You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zhbtrd.c 38 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static doublecomplex c_b1 = {0.,0.};
  487. static doublecomplex c_b2 = {1.,0.};
  488. static integer c__1 = 1;
  489. /* > \brief \b ZHBTRD */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download ZHBTRD + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhbtrd.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhbtrd.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhbtrd.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE ZHBTRD( VECT, UPLO, N, KD, AB, LDAB, D, E, Q, LDQ, */
  508. /* WORK, INFO ) */
  509. /* CHARACTER UPLO, VECT */
  510. /* INTEGER INFO, KD, LDAB, LDQ, N */
  511. /* DOUBLE PRECISION D( * ), E( * ) */
  512. /* COMPLEX*16 AB( LDAB, * ), Q( LDQ, * ), WORK( * ) */
  513. /* > \par Purpose: */
  514. /* ============= */
  515. /* > */
  516. /* > \verbatim */
  517. /* > */
  518. /* > ZHBTRD reduces a complex Hermitian band matrix A to real symmetric */
  519. /* > tridiagonal form T by a unitary similarity transformation: */
  520. /* > Q**H * A * Q = T. */
  521. /* > \endverbatim */
  522. /* Arguments: */
  523. /* ========== */
  524. /* > \param[in] VECT */
  525. /* > \verbatim */
  526. /* > VECT is CHARACTER*1 */
  527. /* > = 'N': do not form Q; */
  528. /* > = 'V': form Q; */
  529. /* > = 'U': update a matrix X, by forming X*Q. */
  530. /* > \endverbatim */
  531. /* > */
  532. /* > \param[in] UPLO */
  533. /* > \verbatim */
  534. /* > UPLO is CHARACTER*1 */
  535. /* > = 'U': Upper triangle of A is stored; */
  536. /* > = 'L': Lower triangle of A is stored. */
  537. /* > \endverbatim */
  538. /* > */
  539. /* > \param[in] N */
  540. /* > \verbatim */
  541. /* > N is INTEGER */
  542. /* > The order of the matrix A. N >= 0. */
  543. /* > \endverbatim */
  544. /* > */
  545. /* > \param[in] KD */
  546. /* > \verbatim */
  547. /* > KD is INTEGER */
  548. /* > The number of superdiagonals of the matrix A if UPLO = 'U', */
  549. /* > or the number of subdiagonals if UPLO = 'L'. KD >= 0. */
  550. /* > \endverbatim */
  551. /* > */
  552. /* > \param[in,out] AB */
  553. /* > \verbatim */
  554. /* > AB is COMPLEX*16 array, dimension (LDAB,N) */
  555. /* > On entry, the upper or lower triangle of the Hermitian band */
  556. /* > matrix A, stored in the first KD+1 rows of the array. The */
  557. /* > j-th column of A is stored in the j-th column of the array AB */
  558. /* > as follows: */
  559. /* > if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for f2cmax(1,j-kd)<=i<=j; */
  560. /* > if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=f2cmin(n,j+kd). */
  561. /* > On exit, the diagonal elements of AB are overwritten by the */
  562. /* > diagonal elements of the tridiagonal matrix T; if KD > 0, the */
  563. /* > elements on the first superdiagonal (if UPLO = 'U') or the */
  564. /* > first subdiagonal (if UPLO = 'L') are overwritten by the */
  565. /* > off-diagonal elements of T; the rest of AB is overwritten by */
