You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

csptrf.c 37 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static complex c_b1 = {1.f,0.f};
  485. static integer c__1 = 1;
  486. /* > \brief \b CSPTRF */
  487. /* =========== DOCUMENTATION =========== */
  488. /* Online html documentation available at */
  489. /* http://www.netlib.org/lapack/explore-html/ */
  490. /* > \htmlonly */
  491. /* > Download CSPTRF + dependencies */
  492. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/csptrf.
  493. f"> */
  494. /* > [TGZ]</a> */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/csptrf.
  496. f"> */
  497. /* > [ZIP]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/csptrf.
  499. f"> */
  500. /* > [TXT]</a> */
  501. /* > \endhtmlonly */
  502. /* Definition: */
  503. /* =========== */
  504. /* SUBROUTINE CSPTRF( UPLO, N, AP, IPIV, INFO ) */
  505. /* CHARACTER UPLO */
  506. /* INTEGER INFO, N */
  507. /* INTEGER IPIV( * ) */
  508. /* COMPLEX AP( * ) */
  509. /* > \par Purpose: */
  510. /* ============= */
  511. /* > */
  512. /* > \verbatim */
  513. /* > */
  514. /* > CSPTRF computes the factorization of a complex symmetric matrix A */
  515. /* > stored in packed format using the Bunch-Kaufman diagonal pivoting */
  516. /* > method: */
  517. /* > */
  518. /* > A = U*D*U**T or A = L*D*L**T */
  519. /* > */
  520. /* > where U (or L) is a product of permutation and unit upper (lower) */
  521. /* > triangular matrices, and D is symmetric and block diagonal with */
  522. /* > 1-by-1 and 2-by-2 diagonal blocks. */
  523. /* > \endverbatim */
  524. /* Arguments: */
  525. /* ========== */
  526. /* > \param[in] UPLO */
  527. /* > \verbatim */
  528. /* > UPLO is CHARACTER*1 */
  529. /* > = 'U': Upper triangle of A is stored; */
  530. /* > = 'L': Lower triangle of A is stored. */
  531. /* > \endverbatim */
  532. /* > */
  533. /* > \param[in] N */
  534. /* > \verbatim */
  535. /* > N is INTEGER */
  536. /* > The order of the matrix A. N >= 0. */
  537. /* > \endverbatim */
  538. /* > */
  539. /* > \param[in,out] AP */
  540. /* > \verbatim */
  541. /* > AP is COMPLEX array, dimension (N*(N+1)/2) */
  542. /* > On entry, the upper or lower triangle of the symmetric matrix */
  543. /* > A, packed columnwise in a linear array. The j-th column of A */
  544. /* > is stored in the array AP as follows: */
  545. /* > if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
  546. /* > if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
  547. /* > */
  548. /* > On exit, the block diagonal matrix D and the multipliers used */
  549. /* > to obtain the factor U or L, stored as a packed triangular */
  550. /* > matrix overwriting A (see below for further details). */
  551. /* > \endverbatim */
  552. /* > */
  553. /* > \param[out] IPIV */
  554. /* > \verbatim */
  555. /* > IPIV is INTEGER array, dimension (N) */
  556. /* > Details of the interchanges and the block structure of D. */
  557. /* > If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
