You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zhbgst.c 81 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static doublecomplex c_b1 = {0.,0.};
  487. static doublecomplex c_b2 = {1.,0.};
  488. static integer c__1 = 1;
  489. /* > \brief \b ZHBGST */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download ZHBGST + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhbgst.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhbgst.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhbgst.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE ZHBGST( VECT, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, X, */
  508. /* LDX, WORK, RWORK, INFO ) */
  509. /* CHARACTER UPLO, VECT */
  510. /* INTEGER INFO, KA, KB, LDAB, LDBB, LDX, N */
  511. /* DOUBLE PRECISION RWORK( * ) */
  512. /* COMPLEX*16 AB( LDAB, * ), BB( LDBB, * ), WORK( * ), */
  513. /* $ X( LDX, * ) */
  514. /* > \par Purpose: */
  515. /* ============= */
  516. /* > */
  517. /* > \verbatim */
  518. /* > */
  519. /* > ZHBGST reduces a complex Hermitian-definite banded generalized */
  520. /* > eigenproblem A*x = lambda*B*x to standard form C*y = lambda*y, */
  521. /* > such that C has the same bandwidth as A. */
  522. /* > */
  523. /* > B must have been previously factorized as S**H*S by ZPBSTF, using a */
  524. /* > split Cholesky factorization. A is overwritten by C = X**H*A*X, where */
  525. /* > X = S**(-1)*Q and Q is a unitary matrix chosen to preserve the */
  526. /* > bandwidth of A. */
  527. /* > \endverbatim */
  528. /* Arguments: */
  529. /* ========== */
  530. /* > \param[in] VECT */
  531. /* > \verbatim */
  532. /* > VECT is CHARACTER*1 */
  533. /* > = 'N': do not form the transformation matrix X; */
  534. /* > = 'V': form X. */
  535. /* > \endverbatim */
  536. /* > */
  537. /* > \param[in] UPLO */
  538. /* > \verbatim */
  539. /* > UPLO is CHARACTER*1 */
  540. /* > = 'U': Upper triangle of A is stored; */
  541. /* > = 'L': Lower triangle of A is stored. */
  542. /* > \endverbatim */
  543. /* > */
  544. /* > \param[in] N */
  545. /* > \verbatim */
  546. /* > N is INTEGER */
  547. /* > The order of the matrices A and B. N >= 0. */
  548. /* > \endverbatim */
  549. /* > */
  550. /* > \param[in] KA */
  551. /* > \verbatim */
  552. /* > KA is INTEGER */
  553. /* > The number of superdiagonals of the matrix A if UPLO = 'U', */
  554. /* > or the number of subdiagonals if UPLO = 'L'. KA >= 0. */
  555. /* > \endverbatim */
  556. /* > */
  557. /* > \param[in] KB */
  558. /* > \verbatim */
  559. /* > KB is INTEGER */
  560. /* > The number of superdiagonals of the matrix B if UPLO = 'U', */
  561. /* > or the number of subdiagonals if UPLO = 'L'. KA >= KB >= 0. */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in,out] AB */
  565. /* > \verbatim */
  566. /* > AB is COMPLEX*16 array, dimension (LDAB,N) */
  567. /* > On entry, the upper or lower triangle of the Hermitian band */
  568. /* > matrix A, stored in the first ka+1 rows of the array. The */
  569. /* > j-th column of A is stored in the j-th column of the array AB */
  570. /* > as follows: */
  571. /* > if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for f2cmax(1,j-ka)<=i<=j; */
  572. /* > if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=f2cmin(n,j+ka). */
  573. /* > */
  574. /* > On exit, the transformed matrix X**H*A*X, stored in the same */
  575. /* > format as A. */
  576. /* > \endverbatim */
  577. /* > */
  578. /* > \param[in] LDAB */
  579. /* > \verbatim */
  580. /* > LDAB is INTEGER */
  581. /* > The leading dimension of the array AB. LDAB >= KA+1. */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in] BB */
  585. /* > \verbatim */
  586. /* > BB is COMPLEX*16 array, dimension (LDBB,N) */
  587. /* > The banded factor S from the split Cholesky factorization of */
  588. /* > B, as returned by ZPBSTF, stored in the first kb+1 rows of */
  589. /* > the array. */
  590. /* > \endverbatim */
  591. /* > */
  592. /* > \param[in] LDBB */
  593. /* > \verbatim */
  594. /* > LDBB is INTEGER */
  595. /* > The leading dimension of the array BB. LDBB >= KB+1. */
  596. /* > \endverbatim */
  597. /* > */
  598. /* > \param[out] X */
  599. /* > \verbatim */
  600. /* > X is COMPLEX*16 array, dimension (LDX,N) */
  601. /* > If VECT = 'V', the n-by-n matrix X. */
  602. /* > If VECT = 'N', the array X is not referenced. */
  603. /* > \endverbatim */
  604. /* > */
  605. /* > \param[in] LDX */
  606. /* > \verbatim */
  607. /* > LDX is INTEGER */
  608. /* > The leading dimension of the array X. */
  609. /* > LDX >= f2cmax(1,N) if VECT = 'V'; LDX >= 1 otherwise. */
  610. /* > \endverbatim */
  611. /* > */
  612. /* > \param[out] WORK */
  613. /* > \verbatim */
  614. /* > WORK is COMPLEX*16 array, dimension (N) */
  615. /* > \endverbatim */
  616. /* > */
  617. /* > \param[out] RWORK */
  618. /* > \verbatim */
  619. /* > RWORK is DOUBLE PRECISION array, dimension (N) */
  620. /* > \endverbatim */
  621. /* > */
  622. /* > \param[out] INFO */
  623. /* > \verbatim */
  624. /* > INFO is INTEGER */
  625. /* > = 0: successful exit */
  626. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  627. /* > \endverbatim */
  628. /* Authors: */
  629. /* ======== */
  630. /* > \author Univ. of Tennessee */
  631. /* > \author Univ. of California Berkeley */
  632. /* > \author Univ. of Colorado Denver */
  633. /* > \author NAG Ltd. */
  634. /* > \date December 2016 */
  635. /* > \ingroup complex16OTHERcomputational */
  636. /* ===================================================================== */
  637. /* Subroutine */ int zhbgst_(char *vect, char *uplo, integer *n, integer *ka,