  566. /* > values generated during the reduction. */
  567. /* > \endverbatim */
  568. /* > */
  569. /* > \param[in] LDAB */
  570. /* > \verbatim */
  571. /* > LDAB is INTEGER */
  572. /* > The leading dimension of the array AB. LDAB >= KD+1. */
  573. /* > \endverbatim */
  574. /* > */
  575. /* > \param[out] D */
  576. /* > \verbatim */
  577. /* > D is DOUBLE PRECISION array, dimension (N) */
  578. /* > The diagonal elements of the tridiagonal matrix T. */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[out] E */
  582. /* > \verbatim */
  583. /* > E is DOUBLE PRECISION array, dimension (N-1) */
  584. /* > The off-diagonal elements of the tridiagonal matrix T: */
  585. /* > E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'. */
  586. /* > \endverbatim */
  587. /* > */
  588. /* > \param[in,out] Q */
  589. /* > \verbatim */
  590. /* > Q is COMPLEX*16 array, dimension (LDQ,N) */
  591. /* > On entry, if VECT = 'U', then Q must contain an N-by-N */
  592. /* > matrix X; if VECT = 'N' or 'V', then Q need not be set. */
  593. /* > */
  594. /* > On exit: */
  595. /* > if VECT = 'V', Q contains the N-by-N unitary matrix Q; */
  596. /* > if VECT = 'U', Q contains the product X*Q; */
  597. /* > if VECT = 'N', the array Q is not referenced. */
  598. /* > \endverbatim */
  599. /* > */
  600. /* > \param[in] LDQ */
  601. /* > \verbatim */
  602. /* > LDQ is INTEGER */
  603. /* > The leading dimension of the array Q. */
  604. /* > LDQ >= 1, and LDQ >= N if VECT = 'V' or 'U'. */
  605. /* > \endverbatim */
  606. /* > */
  607. /* > \param[out] WORK */
  608. /* > \verbatim */
  609. /* > WORK is COMPLEX*16 array, dimension (N) */
  610. /* > \endverbatim */
  611. /* > */
  612. /* > \param[out] INFO */
  613. /* > \verbatim */
  614. /* > INFO is INTEGER */
  615. /* > = 0: successful exit */
  616. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  617. /* > \endverbatim */
  618. /* Authors: */
  619. /* ======== */
  620. /* > \author Univ. of Tennessee */
  621. /* > \author Univ. of California Berkeley */
  622. /* > \author Univ. of Colorado Denver */
  623. /* > \author NAG Ltd. */
  624. /* > \date December 2016 */
  625. /* > \ingroup complex16OTHERcomputational */
  626. /* > \par Further Details: */
  627. /* ===================== */
  628. /* > */
  629. /* > \verbatim */
  630. /* > */
  631. /* > Modified by Linda Kaufman, Bell Labs. */
  632. /* > \endverbatim */
  633. /* > */
  634. /* ===================================================================== */
  635. /* Subroutine */ int zhbtrd_(char *vect, char *uplo, integer *n, integer *kd,
  636. doublecomplex *ab, integer *ldab, doublereal *d__, doublereal *e,
  637. doublecomplex *q, integer *ldq, doublecomplex *work, integer *info)
  638. {
  639. /* System generated locals */
  640. integer ab_dim1, ab_offset, q_dim1, q_offset, i__1, i__2, i__3, i__4,
  641. i__5, i__6;
  642. doublereal d__1;
  643. doublecomplex z__1;
  644. /* Local variables */
  645. integer inca, jend, lend, jinc;