  558. /* > interchanged and D(k,k) is a 1-by-1 diagonal block. */
  559. /* > If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and */
  560. /* > columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */
  561. /* > is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = */
  562. /* > IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were */
  563. /* > interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
  564. /* > \endverbatim */
  565. /* > */
  566. /* > \param[out] INFO */
  567. /* > \verbatim */
  568. /* > INFO is INTEGER */
  569. /* > = 0: successful exit */
  570. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  571. /* > > 0: if INFO = i, D(i,i) is exactly zero. The factorization */
  572. /* > has been completed, but the block diagonal matrix D is */
  573. /* > exactly singular, and division by zero will occur if it */
  574. /* > is used to solve a system of equations. */
  575. /* > \endverbatim */
  576. /* Authors: */
  577. /* ======== */
  578. /* > \author Univ. of Tennessee */
  579. /* > \author Univ. of California Berkeley */
  580. /* > \author Univ. of Colorado Denver */
  581. /* > \author NAG Ltd. */
  582. /* > \date December 2016 */
  583. /* > \ingroup complexOTHERcomputational */
  584. /* > \par Further Details: */
  585. /* ===================== */
  586. /* > */
  587. /* > \verbatim */
  588. /* > */
  589. /* > 5-96 - Based on modifications by J. Lewis, Boeing Computer Services */
  590. /* > Company */
  591. /* > */
  592. /* > If UPLO = 'U', then A = U*D*U**T, where */
  593. /* > U = P(n)*U(n)* ... *P(k)U(k)* ..., */
  594. /* > i.e., U is a product of terms P(k)*U(k), where k decreases from n to */
  595. /* > 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
  596. /* > and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
  597. /* > defined by IPIV(k), and U(k) is a unit upper triangular matrix, such */
  598. /* > that if the diagonal block D(k) is of order s (s = 1 or 2), then */
  599. /* > */
  600. /* > ( I v 0 ) k-s */
  601. /* > U(k) = ( 0 I 0 ) s */
  602. /* > ( 0 0 I ) n-k */
  603. /* > k-s s n-k */
  604. /* > */
  605. /* > If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). */
  606. /* > If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k), */
  607. /* > and A(k,k), and v overwrites A(1:k-2,k-1:k). */
  608. /* > */
  609. /* > If UPLO = 'L', then A = L*D*L**T, where */
  610. /* > L = P(1)*L(1)* ... *P(k)*L(k)* ..., */
  611. /* > i.e., L is a product of terms P(k)*L(k), where k increases from 1 to */
  612. /* > n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
  613. /* > and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
  614. /* > defined by IPIV(k), and L(k) is a unit lower triangular matrix, such */
  615. /* > that if the diagonal block D(k) is of order s (s = 1 or 2), then */
  616. /* > */
  617. /* > ( I 0 0 ) k-1 */
  618. /* > L(k) = ( 0 I 0 ) s */
  619. /* > ( 0 v I ) n-k-s+1 */
  620. /* > k-1 s n-k-s+1 */
  621. /* > */
