1222. *rank = 0;
  1223. i__1 = *m;
  1224. for (i__ = 1; i__ <= i__1; ++i__) {
  1225. if (s[i__] > thr) {
  1226. drscl_(nrhs, &s[i__], &b[i__ + b_dim1], ldb);
  1227. ++(*rank);
  1228. } else {
  1229. dlaset_("F", &c__1, nrhs, &c_b46, &c_b46, &b[i__ + b_dim1]
  1230. , ldb);
  1231. }
  1232. /* L50: */
  1233. }
  1234. /* Multiply B by right singular vectors of A */
  1235. /* (Workspace: need N, prefer N*NRHS) */
  1236. if (*lwork >= *ldb * *nrhs && *nrhs > 1) {
  1237. dgemm_("T", "N", n, nrhs, m, &c_b79, &a[a_offset], lda, &b[
  1238. b_offset], ldb, &c_b46, &work[1], ldb);
  1239. dlacpy_("F", n, nrhs, &work[1], ldb, &b[b_offset], ldb);
  1240. } else if (*nrhs > 1) {
  1241. chunk = *lwork / *n;
  1242. i__1 = *nrhs;
  1243. i__2 = chunk;
  1244. for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ +=
  1245. i__2) {
  1246. /* Computing MIN */
  1247. i__3 = *nrhs - i__ + 1;
  1248. bl = f2cmin(i__3,chunk);
  1249. dgemm_("T", "N", n, &bl, m, &c_b79, &a[a_offset], lda, &b[
  1250. i__ * b_dim1 + 1], ldb, &c_b46, &work[1], n);
  1251. dlacpy_("F", n, &bl, &work[1], n, &b[i__ * b_dim1 + 1],
  1252. ldb);
  1253. /* L60: */
  1254. }
  1255. } else {
  1256. dgemv_("T", m, n, &c_b79, &a[a_offset], lda, &b[b_offset], &
  1257. c__1, &c_b46, &work[1], &c__1);
  1258. dcopy_(n, &work[1], &c__1, &b[b_offset], &c__1);
  1259. }
  1260. }
  1261. }
  1262. /* Undo scaling */
  1263. if (iascl == 1) {
  1264. dlascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
  1265. info);
  1266. dlascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
  1267. minmn, info);
  1268. } else if (iascl == 2) {
  1269. dlascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
  1270. info);
  1271. dlascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
  1272. minmn, info);
  1273. }
  1274. if (ibscl == 1) {
  1275. dlascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
  1276. info);
  1277. } else if (ibscl == 2) {
  1278. dlascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
  1279. info);
  1280. }
  1281. L70:
  1282. work[1] = (doublereal) maxwrk;
  1283. return;
  1284. /* End of DGELSS */
  1285. } /* dgelss_ */