  646. doublereal abst;
  647. integer incx, last;
  648. doublecomplex temp;
  649. extern /* Subroutine */ int zrot_(integer *, doublecomplex *, integer *,
  650. doublecomplex *, integer *, doublereal *, doublecomplex *);
  651. integer j1end, j1inc, i__, j, k, l;
  652. doublecomplex t;
  653. integer iqend;
  654. extern logical lsame_(char *, char *);
  655. extern /* Subroutine */ int zscal_(integer *, doublecomplex *,
  656. doublecomplex *, integer *);
  657. logical initq, wantq, upper;
  658. integer i2, j1, j2;
  659. extern /* Subroutine */ int zlar2v_(integer *, doublecomplex *,
  660. doublecomplex *, doublecomplex *, integer *, doublereal *,
  661. doublecomplex *, integer *);
  662. integer nq, nr, iqaend;
  663. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), zlacgv_(
  664. integer *, doublecomplex *, integer *);
  665. integer kd1;
  666. extern /* Subroutine */ int zlaset_(char *, integer *, integer *,
  667. doublecomplex *, doublecomplex *, doublecomplex *, integer *), zlartg_(doublecomplex *, doublecomplex *, doublereal *,
  668. doublecomplex *, doublecomplex *), zlargv_(integer *,
  669. doublecomplex *, integer *, doublecomplex *, integer *,
  670. doublereal *, integer *), zlartv_(integer *, doublecomplex *,
  671. integer *, doublecomplex *, integer *, doublereal *,
  672. doublecomplex *, integer *);
  673. integer ibl, iqb, kdn, jin, nrt, kdm1;
  674. /* -- LAPACK computational routine (version 3.7.0) -- */
  675. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  676. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  677. /* December 2016 */
  678. /* ===================================================================== */
  679. /* Test the input parameters */
  680. /* Parameter adjustments */
  681. ab_dim1 = *ldab;
  682. ab_offset = 1 + ab_dim1 * 1;
  683. ab -= ab_offset;
  684. --d__;
  685. --e;
  686. q_dim1 = *ldq;
  687. q_offset = 1 + q_dim1 * 1;
  688. q -= q_offset;
  689. --work;
  690. /* Function Body */
  691. initq = lsame_(vect, "V");
  692. wantq = initq || lsame_(vect, "U");
  693. upper = lsame_(uplo, "U");
  694. kd1 = *kd + 1;
  695. kdm1 = *kd - 1;
  696. incx = *ldab - 1;
  697. iqend = 1;
  698. *info = 0;
  699. if (! wantq && ! lsame_(vect, "N")) {
  700. *info = -1;
  701. } else if (! upper && ! lsame_(uplo, "L")) {
  702. *info = -2;
  703. } else if (*n < 0) {
  704. *info = -3;
  705. } else if (*kd < 0) {
  706. *info = -4;
  707. } else if (*ldab < kd1) {
  708. *info = -6;
  709. } else if (*ldq < f2cmax(1,*n) && wantq) {
  710. *info = -10;
  711. }
  712. if (*info != 0) {
  713. i__1 = -(*info);
  714. xerbla_("ZHBTRD", &i__1, (ftnlen)6);
  715. return 0;
  716. }
  717. /* Quick return if possible */
  718. if (*n == 0) {
  719. return 0;
  720. }
  721. /* Initialize Q to the unit matrix, if needed */
  722. if (initq) {
  723. zlaset_("Full", n, n, &c_b1, &c_b2, &q[q_offset], ldq);
  724. }
  725. /* Wherever possible, plane rotations are generated and applied in */
  726. /* vector operations of length NR over the index set J1:J2:KD1. */