  622. /* > If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). */
  623. /* > If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k), */
  624. /* > and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1). */
  625. /* > \endverbatim */
  626. /* > */
  627. /* ===================================================================== */
  628. /* Subroutine */ void csptrf_(char *uplo, integer *n, complex *ap, integer *
  629. ipiv, integer *info)
  630. {
  631. /* System generated locals */
  632. integer i__1, i__2, i__3, i__4, i__5, i__6;
  633. real r__1, r__2, r__3, r__4;
  634. complex q__1, q__2, q__3, q__4;
  635. /* Local variables */
  636. integer imax, jmax;
  637. extern /* Subroutine */ void cspr_(char *, integer *, complex *, complex *,
  638. integer *, complex *);
  639. integer i__, j, k;
  640. complex t;
  641. real alpha;
  642. extern /* Subroutine */ void cscal_(integer *, complex *, complex *,
  643. integer *);
  644. extern logical lsame_(char *, char *);
  645. extern /* Subroutine */ void cswap_(integer *, complex *, integer *,
  646. complex *, integer *);
  647. integer kstep;
  648. logical upper;
  649. complex r1, d11, d12, d21, d22;
  650. integer kc, kk, kp;
  651. real absakk;
  652. complex wk;
  653. integer kx;
  654. extern integer icamax_(integer *, complex *, integer *);
  655. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  656. real colmax, rowmax;
  657. integer knc, kpc, npp;
  658. complex wkm1, wkp1;
  659. /* -- LAPACK computational routine (version 3.7.0) -- */
  660. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  661. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  662. /* December 2016 */
  663. /* ===================================================================== */
  664. /* Test the input parameters. */
  665. /* Parameter adjustments */
  666. --ipiv;
  667. --ap;
  668. /* Function Body */
  669. *info = 0;
  670. upper = lsame_(uplo, "U");
  671. if (! upper && ! lsame_(uplo, "L")) {
  672. *info = -1;
  673. } else if (*n < 0) {
  674. *info = -2;
  675. }
  676. if (*info != 0) {
  677. i__1 = -(*info);
  678. xerbla_("CSPTRF", &i__1, (ftnlen)6);
  679. return;
  680. }
  681. /* Initialize ALPHA for use in choosing pivot block size. */
  682. alpha = (sqrt(17.f) + 1.f) / 8.f;
  683. if (upper) {
  684. /* Factorize A as U*D*U**T using the upper triangle of A */
  685. /* K is the main loop index, decreasing from N to 1 in steps of */
  686. /* 1 or 2 */
  687. k = *n;
  688. kc = (*n - 1) * *n / 2 + 1;
  689. L10:
  690. knc = kc;
  691. /* If K < 1, exit from loop */
  692. if (k < 1) {
  693. goto L110;
  694. }
  695. kstep = 1;
  696. /* Determine rows and columns to be interchanged and whether */
  697. /* a 1-by-1 or 2-by-2 pivot block will be used */
  698. i__1 = kc + k - 1;
  699. absakk = (r__1 = ap[i__1].r, abs(r__1)) + (r__2 = r_imag(&ap[kc + k -
  700. 1]), abs(r__2));
  701. /* IMAX is the row-index of the largest off-diagonal element in */
  702. /* column K, and COLMAX is its absolute value */