  638. integer *kb, doublecomplex *ab, integer *ldab, doublecomplex *bb,
  639. integer *ldbb, doublecomplex *x, integer *ldx, doublecomplex *work,
  640. doublereal *rwork, integer *info)
  641. {
  642. /* System generated locals */
  643. integer ab_dim1, ab_offset, bb_dim1, bb_offset, x_dim1, x_offset, i__1,
  644. i__2, i__3, i__4, i__5, i__6, i__7, i__8;
  645. doublereal d__1;
  646. doublecomplex z__1, z__2, z__3, z__4, z__5, z__6, z__7, z__8, z__9, z__10;
  647. /* Local variables */
  648. integer inca;
  649. extern /* Subroutine */ int zrot_(integer *, doublecomplex *, integer *,
  650. doublecomplex *, integer *, doublereal *, doublecomplex *);
  651. integer i__, j, k, l, m;
  652. doublecomplex t;
  653. extern logical lsame_(char *, char *);
  654. extern /* Subroutine */ int zgerc_(integer *, integer *, doublecomplex *,
  655. doublecomplex *, integer *, doublecomplex *, integer *,
  656. doublecomplex *, integer *);
  657. integer i0, i1;
  658. logical upper;
  659. integer i2, j1, j2;
  660. extern /* Subroutine */ int zgeru_(integer *, integer *, doublecomplex *,
  661. doublecomplex *, integer *, doublecomplex *, integer *,
  662. doublecomplex *, integer *);
  663. logical wantx;
  664. extern /* Subroutine */ int zlar2v_(integer *, doublecomplex *,
  665. doublecomplex *, doublecomplex *, integer *, doublereal *,
  666. doublecomplex *, integer *);
  667. doublecomplex ra;
  668. integer nr, nx;
  669. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), zdscal_(
  670. integer *, doublereal *, doublecomplex *, integer *);
  671. logical update;
  672. extern /* Subroutine */ int zlacgv_(integer *, doublecomplex *, integer *)
  673. ;
  674. integer ka1, kb1;
  675. extern /* Subroutine */ int zlaset_(char *, integer *, integer *,
  676. doublecomplex *, doublecomplex *, doublecomplex *, integer *), zlartg_(doublecomplex *, doublecomplex *, doublereal *,
  677. doublecomplex *, doublecomplex *);
  678. doublecomplex ra1;
  679. extern /* Subroutine */ int zlargv_(integer *, doublecomplex *, integer *,
  680. doublecomplex *, integer *, doublereal *, integer *);
  681. integer j1t, j2t;
  682. extern /* Subroutine */ int zlartv_(integer *, doublecomplex *, integer *,
  683. doublecomplex *, integer *, doublereal *, doublecomplex *,
  684. integer *);
  685. doublereal bii;
  686. integer kbt, nrt;
  687. /* -- LAPACK computational routine (version 3.7.0) -- */
  688. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  689. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  690. /* December 2016 */
  691. /* ===================================================================== */
  692. /* Test the input parameters */
  693. /* Parameter adjustments */
  694. ab_dim1 = *ldab;
  695. ab_offset = 1 + ab_dim1 * 1;
  696. ab -= ab_offset;
  697. bb_dim1 = *ldbb;
  698. bb_offset = 1 + bb_dim1 * 1;
  699. bb -= bb_offset;
  700. x_dim1 = *ldx;
  701. x_offset = 1 + x_dim1 * 1;
  702. x -= x_offset;
  703. --work;
  704. --rwork;
  705. /* Function Body */
  706. wantx = lsame_(vect, "V");
  707. upper = lsame_(uplo, "U");
  708. ka1 = *ka + 1;
  709. kb1 = *kb + 1;
  710. *info = 0;
  711. if (! wantx && ! lsame_(vect, "N")) {
  712. *info = -1;
  713. } else if (! upper && ! lsame_(uplo, "L")) {
  714. *info = -2;
  715. } else if (*n < 0) {
  716. *info = -3;
  717. } else if (*ka < 0) {
  718. *info = -4;
  719. } else if (*kb < 0 || *kb > *ka) {
  720. *info = -5;
  721. } else if (*ldab < *ka + 1) {
  722. *info = -7;
  723. } else if (*ldbb < *kb + 1) {
  724. *info = -9;
  725. } else if (*ldx < 1 || wantx && *ldx < f2cmax(1,*n)) {
  726. *info = -11;
  727. }
  728. if (*info != 0) {
  729. i__1 = -(*info);
  730. xerbla_("ZHBGST", &i__1, (ftnlen)6);
  731. return 0;
  732. }
  733. /* Quick return if possible */
  734. if (*n == 0) {
  735. return 0;
  736. }
  737. inca = *ldab * ka1;
  738. /* Initialize X to the unit matrix, if needed */
  739. if (wantx) {
  740. zlaset_("Full", n, n, &c_b1, &c_b2, &x[x_offset], ldx);
  741. }
  742. /* Set M to the splitting point m. It must be the same value as is */
  743. /* used in ZPBSTF. The chosen value allows the arrays WORK and RWORK */
  744. /* to be of dimension (N). */
  745. m = (*n + *kb) / 2;
  746. /* The routine works in two phases, corresponding to the two halves */
  747. /* of the split Cholesky factorization of B as S**H*S where */
  748. /* S = ( U ) */
  749. /* ( M L ) */
  750. /* with U upper triangular of order m, and L lower triangular of */
  751. /* order n-m. S has the same bandwidth as B. */
  752. /* S is treated as a product of elementary matrices: */
  753. /* S = S(m)*S(m-1)*...*S(2)*S(1)*S(m+1)*S(m+2)*...*S(n-1)*S(n) */
  754. /* where S(i) is determined by the i-th row of S. */
  755. /* In phase 1, the index i takes the values n, n-1, ... , m+1; */
  756. /* in phase 2, it takes the values 1, 2, ... , m. */
  757. /* For each value of i, the current matrix A is updated by forming */
  758. /* inv(S(i))**H*A*inv(S(i)). This creates a triangular bulge outside */
  759. /* the band of A. The bulge is then pushed down toward the bottom of */
  760. /* A in phase 1, and up toward the top of A in phase 2, by applying */
  761. /* plane rotations. */
  762. /* There are kb*(kb+1)/2 elements in the bulge, but at most 2*kb-1 */
  763. /* of them are linearly independent, so annihilating a bulge requires */
  764. /* only 2*kb-1 plane rotations. The rotations are divided into a 1st */
  765. /* set of kb-1 rotations, and a 2nd set of kb rotations. */
  766. /* Wherever possible, rotations are generated and applied in vector */
  767. /* operations of length NR between the indices J1 and J2 (sometimes */