  727. /* The real cosines and complex sines of the plane rotations are */
  728. /* stored in the arrays D and WORK. */
  729. inca = kd1 * *ldab;
  730. /* Computing MIN */
  731. i__1 = *n - 1;
  732. kdn = f2cmin(i__1,*kd);
  733. if (upper) {
  734. if (*kd > 1) {
  735. /* Reduce to complex Hermitian tridiagonal form, working with */
  736. /* the upper triangle */
  737. nr = 0;
  738. j1 = kdn + 2;
  739. j2 = 1;
  740. i__1 = kd1 + ab_dim1;
  741. i__2 = kd1 + ab_dim1;
  742. d__1 = ab[i__2].r;
  743. ab[i__1].r = d__1, ab[i__1].i = 0.;
  744. i__1 = *n - 2;
  745. for (i__ = 1; i__ <= i__1; ++i__) {
  746. /* Reduce i-th row of matrix to tridiagonal form */
  747. for (k = kdn + 1; k >= 2; --k) {
  748. j1 += kdn;
  749. j2 += kdn;
  750. if (nr > 0) {
  751. /* generate plane rotations to annihilate nonzero */
  752. /* elements which have been created outside the band */
  753. zlargv_(&nr, &ab[(j1 - 1) * ab_dim1 + 1], &inca, &
  754. work[j1], &kd1, &d__[j1], &kd1);
  755. /* apply rotations from the right */
  756. /* Dependent on the the number of diagonals either */
  757. /* ZLARTV or ZROT is used */
  758. if (nr >= (*kd << 1) - 1) {
  759. i__2 = *kd - 1;
  760. for (l = 1; l <= i__2; ++l) {
  761. zlartv_(&nr, &ab[l + 1 + (j1 - 1) * ab_dim1],
  762. &inca, &ab[l + j1 * ab_dim1], &inca, &
  763. d__[j1], &work[j1], &kd1);
  764. /* L10: */
  765. }
  766. } else {
  767. jend = j1 + (nr - 1) * kd1;
  768. i__2 = jend;
  769. i__3 = kd1;
  770. for (jinc = j1; i__3 < 0 ? jinc >= i__2 : jinc <=
  771. i__2; jinc += i__3) {
  772. zrot_(&kdm1, &ab[(jinc - 1) * ab_dim1 + 2], &
  773. c__1, &ab[jinc * ab_dim1 + 1], &c__1,
  774. &d__[jinc], &work[jinc]);
  775. /* L20: */
  776. }
  777. }
  778. }
  779. if (k > 2) {
  780. if (k <= *n - i__ + 1) {
  781. /* generate plane rotation to annihilate a(i,i+k-1) */
  782. /* within the band */
  783. zlartg_(&ab[*kd - k + 3 + (i__ + k - 2) * ab_dim1]
  784. , &ab[*kd - k + 2 + (i__ + k - 1) *
  785. ab_dim1], &d__[i__ + k - 1], &work[i__ +
  786. k - 1], &temp);
  787. i__3 = *kd - k + 3 + (i__ + k - 2) * ab_dim1;
  788. ab[i__3].r = temp.r, ab[i__3].i = temp.i;
  789. /* apply rotation from the right */
  790. i__3 = k - 3;
  791. zrot_(&i__3, &ab[*kd - k + 4 + (i__ + k - 2) *
  792. ab_dim1], &c__1, &ab[*kd - k + 3 + (i__ +
  793. k - 1) * ab_dim1], &c__1, &d__[i__ + k -
  794. 1], &work[i__ + k - 1]);
  795. }
  796. ++nr;
  797. j1 = j1 - kdn - 1;
  798. }
  799. /* apply plane rotations from both sides to diagonal */
  800. /* blocks */
  801. if (nr > 0) {
  802. zlar2v_(&nr, &ab[kd1 + (j1 - 1) * ab_dim1], &ab[kd1 +
  803. j1 * ab_dim1], &ab[*kd + j1 * ab_dim1], &inca,
  804. &d__[j1], &work[j1], &kd1);
  805. }
  806. /* apply plane rotations from the left */
  807. if (nr > 0) {
  808. zlacgv_(&nr, &work[j1], &kd1);
  809. if ((*kd << 1) - 1 < nr) {
  810. /* Dependent on the the number of diagonals either */
  811. /* ZLARTV or ZROT is used */
  812. i__3 = *kd - 1;
  813. for (l = 1; l <= i__3; ++l) {