  703. if (k > 1) {
  704. i__1 = k - 1;
  705. imax = icamax_(&i__1, &ap[kc], &c__1);
  706. i__1 = kc + imax - 1;
  707. colmax = (r__1 = ap[i__1].r, abs(r__1)) + (r__2 = r_imag(&ap[kc +
  708. imax - 1]), abs(r__2));
  709. } else {
  710. colmax = 0.f;
  711. }
  712. if (f2cmax(absakk,colmax) == 0.f) {
  713. /* Column K is zero: set INFO and continue */
  714. if (*info == 0) {
  715. *info = k;
  716. }
  717. kp = k;
  718. } else {
  719. if (absakk >= alpha * colmax) {
  720. /* no interchange, use 1-by-1 pivot block */
  721. kp = k;
  722. } else {
  723. rowmax = 0.f;
  724. jmax = imax;
  725. kx = imax * (imax + 1) / 2 + imax;
  726. i__1 = k;
  727. for (j = imax + 1; j <= i__1; ++j) {
  728. i__2 = kx;
  729. if ((r__1 = ap[i__2].r, abs(r__1)) + (r__2 = r_imag(&ap[
  730. kx]), abs(r__2)) > rowmax) {
  731. i__2 = kx;
  732. rowmax = (r__1 = ap[i__2].r, abs(r__1)) + (r__2 =
  733. r_imag(&ap[kx]), abs(r__2));
  734. jmax = j;
  735. }
  736. kx += j;
  737. /* L20: */
  738. }
  739. kpc = (imax - 1) * imax / 2 + 1;
  740. if (imax > 1) {
  741. i__1 = imax - 1;
  742. jmax = icamax_(&i__1, &ap[kpc], &c__1);
  743. /* Computing MAX */
  744. i__1 = kpc + jmax - 1;
  745. r__3 = rowmax, r__4 = (r__1 = ap[i__1].r, abs(r__1)) + (
  746. r__2 = r_imag(&ap[kpc + jmax - 1]), abs(r__2));
  747. rowmax = f2cmax(r__3,r__4);
  748. }
  749. if (absakk >= alpha * colmax * (colmax / rowmax)) {
  750. /* no interchange, use 1-by-1 pivot block */
  751. kp = k;
  752. } else /* if(complicated condition) */ {
  753. i__1 = kpc + imax - 1;
  754. if ((r__1 = ap[i__1].r, abs(r__1)) + (r__2 = r_imag(&ap[
  755. kpc + imax - 1]), abs(r__2)) >= alpha * rowmax) {
  756. /* interchange rows and columns K and IMAX, use 1-by-1 */
  757. /* pivot block */
  758. kp = imax;
  759. } else {
  760. /* interchange rows and columns K-1 and IMAX, use 2-by-2 */
  761. /* pivot block */
  762. kp = imax;
  763. kstep = 2;
  764. }
  765. }
  766. }
  767. kk = k - kstep + 1;
  768. if (kstep == 2) {
  769. knc = knc - k + 1;
  770. }
  771. if (kp != kk) {
  772. /* Interchange rows and columns KK and KP in the leading */
  773. /* submatrix A(1:k,1:k) */
  774. i__1 = kp - 1;
  775. cswap_(&i__1, &ap[knc], &c__1, &ap[kpc], &c__1);
  776. kx = kpc + kp - 1;
  777. i__1 = kk - 1;
  778. for (j = kp + 1; j <= i__1; ++j) {
  779. kx = kx + j - 1;
  780. i__2 = knc + j - 1;
  781. t.r = ap[i__2].r, t.i = ap[i__2].i;
  782. i__2 = knc + j - 1;
  783. i__3 = kx;
  784. ap[i__2].r = ap[i__3].r, ap[i__2].i = ap[i__3].i;
  785. i__2 = kx;
  786. ap[i__2].r = t.r, ap[i__2].i = t.i;
  787. /* L30: */
  788. }
  789. i__1 = knc + kk - 1;
  790. t.r = ap[i__1].r, t.i = ap[i__1].i;
  791. i__1 = knc + kk - 1;
  792. i__2 = kpc + kp - 1;
  793. ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i;
  794. i__1 = kpc + kp - 1;
  795. ap[i__1].r = t.r, ap[i__1].i = t.i;
  796. if (kstep == 2) {
  797. i__1 = kc + k - 2;
  798. t.r = ap[i__1].r, t.i = ap[i__1].i;
  799. i__1 = kc + k - 2;
  800. i__2 = kc + kp - 1;