  768. /* replaced by modified values NRT, J1T or J2T). */
  769. /* The real cosines and complex sines of the rotations are stored in */
  770. /* the arrays RWORK and WORK, those of the 1st set in elements */
  771. /* 2:m-kb-1, and those of the 2nd set in elements m-kb+1:n. */
  772. /* The bulges are not formed explicitly; nonzero elements outside the */
  773. /* band are created only when they are required for generating new */
  774. /* rotations; they are stored in the array WORK, in positions where */
  775. /* they are later overwritten by the sines of the rotations which */
  776. /* annihilate them. */
  777. /* **************************** Phase 1 ***************************** */
  778. /* The logical structure of this phase is: */
  779. /* UPDATE = .TRUE. */
  780. /* DO I = N, M + 1, -1 */
  781. /* use S(i) to update A and create a new bulge */
  782. /* apply rotations to push all bulges KA positions downward */
  783. /* END DO */
  784. /* UPDATE = .FALSE. */
  785. /* DO I = M + KA + 1, N - 1 */
  786. /* apply rotations to push all bulges KA positions downward */
  787. /* END DO */
  788. /* To avoid duplicating code, the two loops are merged. */
  789. update = TRUE_;
  790. i__ = *n + 1;
  791. L10:
  792. if (update) {
  793. --i__;
  794. /* Computing MIN */
  795. i__1 = *kb, i__2 = i__ - 1;
  796. kbt = f2cmin(i__1,i__2);
  797. i0 = i__ - 1;
  798. /* Computing MIN */
  799. i__1 = *n, i__2 = i__ + *ka;
  800. i1 = f2cmin(i__1,i__2);
  801. i2 = i__ - kbt + ka1;
  802. if (i__ < m + 1) {
  803. update = FALSE_;
  804. ++i__;
  805. i0 = m;
  806. if (*ka == 0) {
  807. goto L480;
  808. }
  809. goto L10;
  810. }
  811. } else {
  812. i__ += *ka;
  813. if (i__ > *n - 1) {
  814. goto L480;
  815. }
  816. }
  817. if (upper) {
  818. /* Transform A, working with the upper triangle */
  819. if (update) {
  820. /* Form inv(S(i))**H * A * inv(S(i)) */
  821. i__1 = kb1 + i__ * bb_dim1;
  822. bii = bb[i__1].r;
  823. i__1 = ka1 + i__ * ab_dim1;
  824. i__2 = ka1 + i__ * ab_dim1;
  825. d__1 = ab[i__2].r / bii / bii;
  826. ab[i__1].r = d__1, ab[i__1].i = 0.;
  827. i__1 = i1;
  828. for (j = i__ + 1; j <= i__1; ++j) {
  829. i__2 = i__ - j + ka1 + j * ab_dim1;
  830. i__3 = i__ - j + ka1 + j * ab_dim1;
  831. z__1.r = ab[i__3].r / bii, z__1.i = ab[i__3].i / bii;
  832. ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
  833. /* L20: */
  834. }
  835. /* Computing MAX */
  836. i__1 = 1, i__2 = i__ - *ka;
  837. i__3 = i__ - 1;
  838. for (j = f2cmax(i__1,i__2); j <= i__3; ++j) {
  839. i__1 = j - i__ + ka1 + i__ * ab_dim1;
  840. i__2 = j - i__ + ka1 + i__ * ab_dim1;
  841. z__1.r = ab[i__2].r / bii, z__1.i = ab[i__2].i / bii;
  842. ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
  843. /* L30: */
  844. }
  845. i__3 = i__ - 1;
  846. for (k = i__ - kbt; k <= i__3; ++k) {
  847. i__1 = k;
  848. for (j = i__ - kbt; j <= i__1; ++j) {
  849. i__2 = j - k + ka1 + k * ab_dim1;
  850. i__4 = j - k + ka1 + k * ab_dim1;
  851. i__5 = j - i__ + kb1 + i__ * bb_dim1;
  852. d_cnjg(&z__5, &ab[k - i__ + ka1 + i__ * ab_dim1]);
  853. z__4.r = bb[i__5].r * z__5.r - bb[i__5].i * z__5.i,
  854. z__4.i = bb[i__5].r * z__5.i + bb[i__5].i *
  855. z__5.r;
  856. z__3.r = ab[i__4].r - z__4.r, z__3.i = ab[i__4].i -
  857. z__4.i;
  858. d_cnjg(&z__7, &bb[k - i__ + kb1 + i__ * bb_dim1]);
  859. i__6 = j - i__ + ka1 + i__ * ab_dim1;
  860. z__6.r = z__7.r * ab[i__6].r - z__7.i * ab[i__6].i,
  861. z__6.i = z__7.r * ab[i__6].i + z__7.i * ab[i__6]
  862. .r;
  863. z__2.r = z__3.r - z__6.r, z__2.i = z__3.i - z__6.i;
  864. i__7 = ka1 + i__ * ab_dim1;
  865. d__1 = ab[i__7].r;
  866. i__8 = j - i__ + kb1 + i__ * bb_dim1;
  867. z__9.r = d__1 * bb[i__8].r, z__9.i = d__1 * bb[i__8].i;
  868. d_cnjg(&z__10, &bb[k - i__ + kb1 + i__ * bb_dim1]);
  869. z__8.r = z__9.r * z__10.r - z__9.i * z__10.i, z__8.i =
  870. z__9.r * z__10.i + z__9.i * z__10.r;
  871. z__1.r = z__2.r + z__8.r, z__1.i = z__2.i + z__8.i;
  872. ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
  873. /* L40: */
  874. }
  875. /* Computing MAX */
  876. i__1 = 1, i__2 = i__ - *ka;
  877. i__4 = i__ - kbt - 1;
  878. for (j = f2cmax(i__1,i__2); j <= i__4; ++j) {
  879. i__1 = j - k + ka1 + k * ab_dim1;
  880. i__2 = j - k + ka1 + k * ab_dim1;
  881. d_cnjg(&z__3, &bb[k - i__ + kb1 + i__ * bb_dim1]);
  882. i__5 = j - i__ + ka1 + i__ * ab_dim1;
  883. z__2.r = z__3.r * ab[i__5].r - z__3.i * ab[i__5].i,
  884. z__2.i = z__3.r * ab[i__5].i + z__3.i * ab[i__5]
  885. .r;
  886. z__1.r = ab[i__2].r - z__2.r, z__1.i = ab[i__2].i -
  887. z__2.i;
  888. ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
  889. /* L50: */
  890. }
  891. /* L60: */
  892. }
  893. i__3 = i1;
  894. for (j = i__; j <= i__3; ++j) {
  895. /* Computing MAX */
  896. i__4 = j - *ka, i__1 = i__ - kbt;
  897. i__2 = i__ - 1;
  898. for (k = f2cmax(i__4,i__1); k <= i__2; ++k) {
  899. i__4 = k - j + ka1 + j * ab_dim1;
  900. i__1 = k - j + ka1 + j * ab_dim1;
  901. i__5 = k - i__ + kb1 + i__ * bb_dim1;
  902. i__6 = i__ - j + ka1 + j * ab_dim1;
  903. z__2.r = bb[i__5].r * ab[i__6].r - bb[i__5].i * ab[i__6]
  904. .i, z__2.i = bb[i__5].r * ab[i__6].i + bb[i__5].i
  905. * ab[i__6].r;
  906. z__1.r = ab[i__1].r - z__2.r, z__1.i = ab[i__1].i -
  907. z__2.i;
  908. ab[i__4].r = z__1.r, ab[i__4].i = z__1.i;
  909. /* L70: */
  910. }
  911. /* L80: */
  912. }
  913. if (wantx) {
  914. /* post-multiply X by inv(S(i)) */
  915. i__3 = *n - m;
  916. d__1 = 1. / bii;
  917. zdscal_(&i__3, &d__1, &x[m + 1 + i__ * x_dim1], &c__1);
  918. if (kbt > 0) {
  919. i__3 = *n - m;
  920. z__1.r = -1., z__1.i = 0.;