  814. if (j2 + l > *n) {
  815. nrt = nr - 1;
  816. } else {
  817. nrt = nr;
  818. }
  819. if (nrt > 0) {
  820. zlartv_(&nrt, &ab[*kd - l + (j1 + l) *
  821. ab_dim1], &inca, &ab[*kd - l + 1
  822. + (j1 + l) * ab_dim1], &inca, &
  823. d__[j1], &work[j1], &kd1);
  824. }
  825. /* L30: */
  826. }
  827. } else {
  828. j1end = j1 + kd1 * (nr - 2);
  829. if (j1end >= j1) {
  830. i__3 = j1end;
  831. i__2 = kd1;
  832. for (jin = j1; i__2 < 0 ? jin >= i__3 : jin <=
  833. i__3; jin += i__2) {
  834. i__4 = *kd - 1;
  835. zrot_(&i__4, &ab[*kd - 1 + (jin + 1) *
  836. ab_dim1], &incx, &ab[*kd + (jin +
  837. 1) * ab_dim1], &incx, &d__[jin], &
  838. work[jin]);
  839. /* L40: */
  840. }
  841. }
  842. /* Computing MIN */
  843. i__2 = kdm1, i__3 = *n - j2;
  844. lend = f2cmin(i__2,i__3);
  845. last = j1end + kd1;
  846. if (lend > 0) {
  847. zrot_(&lend, &ab[*kd - 1 + (last + 1) *
  848. ab_dim1], &incx, &ab[*kd + (last + 1)
  849. * ab_dim1], &incx, &d__[last], &work[
  850. last]);
  851. }
  852. }
  853. }
  854. if (wantq) {
  855. /* accumulate product of plane rotations in Q */
  856. if (initq) {
  857. /* take advantage of the fact that Q was */
  858. /* initially the Identity matrix */
  859. iqend = f2cmax(iqend,j2);
  860. /* Computing MAX */
  861. i__2 = 0, i__3 = k - 3;
  862. i2 = f2cmax(i__2,i__3);
  863. iqaend = i__ * *kd + 1;
  864. if (k == 2) {
  865. iqaend += *kd;
  866. }
  867. iqaend = f2cmin(iqaend,iqend);
  868. i__2 = j2;
  869. i__3 = kd1;
  870. for (j = j1; i__3 < 0 ? j >= i__2 : j <= i__2; j
  871. += i__3) {
  872. ibl = i__ - i2 / kdm1;
  873. ++i2;
  874. /* Computing MAX */
  875. i__4 = 1, i__5 = j - ibl;
  876. iqb = f2cmax(i__4,i__5);
  877. nq = iqaend + 1 - iqb;
  878. /* Computing MIN */
  879. i__4 = iqaend + *kd;
  880. iqaend = f2cmin(i__4,iqend);
  881. d_cnjg(&z__1, &work[j]);
  882. zrot_(&nq, &q[iqb + (j - 1) * q_dim1], &c__1,
  883. &q[iqb + j * q_dim1], &c__1, &d__[j],
  884. &z__1);
  885. /* L50: */
  886. }
  887. } else {
  888. i__3 = j2;
  889. i__2 = kd1;
  890. for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j
  891. += i__2) {
  892. d_cnjg(&z__1, &work[j]);
  893. zrot_(n, &q[(j - 1) * q_dim1 + 1], &c__1, &q[
  894. j * q_dim1 + 1], &c__1, &d__[j], &
  895. z__1);
  896. /* L60: */
  897. }
  898. }
  899. }
  900. if (j2 + kdn > *n) {
  901. /* adjust J2 to keep within the bounds of the matrix */
  902. --nr;
  903. j2 = j2 - kdn - 1;
  904. }
  905. i__2 = j2;
  906. i__3 = kd1;
  907. for (j = j1; i__3 < 0 ? j >= i__2 : j <= i__2; j += i__3)
  908. {
  909. /* create nonzero element a(j-1,j+kd) outside the band */
  910. /* and store it in WORK */
  911. i__4 = j + *kd;
  912. i__5 = j;
  913. i__6 = (j + *kd) * ab_dim1 + 1;
  914. z__1.r = work[i__5].r * ab[i__6].r - work[i__5].i *
  915. ab[i__6].i, z__1.i = work[i__5].r * ab[i__6]
  916. .i + work[i__5].i * ab[i__6].r;
  917. work[i__4].r = z__1.r, work[i__4].i = z__1.i;
  918. i__4 = (j + *kd) * ab_dim1 + 1;
  919. i__5 = j;
  920. i__6 = (j + *kd) * ab_dim1 + 1;