  801. ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i;
  802. i__1 = kc + kp - 1;
  803. ap[i__1].r = t.r, ap[i__1].i = t.i;
  804. }
  805. }
  806. /* Update the leading submatrix */
  807. if (kstep == 1) {
  808. /* 1-by-1 pivot block D(k): column k now holds */
  809. /* W(k) = U(k)*D(k) */
  810. /* where U(k) is the k-th column of U */
  811. /* Perform a rank-1 update of A(1:k-1,1:k-1) as */
  812. /* A := A - U(k)*D(k)*U(k)**T = A - W(k)*1/D(k)*W(k)**T */
  813. c_div(&q__1, &c_b1, &ap[kc + k - 1]);
  814. r1.r = q__1.r, r1.i = q__1.i;
  815. i__1 = k - 1;
  816. q__1.r = -r1.r, q__1.i = -r1.i;
  817. cspr_(uplo, &i__1, &q__1, &ap[kc], &c__1, &ap[1]);
  818. /* Store U(k) in column k */
  819. i__1 = k - 1;
  820. cscal_(&i__1, &r1, &ap[kc], &c__1);
  821. } else {
  822. /* 2-by-2 pivot block D(k): columns k and k-1 now hold */
  823. /* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */
  824. /* where U(k) and U(k-1) are the k-th and (k-1)-th columns */
  825. /* of U */
  826. /* Perform a rank-2 update of A(1:k-2,1:k-2) as */
  827. /* A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T */
  828. /* = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**T */
  829. if (k > 2) {
  830. i__1 = k - 1 + (k - 1) * k / 2;
  831. d12.r = ap[i__1].r, d12.i = ap[i__1].i;
  832. c_div(&q__1, &ap[k - 1 + (k - 2) * (k - 1) / 2], &d12);
  833. d22.r = q__1.r, d22.i = q__1.i;
  834. c_div(&q__1, &ap[k + (k - 1) * k / 2], &d12);
  835. d11.r = q__1.r, d11.i = q__1.i;
  836. q__3.r = d11.r * d22.r - d11.i * d22.i, q__3.i = d11.r *
  837. d22.i + d11.i * d22.r;
  838. q__2.r = q__3.r - 1.f, q__2.i = q__3.i + 0.f;
  839. c_div(&q__1, &c_b1, &q__2);
  840. t.r = q__1.r, t.i = q__1.i;
  841. c_div(&q__1, &t, &d12);
  842. d12.r = q__1.r, d12.i = q__1.i;
  843. for (j = k - 2; j >= 1; --j) {
  844. i__1 = j + (k - 2) * (k - 1) / 2;
  845. q__3.r = d11.r * ap[i__1].r - d11.i * ap[i__1].i,
  846. q__3.i = d11.r * ap[i__1].i + d11.i * ap[i__1]
  847. .r;
  848. i__2 = j + (k - 1) * k / 2;
  849. q__2.r = q__3.r - ap[i__2].r, q__2.i = q__3.i - ap[
  850. i__2].i;
  851. q__1.r = d12.r * q__2.r - d12.i * q__2.i, q__1.i =
  852. d12.r * q__2.i + d12.i * q__2.r;
  853. wkm1.r = q__1.r, wkm1.i = q__1.i;
  854. i__1 = j + (k - 1) * k / 2;
  855. q__3.r = d22.r * ap[i__1].r - d22.i * ap[i__1].i,
  856. q__3.i = d22.r * ap[i__1].i + d22.i * ap[i__1]
  857. .r;
  858. i__2 = j + (k - 2) * (k - 1) / 2;
  859. q__2.r = q__3.r - ap[i__2].r, q__2.i = q__3.i - ap[
  860. i__2].i;
  861. q__1.r = d12.r * q__2.r - d12.i * q__2.i, q__1.i =
  862. d12.r * q__2.i + d12.i * q__2.r;
  863. wk.r = q__1.r, wk.i = q__1.i;
  864. for (i__ = j; i__ >= 1; --i__) {
  865. i__1 = i__ + (j - 1) * j / 2;
  866. i__2 = i__ + (j - 1) * j / 2;
  867. i__3 = i__ + (k - 1) * k / 2;
  868. q__3.r = ap[i__3].r * wk.r - ap[i__3].i * wk.i,
  869. q__3.i = ap[i__3].r * wk.i + ap[i__3].i *
  870. wk.r;
  871. q__2.r = ap[i__2].r - q__3.r, q__2.i = ap[i__2].i
  872. - q__3.i;
  873. i__4 = i__ + (k - 2) * (k - 1) / 2;