  921. zgerc_(&i__3, &kbt, &z__1, &x[m + 1 + i__ * x_dim1], &
  922. c__1, &bb[kb1 - kbt + i__ * bb_dim1], &c__1, &x[m
  923. + 1 + (i__ - kbt) * x_dim1], ldx);
  924. }
  925. }
  926. /* store a(i,i1) in RA1 for use in next loop over K */
  927. i__3 = i__ - i1 + ka1 + i1 * ab_dim1;
  928. ra1.r = ab[i__3].r, ra1.i = ab[i__3].i;
  929. }
  930. /* Generate and apply vectors of rotations to chase all the */
  931. /* existing bulges KA positions down toward the bottom of the */
  932. /* band */
  933. i__3 = *kb - 1;
  934. for (k = 1; k <= i__3; ++k) {
  935. if (update) {
  936. /* Determine the rotations which would annihilate the bulge */
  937. /* which has in theory just been created */
  938. if (i__ - k + *ka < *n && i__ - k > 1) {
  939. /* generate rotation to annihilate a(i,i-k+ka+1) */
  940. zlartg_(&ab[k + 1 + (i__ - k + *ka) * ab_dim1], &ra1, &
  941. rwork[i__ - k + *ka - m], &work[i__ - k + *ka - m]
  942. , &ra);
  943. /* create nonzero element a(i-k,i-k+ka+1) outside the */
  944. /* band and store it in WORK(i-k) */
  945. i__2 = kb1 - k + i__ * bb_dim1;
  946. z__2.r = -bb[i__2].r, z__2.i = -bb[i__2].i;
  947. z__1.r = z__2.r * ra1.r - z__2.i * ra1.i, z__1.i = z__2.r
  948. * ra1.i + z__2.i * ra1.r;
  949. t.r = z__1.r, t.i = z__1.i;
  950. i__2 = i__ - k;
  951. i__4 = i__ - k + *ka - m;
  952. z__2.r = rwork[i__4] * t.r, z__2.i = rwork[i__4] * t.i;
  953. d_cnjg(&z__4, &work[i__ - k + *ka - m]);
  954. i__1 = (i__ - k + *ka) * ab_dim1 + 1;
  955. z__3.r = z__4.r * ab[i__1].r - z__4.i * ab[i__1].i,
  956. z__3.i = z__4.r * ab[i__1].i + z__4.i * ab[i__1]
  957. .r;
  958. z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
  959. work[i__2].r = z__1.r, work[i__2].i = z__1.i;
  960. i__2 = (i__ - k + *ka) * ab_dim1 + 1;
  961. i__4 = i__ - k + *ka - m;
  962. z__2.r = work[i__4].r * t.r - work[i__4].i * t.i, z__2.i =
  963. work[i__4].r * t.i + work[i__4].i * t.r;
  964. i__1 = i__ - k + *ka - m;
  965. i__5 = (i__ - k + *ka) * ab_dim1 + 1;
  966. z__3.r = rwork[i__1] * ab[i__5].r, z__3.i = rwork[i__1] *
  967. ab[i__5].i;
  968. z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
  969. ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
  970. ra1.r = ra.r, ra1.i = ra.i;
  971. }
  972. }
  973. /* Computing MAX */
  974. i__2 = 1, i__4 = k - i0 + 2;
  975. j2 = i__ - k - 1 + f2cmax(i__2,i__4) * ka1;
  976. nr = (*n - j2 + *ka) / ka1;
  977. j1 = j2 + (nr - 1) * ka1;
  978. if (update) {
  979. /* Computing MAX */
  980. i__2 = j2, i__4 = i__ + (*ka << 1) - k + 1;
  981. j2t = f2cmax(i__2,i__4);
  982. } else {
  983. j2t = j2;
  984. }
  985. nrt = (*n - j2t + *ka) / ka1;
  986. i__2 = j1;
  987. i__4 = ka1;
  988. for (j = j2t; i__4 < 0 ? j >= i__2 : j <= i__2; j += i__4) {
  989. /* create nonzero element a(j-ka,j+1) outside the band */
  990. /* and store it in WORK(j-m) */
  991. i__1 = j - m;
  992. i__5 = j - m;
  993. i__6 = (j + 1) * ab_dim1 + 1;
  994. z__1.r = work[i__5].r * ab[i__6].r - work[i__5].i * ab[i__6]
  995. .i, z__1.i = work[i__5].r * ab[i__6].i + work[i__5].i
  996. * ab[i__6].r;
  997. work[i__1].r = z__1.r, work[i__1].i = z__1.i;
  998. i__1 = (j + 1) * ab_dim1 + 1;
  999. i__5 = j - m;
  1000. i__6 = (j + 1) * ab_dim1 + 1;
  1001. z__1.r = rwork[i__5] * ab[i__6].r, z__1.i = rwork[i__5] * ab[
  1002. i__6].i;
  1003. ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
  1004. /* L90: */
  1005. }
  1006. /* generate rotations in 1st set to annihilate elements which */
  1007. /* have been created outside the band */
  1008. if (nrt > 0) {
  1009. zlargv_(&nrt, &ab[j2t * ab_dim1 + 1], &inca, &work[j2t - m], &
  1010. ka1, &rwork[j2t - m], &ka1);
  1011. }
  1012. if (nr > 0) {
  1013. /* apply rotations in 1st set from the right */
  1014. i__4 = *ka - 1;
  1015. for (l = 1; l <= i__4; ++l) {
  1016. zlartv_(&nr, &ab[ka1 - l + j2 * ab_dim1], &inca, &ab[*ka
  1017. - l + (j2 + 1) * ab_dim1], &inca, &rwork[j2 - m],
  1018. &work[j2 - m], &ka1);
  1019. /* L100: */
  1020. }
  1021. /* apply rotations in 1st set from both sides to diagonal */
  1022. /* blocks */
  1023. zlar2v_(&nr, &ab[ka1 + j2 * ab_dim1], &ab[ka1 + (j2 + 1) *
  1024. ab_dim1], &ab[*ka + (j2 + 1) * ab_dim1], &inca, &
  1025. rwork[j2 - m], &work[j2 - m], &ka1);
  1026. zlacgv_(&nr, &work[j2 - m], &ka1);
  1027. }
  1028. /* start applying rotations in 1st set from the left */
  1029. i__4 = *kb - k + 1;
  1030. for (l = *ka - 1; l >= i__4; --l) {
  1031. nrt = (*n - j2 + l) / ka1;
  1032. if (nrt > 0) {
  1033. zlartv_(&nrt, &ab[l + (j2 + ka1 - l) * ab_dim1], &inca, &
  1034. ab[l + 1 + (j2 + ka1 - l) * ab_dim1], &inca, &
  1035. rwork[j2 - m], &work[j2 - m], &ka1);
  1036. }
  1037. /* L110: */
  1038. }
  1039. if (wantx) {
  1040. /* post-multiply X by product of rotations in 1st set */
  1041. i__4 = j1;
  1042. i__2 = ka1;
  1043. for (j = j2; i__2 < 0 ? j >= i__4 : j <= i__4; j += i__2) {
  1044. i__1 = *n - m;
  1045. d_cnjg(&z__1, &work[j - m]);
  1046. zrot_(&i__1, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
  1047. + 1) * x_dim1], &c__1, &rwork[j - m], &z__1);
  1048. /* L120: */
  1049. }
  1050. }
  1051. /* L130: */
  1052. }
  1053. if (update) {
  1054. if (i2 <= *n && kbt > 0) {
  1055. /* create nonzero element a(i-kbt,i-kbt+ka+1) outside the */
  1056. /* band and store it in WORK(i-kbt) */
  1057. i__3 = i__ - kbt;
  1058. i__2 = kb1 - kbt + i__ * bb_dim1;
  1059. z__2.r = -bb[i__2].r, z__2.i = -bb[i__2].i;
  1060. z__1.r = z__2.r * ra1.r - z__2.i * ra1.i, z__1.i = z__2.r *
  1061. ra1.i + z__2.i * ra1.r;
  1062. work[i__3].r = z__1.r, work[i__3].i = z__1.i;
  1063. }
  1064. }
  1065. for (k = *kb; k >= 1; --k) {
  1066. if (update) {