  921. z__1.r = d__[i__5] * ab[i__6].r, z__1.i = d__[i__5] *
  922. ab[i__6].i;
  923. ab[i__4].r = z__1.r, ab[i__4].i = z__1.i;
  924. /* L70: */
  925. }
  926. /* L80: */
  927. }
  928. /* L90: */
  929. }
  930. }
  931. if (*kd > 0) {
  932. /* make off-diagonal elements real and copy them to E */
  933. i__1 = *n - 1;
  934. for (i__ = 1; i__ <= i__1; ++i__) {
  935. i__3 = *kd + (i__ + 1) * ab_dim1;
  936. t.r = ab[i__3].r, t.i = ab[i__3].i;
  937. abst = z_abs(&t);
  938. i__3 = *kd + (i__ + 1) * ab_dim1;
  939. ab[i__3].r = abst, ab[i__3].i = 0.;
  940. e[i__] = abst;
  941. if (abst != 0.) {
  942. z__1.r = t.r / abst, z__1.i = t.i / abst;
  943. t.r = z__1.r, t.i = z__1.i;
  944. } else {
  945. t.r = 1., t.i = 0.;
  946. }
  947. if (i__ < *n - 1) {
  948. i__3 = *kd + (i__ + 2) * ab_dim1;
  949. i__2 = *kd + (i__ + 2) * ab_dim1;
  950. z__1.r = ab[i__2].r * t.r - ab[i__2].i * t.i, z__1.i = ab[
  951. i__2].r * t.i + ab[i__2].i * t.r;
  952. ab[i__3].r = z__1.r, ab[i__3].i = z__1.i;
  953. }
  954. if (wantq) {
  955. d_cnjg(&z__1, &t);
  956. zscal_(n, &z__1, &q[(i__ + 1) * q_dim1 + 1], &c__1);
  957. }
  958. /* L100: */
  959. }
  960. } else {
  961. /* set E to zero if original matrix was diagonal */
  962. i__1 = *n - 1;
  963. for (i__ = 1; i__ <= i__1; ++i__) {
  964. e[i__] = 0.;
  965. /* L110: */
  966. }
  967. }
  968. /* copy diagonal elements to D */
  969. i__1 = *n;
  970. for (i__ = 1; i__ <= i__1; ++i__) {
  971. i__3 = i__;
  972. i__2 = kd1 + i__ * ab_dim1;
  973. d__[i__3] = ab[i__2].r;
  974. /* L120: */
  975. }
  976. } else {
  977. if (*kd > 1) {
  978. /* Reduce to complex Hermitian tridiagonal form, working with */
  979. /* the lower triangle */
  980. nr = 0;
  981. j1 = kdn + 2;
  982. j2 = 1;
  983. i__1 = ab_dim1 + 1;
  984. i__3 = ab_dim1 + 1;
  985. d__1 = ab[i__3].r;
  986. ab[i__1].r = d__1, ab[i__1].i = 0.;
  987. i__1 = *n - 2;
  988. for (i__ = 1; i__ <= i__1; ++i__) {
  989. /* Reduce i-th column of matrix to tridiagonal form */
  990. for (k = kdn + 1; k >= 2; --k) {
  991. j1 += kdn;
  992. j2 += kdn;
  993. if (nr > 0) {
  994. /* generate plane rotations to annihilate nonzero */
  995. /* elements which have been created outside the band */
  996. zlargv_(&nr, &ab[kd1 + (j1 - kd1) * ab_dim1], &inca, &
  997. work[j1], &kd1, &d__[j1], &kd1);
  998. /* apply plane rotations from one side */
  999. /* Dependent on the the number of diagonals either */
  1000. /* ZLARTV or ZROT is used */
  1001. if (nr > (*kd << 1) - 1) {
  1002. i__3 = *kd - 1;
  1003. for (l = 1; l <= i__3; ++l) {
  1004. zlartv_(&nr, &ab[kd1 - l + (j1 - kd1 + l) *
  1005. ab_dim1], &inca, &ab[kd1 - l + 1 + (
  1006. j1 - kd1 + l) * ab_dim1], &inca, &d__[
  1007. j1], &work[j1], &kd1);
  1008. /* L130: */
  1009. }
  1010. } else {
  1011. jend = j1 + kd1 * (nr - 1);
  1012. i__3 = jend;
  1013. i__2 = kd1;
  1014. for (jinc = j1; i__2 < 0 ? jinc >= i__3 : jinc <=
  1015. i__3; jinc += i__2) {
  1016. zrot_(&kdm1, &ab[*kd + (jinc - *kd) * ab_dim1]
  1017. , &incx, &ab[kd1 + (jinc - *kd) *