  874. q__4.r = ap[i__4].r * wkm1.r - ap[i__4].i *
  875. wkm1.i, q__4.i = ap[i__4].r * wkm1.i + ap[
  876. i__4].i * wkm1.r;
  877. q__1.r = q__2.r - q__4.r, q__1.i = q__2.i -
  878. q__4.i;
  879. ap[i__1].r = q__1.r, ap[i__1].i = q__1.i;
  880. /* L40: */
  881. }
  882. i__1 = j + (k - 1) * k / 2;
  883. ap[i__1].r = wk.r, ap[i__1].i = wk.i;
  884. i__1 = j + (k - 2) * (k - 1) / 2;
  885. ap[i__1].r = wkm1.r, ap[i__1].i = wkm1.i;
  886. /* L50: */
  887. }
  888. }
  889. }
  890. }
  891. /* Store details of the interchanges in IPIV */
  892. if (kstep == 1) {
  893. ipiv[k] = kp;
  894. } else {
  895. ipiv[k] = -kp;
  896. ipiv[k - 1] = -kp;
  897. }
  898. /* Decrease K and return to the start of the main loop */
  899. k -= kstep;
  900. kc = knc - k;
  901. goto L10;
  902. } else {
  903. /* Factorize A as L*D*L**T using the lower triangle of A */
  904. /* K is the main loop index, increasing from 1 to N in steps of */
  905. /* 1 or 2 */
  906. k = 1;
  907. kc = 1;
  908. npp = *n * (*n + 1) / 2;
  909. L60:
  910. knc = kc;
  911. /* If K > N, exit from loop */
  912. if (k > *n) {
  913. goto L110;
  914. }
  915. kstep = 1;
  916. /* Determine rows and columns to be interchanged and whether */
  917. /* a 1-by-1 or 2-by-2 pivot block will be used */
  918. i__1 = kc;
  919. absakk = (r__1 = ap[i__1].r, abs(r__1)) + (r__2 = r_imag(&ap[kc]),
  920. abs(r__2));
  921. /* IMAX is the row-index of the largest off-diagonal element in */
  922. /* column K, and COLMAX is its absolute value */
  923. if (k < *n) {
  924. i__1 = *n - k;
  925. imax = k + icamax_(&i__1, &ap[kc + 1], &c__1);
  926. i__1 = kc + imax - k;
  927. colmax = (r__1 = ap[i__1].r, abs(r__1)) + (r__2 = r_imag(&ap[kc +
  928. imax - k]), abs(r__2));
  929. } else {
  930. colmax = 0.f;
  931. }
  932. if (f2cmax(absakk,colmax) == 0.f) {
  933. /* Column K is zero: set INFO and continue */
  934. if (*info == 0) {
  935. *info = k;
  936. }
  937. kp = k;
  938. } else {
  939. if (absakk >= alpha * colmax) {
  940. /* no interchange, use 1-by-1 pivot block */
  941. kp = k;
  942. } else {
  943. /* JMAX is the column-index of the largest off-diagonal */
  944. /* element in row IMAX, and ROWMAX is its absolute value */
  945. rowmax = 0.f;
  946. kx = kc + imax - k;
  947. i__1 = imax - 1;
  948. for (j = k; j <= i__1; ++j) {
  949. i__2 = kx;
  950. if ((r__1 = ap[i__2].r, abs(r__1)) + (r__2 = r_imag(&ap[
  951. kx]), abs(r__2)) > rowmax) {
  952. i__2 = kx;
  953. rowmax = (r__1 = ap[i__2].r, abs(r__1)) + (r__2 =
  954. r_imag(&ap[kx]), abs(r__2));
  955. jmax = j;
  956. }
  957. kx = kx + *n - j;
  958. /* L70: */
  959. }
  960. kpc = npp - (*n - imax + 1) * (*n - imax + 2) / 2 + 1;
  961. if (imax < *n) {
  962. i__1 = *n - imax;
  963. jmax = imax + icamax_(&i__1, &ap[kpc + 1], &c__1);
  964. /* Computing MAX */
  965. i__1 = kpc + jmax - imax;
  966. r__3 = rowmax, r__4 = (r__1 = ap[i__1].r, abs(r__1)) + (
  967. r__2 = r_imag(&ap[kpc + jmax - imax]), abs(r__2));
  968. rowmax = f2cmax(r__3,r__4);
  969. }