  1067. /* Computing MAX */
  1068. i__3 = 2, i__2 = k - i0 + 1;
  1069. j2 = i__ - k - 1 + f2cmax(i__3,i__2) * ka1;
  1070. } else {
  1071. /* Computing MAX */
  1072. i__3 = 1, i__2 = k - i0 + 1;
  1073. j2 = i__ - k - 1 + f2cmax(i__3,i__2) * ka1;
  1074. }
  1075. /* finish applying rotations in 2nd set from the left */
  1076. for (l = *kb - k; l >= 1; --l) {
  1077. nrt = (*n - j2 + *ka + l) / ka1;
  1078. if (nrt > 0) {
  1079. zlartv_(&nrt, &ab[l + (j2 - l + 1) * ab_dim1], &inca, &ab[
  1080. l + 1 + (j2 - l + 1) * ab_dim1], &inca, &rwork[j2
  1081. - *ka], &work[j2 - *ka], &ka1);
  1082. }
  1083. /* L140: */
  1084. }
  1085. nr = (*n - j2 + *ka) / ka1;
  1086. j1 = j2 + (nr - 1) * ka1;
  1087. i__3 = j2;
  1088. i__2 = -ka1;
  1089. for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j += i__2) {
  1090. i__4 = j;
  1091. i__1 = j - *ka;
  1092. work[i__4].r = work[i__1].r, work[i__4].i = work[i__1].i;
  1093. rwork[j] = rwork[j - *ka];
  1094. /* L150: */
  1095. }
  1096. i__2 = j1;
  1097. i__3 = ka1;
  1098. for (j = j2; i__3 < 0 ? j >= i__2 : j <= i__2; j += i__3) {
  1099. /* create nonzero element a(j-ka,j+1) outside the band */
  1100. /* and store it in WORK(j) */
  1101. i__4 = j;
  1102. i__1 = j;
  1103. i__5 = (j + 1) * ab_dim1 + 1;
  1104. z__1.r = work[i__1].r * ab[i__5].r - work[i__1].i * ab[i__5]
  1105. .i, z__1.i = work[i__1].r * ab[i__5].i + work[i__1].i
  1106. * ab[i__5].r;
  1107. work[i__4].r = z__1.r, work[i__4].i = z__1.i;
  1108. i__4 = (j + 1) * ab_dim1 + 1;
  1109. i__1 = j;
  1110. i__5 = (j + 1) * ab_dim1 + 1;
  1111. z__1.r = rwork[i__1] * ab[i__5].r, z__1.i = rwork[i__1] * ab[
  1112. i__5].i;
  1113. ab[i__4].r = z__1.r, ab[i__4].i = z__1.i;
  1114. /* L160: */
  1115. }
  1116. if (update) {
  1117. if (i__ - k < *n - *ka && k <= kbt) {
  1118. i__3 = i__ - k + *ka;
  1119. i__2 = i__ - k;
  1120. work[i__3].r = work[i__2].r, work[i__3].i = work[i__2].i;
  1121. }
  1122. }
  1123. /* L170: */
  1124. }
  1125. for (k = *kb; k >= 1; --k) {
  1126. /* Computing MAX */
  1127. i__3 = 1, i__2 = k - i0 + 1;
  1128. j2 = i__ - k - 1 + f2cmax(i__3,i__2) * ka1;
  1129. nr = (*n - j2 + *ka) / ka1;
  1130. j1 = j2 + (nr - 1) * ka1;
  1131. if (nr > 0) {
  1132. /* generate rotations in 2nd set to annihilate elements */
  1133. /* which have been created outside the band */
  1134. zlargv_(&nr, &ab[j2 * ab_dim1 + 1], &inca, &work[j2], &ka1, &
  1135. rwork[j2], &ka1);
  1136. /* apply rotations in 2nd set from the right */
  1137. i__3 = *ka - 1;
  1138. for (l = 1; l <= i__3; ++l) {
  1139. zlartv_(&nr, &ab[ka1 - l + j2 * ab_dim1], &inca, &ab[*ka
  1140. - l + (j2 + 1) * ab_dim1], &inca, &rwork[j2], &
  1141. work[j2], &ka1);
  1142. /* L180: */
  1143. }
  1144. /* apply rotations in 2nd set from both sides to diagonal */
  1145. /* blocks */
  1146. zlar2v_(&nr, &ab[ka1 + j2 * ab_dim1], &ab[ka1 + (j2 + 1) *
  1147. ab_dim1], &ab[*ka + (j2 + 1) * ab_dim1], &inca, &
  1148. rwork[j2], &work[j2], &ka1);
  1149. zlacgv_(&nr, &work[j2], &ka1);
  1150. }
  1151. /* start applying rotations in 2nd set from the left */
  1152. i__3 = *kb - k + 1;
  1153. for (l = *ka - 1; l >= i__3; --l) {
  1154. nrt = (*n - j2 + l) / ka1;
  1155. if (nrt > 0) {
  1156. zlartv_(&nrt, &ab[l + (j2 + ka1 - l) * ab_dim1], &inca, &
  1157. ab[l + 1 + (j2 + ka1 - l) * ab_dim1], &inca, &
  1158. rwork[j2], &work[j2], &ka1);
  1159. }
  1160. /* L190: */
  1161. }
  1162. if (wantx) {
  1163. /* post-multiply X by product of rotations in 2nd set */
  1164. i__3 = j1;
  1165. i__2 = ka1;
  1166. for (j = j2; i__2 < 0 ? j >= i__3 : j <= i__3; j += i__2) {
  1167. i__4 = *n - m;
  1168. d_cnjg(&z__1, &work[j]);
  1169. zrot_(&i__4, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
  1170. + 1) * x_dim1], &c__1, &rwork[j], &z__1);
  1171. /* L200: */
  1172. }
  1173. }
  1174. /* L210: */
  1175. }
  1176. i__2 = *kb - 1;
  1177. for (k = 1; k <= i__2; ++k) {
  1178. /* Computing MAX */
  1179. i__3 = 1, i__4 = k - i0 + 2;
  1180. j2 = i__ - k - 1 + f2cmax(i__3,i__4) * ka1;
  1181. /* finish applying rotations in 1st set from the left */
  1182. for (l = *kb - k; l >= 1; --l) {
  1183. nrt = (*n - j2 + l) / ka1;
  1184. if (nrt > 0) {
  1185. zlartv_(&nrt, &ab[l + (j2 + ka1 - l) * ab_dim1], &inca, &
  1186. ab[l + 1 + (j2 + ka1 - l) * ab_dim1], &inca, &
  1187. rwork[j2 - m], &work[j2 - m], &ka1);
  1188. }
  1189. /* L220: */
  1190. }
  1191. /* L230: */
  1192. }
  1193. if (*kb > 1) {
  1194. i__2 = j2 + *ka;
  1195. for (j = *n - 1; j >= i__2; --j) {
  1196. rwork[j - m] = rwork[j - *ka - m];
  1197. i__3 = j - m;
  1198. i__4 = j - *ka - m;
  1199. work[i__3].r = work[i__4].r, work[i__3].i = work[i__4].i;
  1200. /* L240: */
  1201. }
  1202. }
  1203. } else {
  1204. /* Transform A, working with the lower triangle */
  1205. if (update) {
  1206. /* Form inv(S(i))**H * A * inv(S(i)) */
  1207. i__2 = i__ * bb_dim1 + 1;
  1208. bii = bb[i__2].r;
  1209. i__2 = i__ * ab_dim1 + 1;
  1210. i__3 = i__ * ab_dim1 + 1;
  1211. d__1 = ab[i__3].r / bii / bii;
  1212. ab[i__2].r = d__1, ab[i__2].i = 0.;
  1213. i__2 = i1;
  1214. for (j = i__ + 1; j <= i__2; ++j) {
  1215. i__3 = j - i__ + 1 + i__ * ab_dim1;
  1216. i__4 = j - i__ + 1 + i__ * ab_dim1;
  1217. z__1.r = ab[i__4].r / bii, z__1.i = ab[i__4].i / bii;
  1218. ab[i__3].r = z__1.r, ab[i__3].i = z__1.i;
  1219. /* L250: */
  1220. }
  1221. /* Computing MAX */
  1222. i__2 = 1, i__3 = i__ - *ka;
  1223. i__4 = i__ - 1;
  1224. for (j = f2cmax(i__2,i__3); j <= i__4; ++j) {
  1225. i__2 = i__ - j + 1 + j * ab_dim1;
  1226. i__3 = i__ - j + 1 + j * ab_dim1;
  1227. z__1.r = ab[i__3].r / bii, z__1.i = ab[i__3].i / bii;