  1018. ab_dim1], &incx, &d__[jinc], &work[
  1019. jinc]);
  1020. /* L140: */
  1021. }
  1022. }
  1023. }
  1024. if (k > 2) {
  1025. if (k <= *n - i__ + 1) {
  1026. /* generate plane rotation to annihilate a(i+k-1,i) */
  1027. /* within the band */
  1028. zlartg_(&ab[k - 1 + i__ * ab_dim1], &ab[k + i__ *
  1029. ab_dim1], &d__[i__ + k - 1], &work[i__ +
  1030. k - 1], &temp);
  1031. i__2 = k - 1 + i__ * ab_dim1;
  1032. ab[i__2].r = temp.r, ab[i__2].i = temp.i;
  1033. /* apply rotation from the left */
  1034. i__2 = k - 3;
  1035. i__3 = *ldab - 1;
  1036. i__4 = *ldab - 1;
  1037. zrot_(&i__2, &ab[k - 2 + (i__ + 1) * ab_dim1], &
  1038. i__3, &ab[k - 1 + (i__ + 1) * ab_dim1], &
  1039. i__4, &d__[i__ + k - 1], &work[i__ + k -
  1040. 1]);
  1041. }
  1042. ++nr;
  1043. j1 = j1 - kdn - 1;
  1044. }
  1045. /* apply plane rotations from both sides to diagonal */
  1046. /* blocks */
  1047. if (nr > 0) {
  1048. zlar2v_(&nr, &ab[(j1 - 1) * ab_dim1 + 1], &ab[j1 *
  1049. ab_dim1 + 1], &ab[(j1 - 1) * ab_dim1 + 2], &
  1050. inca, &d__[j1], &work[j1], &kd1);
  1051. }
  1052. /* apply plane rotations from the right */
  1053. /* Dependent on the the number of diagonals either */
  1054. /* ZLARTV or ZROT is used */
  1055. if (nr > 0) {
  1056. zlacgv_(&nr, &work[j1], &kd1);
  1057. if (nr > (*kd << 1) - 1) {
  1058. i__2 = *kd - 1;
  1059. for (l = 1; l <= i__2; ++l) {
  1060. if (j2 + l > *n) {
  1061. nrt = nr - 1;
  1062. } else {
  1063. nrt = nr;
  1064. }
  1065. if (nrt > 0) {
  1066. zlartv_(&nrt, &ab[l + 2 + (j1 - 1) *
  1067. ab_dim1], &inca, &ab[l + 1 + j1 *
  1068. ab_dim1], &inca, &d__[j1], &work[
  1069. j1], &kd1);
  1070. }
  1071. /* L150: */
  1072. }
  1073. } else {
  1074. j1end = j1 + kd1 * (nr - 2);
  1075. if (j1end >= j1) {
  1076. i__2 = j1end;
  1077. i__3 = kd1;
  1078. for (j1inc = j1; i__3 < 0 ? j1inc >= i__2 :
  1079. j1inc <= i__2; j1inc += i__3) {
  1080. zrot_(&kdm1, &ab[(j1inc - 1) * ab_dim1 +
  1081. 3], &c__1, &ab[j1inc * ab_dim1 +
  1082. 2], &c__1, &d__[j1inc], &work[
  1083. j1inc]);
  1084. /* L160: */
  1085. }
  1086. }
  1087. /* Computing MIN */
  1088. i__3 = kdm1, i__2 = *n - j2;
  1089. lend = f2cmin(i__3,i__2);
  1090. last = j1end + kd1;
  1091. if (lend > 0) {
  1092. zrot_(&lend, &ab[(last - 1) * ab_dim1 + 3], &
  1093. c__1, &ab[last * ab_dim1 + 2], &c__1,
  1094. &d__[last], &work[last]);
  1095. }
  1096. }
  1097. }
  1098. if (wantq) {
  1099. /* accumulate product of plane rotations in Q */
  1100. if (initq) {
  1101. /* take advantage of the fact that Q was */
  1102. /* initially the Identity matrix */
  1103. iqend = f2cmax(iqend,j2);
  1104. /* Computing MAX */
  1105. i__3 = 0, i__2 = k - 3;
  1106. i2 = f2cmax(i__3,i__2);
  1107. iqaend = i__ * *kd + 1;
  1108. if (k == 2) {
  1109. iqaend += *kd;
  1110. }
  1111. iqaend = f2cmin(iqaend,iqend);
  1112. i__3 = j2;
  1113. i__2 = kd1;
  1114. for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j
  1115. += i__2) {
  1116. ibl = i__ - i2 / kdm1;
  1117. ++i2;
  1118. /* Computing MAX */