  970. if (absakk >= alpha * colmax * (colmax / rowmax)) {
  971. /* no interchange, use 1-by-1 pivot block */
  972. kp = k;
  973. } else /* if(complicated condition) */ {
  974. i__1 = kpc;
  975. if ((r__1 = ap[i__1].r, abs(r__1)) + (r__2 = r_imag(&ap[
  976. kpc]), abs(r__2)) >= alpha * rowmax) {
  977. /* interchange rows and columns K and IMAX, use 1-by-1 */
  978. /* pivot block */
  979. kp = imax;
  980. } else {
  981. /* interchange rows and columns K+1 and IMAX, use 2-by-2 */
  982. /* pivot block */
  983. kp = imax;
  984. kstep = 2;
  985. }
  986. }
  987. }
  988. kk = k + kstep - 1;
  989. if (kstep == 2) {
  990. knc = knc + *n - k + 1;
  991. }
  992. if (kp != kk) {
  993. /* Interchange rows and columns KK and KP in the trailing */
  994. /* submatrix A(k:n,k:n) */
  995. if (kp < *n) {
  996. i__1 = *n - kp;
  997. cswap_(&i__1, &ap[knc + kp - kk + 1], &c__1, &ap[kpc + 1],
  998. &c__1);
  999. }
  1000. kx = knc + kp - kk;
  1001. i__1 = kp - 1;
  1002. for (j = kk + 1; j <= i__1; ++j) {
  1003. kx = kx + *n - j + 1;
  1004. i__2 = knc + j - kk;
  1005. t.r = ap[i__2].r, t.i = ap[i__2].i;
  1006. i__2 = knc + j - kk;
  1007. i__3 = kx;
  1008. ap[i__2].r = ap[i__3].r, ap[i__2].i = ap[i__3].i;
  1009. i__2 = kx;
  1010. ap[i__2].r = t.r, ap[i__2].i = t.i;
  1011. /* L80: */
  1012. }
  1013. i__1 = knc;
  1014. t.r = ap[i__1].r, t.i = ap[i__1].i;
  1015. i__1 = knc;
  1016. i__2 = kpc;
  1017. ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i;
  1018. i__1 = kpc;
  1019. ap[i__1].r = t.r, ap[i__1].i = t.i;
  1020. if (kstep == 2) {
  1021. i__1 = kc + 1;
  1022. t.r = ap[i__1].r, t.i = ap[i__1].i;
  1023. i__1 = kc + 1;
  1024. i__2 = kc + kp - k;
  1025. ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i;
  1026. i__1 = kc + kp - k;
  1027. ap[i__1].r = t.r, ap[i__1].i = t.i;
  1028. }
  1029. }
  1030. /* Update the trailing submatrix */
  1031. if (kstep == 1) {
  1032. /* 1-by-1 pivot block D(k): column k now holds */
  1033. /* W(k) = L(k)*D(k) */
  1034. /* where L(k) is the k-th column of L */
  1035. if (k < *n) {
  1036. /* Perform a rank-1 update of A(k+1:n,k+1:n) as */
  1037. /* A := A - L(k)*D(k)*L(k)**T = A - W(k)*(1/D(k))*W(k)**T */
  1038. c_div(&q__1, &c_b1, &ap[kc]);
  1039. r1.r = q__1.r, r1.i = q__1.i;
  1040. i__1 = *n - k;
  1041. q__1.r = -r1.r, q__1.i = -r1.i;
  1042. cspr_(uplo, &i__1, &q__1, &ap[kc + 1], &c__1, &ap[kc + *n
  1043. - k + 1]);
  1044. /* Store L(k) in column K */
  1045. i__1 = *n - k;
  1046. cscal_(&i__1, &r1, &ap[kc + 1], &c__1);
  1047. }
  1048. } else {
  1049. /* 2-by-2 pivot block D(k): columns K and K+1 now hold */
  1050. /* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */
  1051. /* where L(k) and L(k+1) are the k-th and (k+1)-th columns */
  1052. /* of L */
  1053. if (k < *n - 1) {
  1054. /* Perform a rank-2 update of A(k+2:n,k+2:n) as */
  1055. /* A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )**T */
  1056. /* = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )**T */