  1228. ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
  1229. /* L260: */
  1230. }
  1231. i__4 = i__ - 1;
  1232. for (k = i__ - kbt; k <= i__4; ++k) {
  1233. i__2 = k;
  1234. for (j = i__ - kbt; j <= i__2; ++j) {
  1235. i__3 = k - j + 1 + j * ab_dim1;
  1236. i__1 = k - j + 1 + j * ab_dim1;
  1237. i__5 = i__ - j + 1 + j * bb_dim1;
  1238. d_cnjg(&z__5, &ab[i__ - k + 1 + k * ab_dim1]);
  1239. z__4.r = bb[i__5].r * z__5.r - bb[i__5].i * z__5.i,
  1240. z__4.i = bb[i__5].r * z__5.i + bb[i__5].i *
  1241. z__5.r;
  1242. z__3.r = ab[i__1].r - z__4.r, z__3.i = ab[i__1].i -
  1243. z__4.i;
  1244. d_cnjg(&z__7, &bb[i__ - k + 1 + k * bb_dim1]);
  1245. i__6 = i__ - j + 1 + j * ab_dim1;
  1246. z__6.r = z__7.r * ab[i__6].r - z__7.i * ab[i__6].i,
  1247. z__6.i = z__7.r * ab[i__6].i + z__7.i * ab[i__6]
  1248. .r;
  1249. z__2.r = z__3.r - z__6.r, z__2.i = z__3.i - z__6.i;
  1250. i__7 = i__ * ab_dim1 + 1;
  1251. d__1 = ab[i__7].r;
  1252. i__8 = i__ - j + 1 + j * bb_dim1;
  1253. z__9.r = d__1 * bb[i__8].r, z__9.i = d__1 * bb[i__8].i;
  1254. d_cnjg(&z__10, &bb[i__ - k + 1 + k * bb_dim1]);
  1255. z__8.r = z__9.r * z__10.r - z__9.i * z__10.i, z__8.i =
  1256. z__9.r * z__10.i + z__9.i * z__10.r;
  1257. z__1.r = z__2.r + z__8.r, z__1.i = z__2.i + z__8.i;
  1258. ab[i__3].r = z__1.r, ab[i__3].i = z__1.i;
  1259. /* L270: */
  1260. }
  1261. /* Computing MAX */
  1262. i__2 = 1, i__3 = i__ - *ka;
  1263. i__1 = i__ - kbt - 1;
  1264. for (j = f2cmax(i__2,i__3); j <= i__1; ++j) {
  1265. i__2 = k - j + 1 + j * ab_dim1;
  1266. i__3 = k - j + 1 + j * ab_dim1;
  1267. d_cnjg(&z__3, &bb[i__ - k + 1 + k * bb_dim1]);
  1268. i__5 = i__ - j + 1 + j * ab_dim1;
  1269. z__2.r = z__3.r * ab[i__5].r - z__3.i * ab[i__5].i,
  1270. z__2.i = z__3.r * ab[i__5].i + z__3.i * ab[i__5]
  1271. .r;
  1272. z__1.r = ab[i__3].r - z__2.r, z__1.i = ab[i__3].i -
  1273. z__2.i;
  1274. ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
  1275. /* L280: */
  1276. }
  1277. /* L290: */
  1278. }
  1279. i__4 = i1;
  1280. for (j = i__; j <= i__4; ++j) {
  1281. /* Computing MAX */
  1282. i__1 = j - *ka, i__2 = i__ - kbt;
  1283. i__3 = i__ - 1;
  1284. for (k = f2cmax(i__1,i__2); k <= i__3; ++k) {
  1285. i__1 = j - k + 1 + k * ab_dim1;
  1286. i__2 = j - k + 1 + k * ab_dim1;
  1287. i__5 = i__ - k + 1 + k * bb_dim1;
  1288. i__6 = j - i__ + 1 + i__ * ab_dim1;
  1289. z__2.r = bb[i__5].r * ab[i__6].r - bb[i__5].i * ab[i__6]
  1290. .i, z__2.i = bb[i__5].r * ab[i__6].i + bb[i__5].i
  1291. * ab[i__6].r;
  1292. z__1.r = ab[i__2].r - z__2.r, z__1.i = ab[i__2].i -
  1293. z__2.i;
  1294. ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
  1295. /* L300: */
  1296. }
  1297. /* L310: */
  1298. }
  1299. if (wantx) {
  1300. /* post-multiply X by inv(S(i)) */
  1301. i__4 = *n - m;
  1302. d__1 = 1. / bii;
  1303. zdscal_(&i__4, &d__1, &x[m + 1 + i__ * x_dim1], &c__1);
  1304. if (kbt > 0) {
  1305. i__4 = *n - m;
  1306. z__1.r = -1., z__1.i = 0.;
  1307. i__3 = *ldbb - 1;
  1308. zgeru_(&i__4, &kbt, &z__1, &x[m + 1 + i__ * x_dim1], &
  1309. c__1, &bb[kbt + 1 + (i__ - kbt) * bb_dim1], &i__3,
  1310. &x[m + 1 + (i__ - kbt) * x_dim1], ldx);
  1311. }
  1312. }
  1313. /* store a(i1,i) in RA1 for use in next loop over K */
  1314. i__4 = i1 - i__ + 1 + i__ * ab_dim1;
  1315. ra1.r = ab[i__4].r, ra1.i = ab[i__4].i;
  1316. }
  1317. /* Generate and apply vectors of rotations to chase all the */
  1318. /* existing bulges KA positions down toward the bottom of the */
  1319. /* band */
  1320. i__4 = *kb - 1;
  1321. for (k = 1; k <= i__4; ++k) {
  1322. if (update) {
  1323. /* Determine the rotations which would annihilate the bulge */
  1324. /* which has in theory just been created */
  1325. if (i__ - k + *ka < *n && i__ - k > 1) {
  1326. /* generate rotation to annihilate a(i-k+ka+1,i) */
  1327. zlartg_(&ab[ka1 - k + i__ * ab_dim1], &ra1, &rwork[i__ -
  1328. k + *ka - m], &work[i__ - k + *ka - m], &ra);
  1329. /* create nonzero element a(i-k+ka+1,i-k) outside the */
  1330. /* band and store it in WORK(i-k) */
  1331. i__3 = k + 1 + (i__ - k) * bb_dim1;
  1332. z__2.r = -bb[i__3].r, z__2.i = -bb[i__3].i;
  1333. z__1.r = z__2.r * ra1.r - z__2.i * ra1.i, z__1.i = z__2.r
  1334. * ra1.i + z__2.i * ra1.r;
  1335. t.r = z__1.r, t.i = z__1.i;
  1336. i__3 = i__ - k;
  1337. i__1 = i__ - k + *ka - m;
  1338. z__2.r = rwork[i__1] * t.r, z__2.i = rwork[i__1] * t.i;
  1339. d_cnjg(&z__4, &work[i__ - k + *ka - m]);
  1340. i__2 = ka1 + (i__ - k) * ab_dim1;
  1341. z__3.r = z__4.r * ab[i__2].r - z__4.i * ab[i__2].i,
  1342. z__3.i = z__4.r * ab[i__2].i + z__4.i * ab[i__2]
  1343. .r;
  1344. z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
  1345. work[i__3].r = z__1.r, work[i__3].i = z__1.i;
  1346. i__3 = ka1 + (i__ - k) * ab_dim1;
  1347. i__1 = i__ - k + *ka - m;
  1348. z__2.r = work[i__1].r * t.r - work[i__1].i * t.i, z__2.i =
  1349. work[i__1].r * t.i + work[i__1].i * t.r;
  1350. i__2 = i__ - k + *ka - m;
  1351. i__5 = ka1 + (i__ - k) * ab_dim1;
  1352. z__3.r = rwork[i__2] * ab[i__5].r, z__3.i = rwork[i__2] *
  1353. ab[i__5].i;
  1354. z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
  1355. ab[i__3].r = z__1.r, ab[i__3].i = z__1.i;
  1356. ra1.r = ra.r, ra1.i = ra.i;
  1357. }
  1358. }
  1359. /* Computing MAX */
  1360. i__3 = 1, i__1 = k - i0 + 2;
  1361. j2 = i__ - k - 1 + f2cmax(i__3,i__1) * ka1;
  1362. nr = (*n - j2 + *ka) / ka1;
  1363. j1 = j2 + (nr - 1) * ka1;
  1364. if (update) {
  1365. /* Computing MAX */
  1366. i__3 = j2, i__1 = i__ + (*ka << 1) - k + 1;
  1367. j2t = f2cmax(i__3,i__1);
  1368. } else {
  1369. j2t = j2;
  1370. }
  1371. nrt = (*n - j2t + *ka) / ka1;
  1372. i__3 = j1;