  1119. i__4 = 1, i__5 = j - ibl;
  1120. iqb = f2cmax(i__4,i__5);
  1121. nq = iqaend + 1 - iqb;
  1122. /* Computing MIN */
  1123. i__4 = iqaend + *kd;
  1124. iqaend = f2cmin(i__4,iqend);
  1125. zrot_(&nq, &q[iqb + (j - 1) * q_dim1], &c__1,
  1126. &q[iqb + j * q_dim1], &c__1, &d__[j],
  1127. &work[j]);
  1128. /* L170: */
  1129. }
  1130. } else {
  1131. i__2 = j2;
  1132. i__3 = kd1;
  1133. for (j = j1; i__3 < 0 ? j >= i__2 : j <= i__2; j
  1134. += i__3) {
  1135. zrot_(n, &q[(j - 1) * q_dim1 + 1], &c__1, &q[
  1136. j * q_dim1 + 1], &c__1, &d__[j], &
  1137. work[j]);
  1138. /* L180: */
  1139. }
  1140. }
  1141. }
  1142. if (j2 + kdn > *n) {
  1143. /* adjust J2 to keep within the bounds of the matrix */
  1144. --nr;
  1145. j2 = j2 - kdn - 1;
  1146. }
  1147. i__3 = j2;
  1148. i__2 = kd1;
  1149. for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j += i__2)
  1150. {
  1151. /* create nonzero element a(j+kd,j-1) outside the */
  1152. /* band and store it in WORK */
  1153. i__4 = j + *kd;
  1154. i__5 = j;
  1155. i__6 = kd1 + j * ab_dim1;
  1156. z__1.r = work[i__5].r * ab[i__6].r - work[i__5].i *
  1157. ab[i__6].i, z__1.i = work[i__5].r * ab[i__6]
  1158. .i + work[i__5].i * ab[i__6].r;
  1159. work[i__4].r = z__1.r, work[i__4].i = z__1.i;
  1160. i__4 = kd1 + j * ab_dim1;
  1161. i__5 = j;
  1162. i__6 = kd1 + j * ab_dim1;
  1163. z__1.r = d__[i__5] * ab[i__6].r, z__1.i = d__[i__5] *
  1164. ab[i__6].i;
  1165. ab[i__4].r = z__1.r, ab[i__4].i = z__1.i;
  1166. /* L190: */
  1167. }
  1168. /* L200: */
  1169. }
  1170. /* L210: */
  1171. }
  1172. }
  1173. if (*kd > 0) {
  1174. /* make off-diagonal elements real and copy them to E */
  1175. i__1 = *n - 1;
  1176. for (i__ = 1; i__ <= i__1; ++i__) {
  1177. i__2 = i__ * ab_dim1 + 2;
  1178. t.r = ab[i__2].r, t.i = ab[i__2].i;
  1179. abst = z_abs(&t);
  1180. i__2 = i__ * ab_dim1 + 2;
  1181. ab[i__2].r = abst, ab[i__2].i = 0.;
  1182. e[i__] = abst;
  1183. if (abst != 0.) {
  1184. z__1.r = t.r / abst, z__1.i = t.i / abst;
  1185. t.r = z__1.r, t.i = z__1.i;
  1186. } else {
  1187. t.r = 1., t.i = 0.;
  1188. }
  1189. if (i__ < *n - 1) {
  1190. i__2 = (i__ + 1) * ab_dim1 + 2;
  1191. i__3 = (i__ + 1) * ab_dim1 + 2;
  1192. z__1.r = ab[i__3].r * t.r - ab[i__3].i * t.i, z__1.i = ab[
  1193. i__3].r * t.i + ab[i__3].i * t.r;
  1194. ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
  1195. }
  1196. if (wantq) {
  1197. zscal_(n, &t, &q[(i__ + 1) * q_dim1 + 1], &c__1);
  1198. }
  1199. /* L220: */
  1200. }
  1201. } else {
  1202. /* set E to zero if original matrix was diagonal */
  1203. i__1 = *n - 1;
  1204. for (i__ = 1; i__ <= i__1; ++i__) {
  1205. e[i__] = 0.;
  1206. /* L230: */
  1207. }
  1208. }
  1209. /* copy diagonal elements to D */
  1210. i__1 = *n;
  1211. for (i__ = 1; i__ <= i__1; ++i__) {
  1212. i__2 = i__;
  1213. i__3 = i__ * ab_dim1 + 1;
  1214. d__[i__2] = ab[i__3].r;
  1215. /* L240: */
  1216. }
  1217. }
  1218. return 0;
  1219. /* End of ZHBTRD */
  1220. } /* zhbtrd_ */