  1057. /* where L(k) and L(k+1) are the k-th and (k+1)-th */
  1058. /* columns of L */
  1059. i__1 = k + 1 + (k - 1) * ((*n << 1) - k) / 2;
  1060. d21.r = ap[i__1].r, d21.i = ap[i__1].i;
  1061. c_div(&q__1, &ap[k + 1 + k * ((*n << 1) - k - 1) / 2], &
  1062. d21);
  1063. d11.r = q__1.r, d11.i = q__1.i;
  1064. c_div(&q__1, &ap[k + (k - 1) * ((*n << 1) - k) / 2], &d21)
  1065. ;
  1066. d22.r = q__1.r, d22.i = q__1.i;
  1067. q__3.r = d11.r * d22.r - d11.i * d22.i, q__3.i = d11.r *
  1068. d22.i + d11.i * d22.r;
  1069. q__2.r = q__3.r - 1.f, q__2.i = q__3.i + 0.f;
  1070. c_div(&q__1, &c_b1, &q__2);
  1071. t.r = q__1.r, t.i = q__1.i;
  1072. c_div(&q__1, &t, &d21);
  1073. d21.r = q__1.r, d21.i = q__1.i;
  1074. i__1 = *n;
  1075. for (j = k + 2; j <= i__1; ++j) {
  1076. i__2 = j + (k - 1) * ((*n << 1) - k) / 2;
  1077. q__3.r = d11.r * ap[i__2].r - d11.i * ap[i__2].i,
  1078. q__3.i = d11.r * ap[i__2].i + d11.i * ap[i__2]
  1079. .r;
  1080. i__3 = j + k * ((*n << 1) - k - 1) / 2;
  1081. q__2.r = q__3.r - ap[i__3].r, q__2.i = q__3.i - ap[
  1082. i__3].i;
  1083. q__1.r = d21.r * q__2.r - d21.i * q__2.i, q__1.i =
  1084. d21.r * q__2.i + d21.i * q__2.r;
  1085. wk.r = q__1.r, wk.i = q__1.i;
  1086. i__2 = j + k * ((*n << 1) - k - 1) / 2;
  1087. q__3.r = d22.r * ap[i__2].r - d22.i * ap[i__2].i,
  1088. q__3.i = d22.r * ap[i__2].i + d22.i * ap[i__2]
  1089. .r;
  1090. i__3 = j + (k - 1) * ((*n << 1) - k) / 2;
  1091. q__2.r = q__3.r - ap[i__3].r, q__2.i = q__3.i - ap[
  1092. i__3].i;
  1093. q__1.r = d21.r * q__2.r - d21.i * q__2.i, q__1.i =
  1094. d21.r * q__2.i + d21.i * q__2.r;
  1095. wkp1.r = q__1.r, wkp1.i = q__1.i;
  1096. i__2 = *n;
  1097. for (i__ = j; i__ <= i__2; ++i__) {
  1098. i__3 = i__ + (j - 1) * ((*n << 1) - j) / 2;
  1099. i__4 = i__ + (j - 1) * ((*n << 1) - j) / 2;
  1100. i__5 = i__ + (k - 1) * ((*n << 1) - k) / 2;
  1101. q__3.r = ap[i__5].r * wk.r - ap[i__5].i * wk.i,
  1102. q__3.i = ap[i__5].r * wk.i + ap[i__5].i *
  1103. wk.r;
  1104. q__2.r = ap[i__4].r - q__3.r, q__2.i = ap[i__4].i
  1105. - q__3.i;
  1106. i__6 = i__ + k * ((*n << 1) - k - 1) / 2;
  1107. q__4.r = ap[i__6].r * wkp1.r - ap[i__6].i *
  1108. wkp1.i, q__4.i = ap[i__6].r * wkp1.i + ap[
  1109. i__6].i * wkp1.r;
  1110. q__1.r = q__2.r - q__4.r, q__1.i = q__2.i -
  1111. q__4.i;
  1112. ap[i__3].r = q__1.r, ap[i__3].i = q__1.i;
  1113. /* L90: */
  1114. }
  1115. i__2 = j + (k - 1) * ((*n << 1) - k) / 2;
  1116. ap[i__2].r = wk.r, ap[i__2].i = wk.i;
  1117. i__2 = j + k * ((*n << 1) - k - 1) / 2;
  1118. ap[i__2].r = wkp1.r, ap[i__2].i = wkp1.i;
  1119. /* L100: */
  1120. }
  1121. }
  1122. }
  1123. }
  1124. /* Store details of the interchanges in IPIV */
  1125. if (kstep == 1) {
  1126. ipiv[k] = kp;
  1127. } else {
  1128. ipiv[k] = -kp;
  1129. ipiv[k + 1] = -kp;
  1130. }
  1131. /* Increase K and return to the start of the main loop */
  1132. k += kstep;
  1133. kc = knc + *n - k + 2;
  1134. goto L60;
  1135. }
  1136. L110:
  1137. return;
  1138. /* End of CSPTRF */
  1139. } /* csptrf_ */