  1373. i__1 = ka1;
  1374. for (j = j2t; i__1 < 0 ? j >= i__3 : j <= i__3; j += i__1) {
  1375. /* create nonzero element a(j+1,j-ka) outside the band */
  1376. /* and store it in WORK(j-m) */
  1377. i__2 = j - m;
  1378. i__5 = j - m;
  1379. i__6 = ka1 + (j - *ka + 1) * ab_dim1;
  1380. z__1.r = work[i__5].r * ab[i__6].r - work[i__5].i * ab[i__6]
  1381. .i, z__1.i = work[i__5].r * ab[i__6].i + work[i__5].i
  1382. * ab[i__6].r;
  1383. work[i__2].r = z__1.r, work[i__2].i = z__1.i;
  1384. i__2 = ka1 + (j - *ka + 1) * ab_dim1;
  1385. i__5 = j - m;
  1386. i__6 = ka1 + (j - *ka + 1) * ab_dim1;
  1387. z__1.r = rwork[i__5] * ab[i__6].r, z__1.i = rwork[i__5] * ab[
  1388. i__6].i;
  1389. ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
  1390. /* L320: */
  1391. }
  1392. /* generate rotations in 1st set to annihilate elements which */
  1393. /* have been created outside the band */
  1394. if (nrt > 0) {
  1395. zlargv_(&nrt, &ab[ka1 + (j2t - *ka) * ab_dim1], &inca, &work[
  1396. j2t - m], &ka1, &rwork[j2t - m], &ka1);
  1397. }
  1398. if (nr > 0) {
  1399. /* apply rotations in 1st set from the left */
  1400. i__1 = *ka - 1;
  1401. for (l = 1; l <= i__1; ++l) {
  1402. zlartv_(&nr, &ab[l + 1 + (j2 - l) * ab_dim1], &inca, &ab[
  1403. l + 2 + (j2 - l) * ab_dim1], &inca, &rwork[j2 - m]
  1404. , &work[j2 - m], &ka1);
  1405. /* L330: */
  1406. }
  1407. /* apply rotations in 1st set from both sides to diagonal */
  1408. /* blocks */
  1409. zlar2v_(&nr, &ab[j2 * ab_dim1 + 1], &ab[(j2 + 1) * ab_dim1 +
  1410. 1], &ab[j2 * ab_dim1 + 2], &inca, &rwork[j2 - m], &
  1411. work[j2 - m], &ka1);
  1412. zlacgv_(&nr, &work[j2 - m], &ka1);
  1413. }
  1414. /* start applying rotations in 1st set from the right */
  1415. i__1 = *kb - k + 1;
  1416. for (l = *ka - 1; l >= i__1; --l) {
  1417. nrt = (*n - j2 + l) / ka1;
  1418. if (nrt > 0) {
  1419. zlartv_(&nrt, &ab[ka1 - l + 1 + j2 * ab_dim1], &inca, &ab[
  1420. ka1 - l + (j2 + 1) * ab_dim1], &inca, &rwork[j2 -
  1421. m], &work[j2 - m], &ka1);
  1422. }
  1423. /* L340: */
  1424. }
  1425. if (wantx) {
  1426. /* post-multiply X by product of rotations in 1st set */
  1427. i__1 = j1;
  1428. i__3 = ka1;
  1429. for (j = j2; i__3 < 0 ? j >= i__1 : j <= i__1; j += i__3) {
  1430. i__2 = *n - m;
  1431. zrot_(&i__2, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
  1432. + 1) * x_dim1], &c__1, &rwork[j - m], &work[j - m]
  1433. );
  1434. /* L350: */
  1435. }
  1436. }
  1437. /* L360: */
  1438. }
  1439. if (update) {
  1440. if (i2 <= *n && kbt > 0) {
  1441. /* create nonzero element a(i-kbt+ka+1,i-kbt) outside the */
  1442. /* band and store it in WORK(i-kbt) */
  1443. i__4 = i__ - kbt;
  1444. i__3 = kbt + 1 + (i__ - kbt) * bb_dim1;
  1445. z__2.r = -bb[i__3].r, z__2.i = -bb[i__3].i;
  1446. z__1.r = z__2.r * ra1.r - z__2.i * ra1.i, z__1.i = z__2.r *
  1447. ra1.i + z__2.i * ra1.r;
  1448. work[i__4].r = z__1.r, work[i__4].i = z__1.i;
  1449. }
  1450. }
  1451. for (k = *kb; k >= 1; --k) {
  1452. if (update) {
  1453. /* Computing MAX */
  1454. i__4 = 2, i__3 = k - i0 + 1;
  1455. j2 = i__ - k - 1 + f2cmax(i__4,i__3) * ka1;
  1456. } else {
  1457. /* Computing MAX */
  1458. i__4 = 1, i__3 = k - i0 + 1;
  1459. j2 = i__ - k - 1 + f2cmax(i__4,i__3) * ka1;
  1460. }
  1461. /* finish applying rotations in 2nd set from the right */
  1462. for (l = *kb - k; l >= 1; --l) {
  1463. nrt = (*n - j2 + *ka + l) / ka1;
  1464. if (nrt > 0) {
  1465. zlartv_(&nrt, &ab[ka1 - l + 1 + (j2 - *ka) * ab_dim1], &
  1466. inca, &ab[ka1 - l + (j2 - *ka + 1) * ab_dim1], &
  1467. inca, &rwork[j2 - *ka], &work[j2 - *ka], &ka1);
  1468. }
  1469. /* L370: */
  1470. }
  1471. nr = (*n - j2 + *ka) / ka1;
  1472. j1 = j2 + (nr - 1) * ka1;
  1473. i__4 = j2;
  1474. i__3 = -ka1;
  1475. for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  1476. i__1 = j;
  1477. i__2 = j - *ka;
  1478. work[i__1].r = work[i__2].r, work[i__1].i = work[i__2].i;
  1479. rwork[j] = rwork[j - *ka];
  1480. /* L380: */
  1481. }
  1482. i__3 = j1;
  1483. i__4 = ka1;
  1484. for (j = j2; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
  1485. /* create nonzero element a(j+1,j-ka) outside the band */
  1486. /* and store it in WORK(j) */
  1487. i__1 = j;
  1488. i__2 = j;
  1489. i__5 = ka1 + (j - *ka + 1) * ab_dim1;
  1490. z__1.r = work[i__2].r * ab[i__5].r - work[i__2].i * ab[i__5]
  1491. .i, z__1.i = work[i__2].r * ab[i__5].i + work[i__2].i
  1492. * ab[i__5].r;
  1493. work[i__1].r = z__1.r, work[i__1].i = z__1.i;
  1494. i__1 = ka1 + (j - *ka + 1) * ab_dim1;
  1495. i__2 = j;
  1496. i__5 = ka1 + (j - *ka + 1) * ab_dim1;
  1497. z__1.r = rwork[i__2] * ab[i__5].r, z__1.i = rwork[i__2] * ab[
  1498. i__5].i;
  1499. ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
  1500. /* L390: */
  1501. }
  1502. if (update) {
  1503. if (i__ - k < *n - *ka && k <= kbt) {
  1504. i__4 = i__ - k + *ka;
  1505. i__3 = i__ - k;
  1506. work[i__4].r = work[i__3].r, work[i__4].i = work[i__3].i;
  1507. }
  1508. }
  1509. /* L400: */
  1510. }
  1511. for (k = *kb; k >= 1; --k) {
  1512. /* Computing MAX */
  1513. i__4 = 1, i__3 = k - i0 + 1;
  1514. j2 = i__ - k - 1 + f2cmax(i__4,i__3) * ka1;
  1515. nr = (*n - j2 + *ka) / ka1;
  1516. j1 = j2 + (nr - 1) * ka1;
  1517. if (nr > 0) {
  1518. /* generate rotations in 2nd set to annihilate elements */
  1519. /* which have been created outside the band */
  1520. zlargv_(&nr, &ab[ka1 + (j2 - *ka) * ab_dim1], &inca, &work[j2]
  1521. , &ka1, &rwork[j2], &ka1);
  1522. /* apply rotations in 2nd set from the left */
  1523. i__4 = *ka - 1;
  1524. for (l = 1; l <= i__4; ++l) {
  1525. zlartv_(&nr, &ab[l + 1 + (j2 - l) * ab_dim1], &inca, &ab[
  1526. l + 2 + (j2 - l) * ab_dim1], &inca, &rwork[j2], &
  1527. work[j2], &ka1);
  1528. /* L410: */
  1529. }
  1530. /* apply rotations in 2nd set from both sides to diagonal */
  1531. /* blocks */
  1532. zlar2v_(&nr, &ab[j2 * ab_dim1 + 1], &ab[(j2 + 1) * ab_dim1 +
  1533. 1], &ab[j2 * ab_dim1 + 2], &inca, &rwork[j2], &work[
  1534. j2], &ka1);
  1535. zlacgv_(&nr, &work[j2], &ka1);
  1536. }
  1537. /* start applying rotations in 2nd set from the right */
  1538. i__4 = *kb - k + 1;
  1539. for (l = *ka - 1; l >= i__4; --l) {
  1540. nrt = (*n - j2 + l) / ka1;
  1541. if (nrt > 0) {
  1542. zlartv_(&nrt, &ab[ka1 - l + 1 + j2 * ab_dim1], &inca, &ab[
  1543. ka1 - l + (j2 + 1) * ab_dim1], &inca, &rwork[j2],
  1544. &work[j2], &ka1);
  1545. }
  1546. /* L420: */
  1547. }
  1548. if (wantx) {
  1549. /* post-multiply X by product of rotations in 2nd set */
  1550. i__4 = j1;
  1551. i__3 = ka1;
  1552. for (j = j2; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  1553. i__1 = *n - m;
  1554. zrot_(&i__1, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
  1555. + 1) * x_dim1], &c__1, &rwork[j], &work[j]);
  1556. /* L430: */
  1557. }
  1558. }
  1559. /* L440: */
  1560. }
  1561. i__3 = *kb - 1;
  1562. for (k = 1; k <= i__3; ++k) {
  1563. /* Computing MAX */
  1564. i__4 = 1, i__1 = k - i0 + 2;
  1565. j2 = i__ - k - 1 + f2cmax(i__4,i__1) * ka1;
  1566. /* finish applying rotations in 1st set from the right */
  1567. for (l = *kb - k; l >= 1; --l) {
  1568. nrt = (*n - j2 + l) / ka1;
  1569. if (nrt > 0) {
  1570. zlartv_(&nrt, &ab[ka1 - l + 1 + j2 * ab_dim1], &inca, &ab[
  1571. ka1 - l + (j2 + 1) * ab_dim1], &inca, &rwork[j2 -
  1572. m], &work[j2 - m], &ka1);
  1573. }
  1574. /* L450: */
  1575. }
  1576. /* L460: */
  1577. }
  1578. if (*kb > 1) {
  1579. i__3 = j2 + *ka;
  1580. for (j = *n - 1; j >= i__3; --j) {
  1581. rwork[j - m] = rwork[j - *ka - m];
  1582. i__4 = j - m;
  1583. i__1 = j - *ka - m;
  1584. work[i__4].r = work[i__1].r, work[i__4].i = work[i__1].i;
  1585. /* L470: */
  1586. }
  1587. }
  1588. }
  1589. goto L10;
  1590. L480:
  1591. /* **************************** Phase 2 ***************************** */
  1592. /* The logical structure of this phase is: */
  1593. /* UPDATE = .TRUE. */
  1594. /* DO I = 1, M */
  1595. /* use S(i) to update A and create a new bulge */
  1596. /* apply rotations to push all bulges KA positions upward */
  1597. /* END DO */
  1598. /* UPDATE = .FALSE. */
  1599. /* DO I = M - KA - 1, 2, -1 */
  1600. /* apply rotations to push all bulges KA positions upward */
  1601. /* END DO */
  1602. /* To avoid duplicating code, the two loops are merged. */
  1603. update = TRUE_;
  1604. i__ = 0;
  1605. L490:
  1606. if (update) {
  1607. ++i__;
  1608. /* Computing MIN */
  1609. i__3 = *kb, i__4 = m - i__;
  1610. kbt = f2cmin(i__3,i__4);
  1611. i0 = i__ + 1;
  1612. /* Computing MAX */
  1613. i__3 = 1, i__4 = i__ - *ka;
  1614. i1 = f2cmax(i__3,i__4);
  1615. i2 = i__ + kbt - ka1;
  1616. if (i__ > m) {
  1617. update = FALSE_;
  1618. --i__;
  1619. i0 = m + 1;
  1620. if (*ka == 0) {
  1621. return 0;
  1622. }
  1623. goto L490;
  1624. }
  1625. } else {
  1626. i__ -= *ka;
  1627. if (i__ < 2) {
  1628. return 0;
  1629. }
  1630. }
  1631. if (i__ < m - kbt) {
  1632. nx = m;
  1633. } else {
  1634. nx = *n;
  1635. }
  1636. if (upper) {
  1637. /* Transform A, working with the upper triangle */
  1638. if (update) {
  1639. /* Form inv(S(i))**H * A * inv(S(i)) */
  1640. i__3 = kb1 + i__ * bb_dim1;
  1641. bii = bb[i__3].r;
  1642. i__3 = ka1 + i__ * ab_dim1;
  1643. i__4 = ka1 + i__ * ab_dim1;
  1644. d__1 = ab[i__4].r / bii / bii;
  1645. ab[i__3].r = d__1, ab[i__3].i = 0.;
  1646. i__3 = i__ - 1;
  1647. for (j = i1; j <= i__3; ++j) {
  1648. i__4 = j - i__ + ka1 + i__ * ab_dim1;
  1649. i__1 = j - i__ + ka1 + i__ * ab_dim1;
  1650. z__1.r = ab[i__1].r / bii, z__1.i = ab[i__1].i / bii;
  1651. ab[i__4].r = z__1.r, ab[i__4].i = z__1.i;
  1652. /* L500: */
  1653. }
  1654. /* Computing MIN */
  1655. i__4 = *n, i__1 = i__ + *ka;
  1656. i__3 = f2cmin(i__4,i__1);
  1657. for (j = i__ + 1; j <= i__3; ++j) {
  1658. i__4 = i__ - j + ka1 + j * ab_dim1;
  1659. i__1 = i__ - j + ka1 + j * ab_dim1;
  1660. z__1.r = ab[i__1].r / bii, z__1.i = ab[i__1].i / bii;
  1661. ab[i__4].r = z__1.r, ab[i__4].i = z__1.i;
  1662. /* L510: */
  1663. }
  1664. i__3 = i__ + kbt;
  1665. for (k = i__ + 1; k <= i__3; ++k) {
  1666. i__4 = i__ + kbt;
  1667. for (j = k; j <= i__4; ++j) {
  1668. i__1 = k - j + ka1 + j * ab_dim1;
  1669. i__2 = k - j + ka1 + j * ab_dim1;
  1670. i__5 = i__ - j + kb1 + j * bb_dim1;
  1671. d_cnjg(&z__5, &ab[i__ - k + ka1 + k * ab_dim1]);
  1672. z__4.r = bb[i__5].r * z__5.r - bb[i__5].i * z__5.i,
  1673. z__4.i = bb[i__5].r * z__5.i + bb[i__5].i *
  1674. z__5.r;
  1675. z__3.r = ab[i__2].r - z__4.r, z__3.i = ab[i__2].i -
  1676. z__4.i;
  1677. d_cnjg(&z__7, &bb[i__ - k + kb1 + k * bb_dim1]);
  1678. i__6 = i__ - j + ka1 + j * ab_dim1;
  1679. z__6.r = z__7.r * ab[i__6].r - z__7.i * ab[i__6].i,
  1680. z__6.i = z__7.r * ab[i__6].i + z__7.i * ab[i__6]
  1681. .r;
  1682. z__2.r = z__3.r - z__6.r, z__2.i = z__3.i - z__6.i;
  1683. i__7 = ka1 + i__ * ab_dim1;
  1684. d__1 = ab[i__7].r;
  1685. i__8 = i__ - j + kb1 + j * bb_dim1;
  1686. z__9.r = d__1 * bb[i__8].r, z__9.i = d__1 * bb[i__8].i;
  1687. d_cnjg(&z__10, &bb[i__ - k + kb1 + k * bb_dim1]);
  1688. z__8.r = z__9.r * z__10.r - z__9.i * z__10.i, z__8.i =
  1689. z__9.r * z__10.i + z__9.i * z__10.r;
  1690. z__1.r = z__2.r + z__8.r, z__1.i = z__2.i + z__8.i;
  1691. ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
  1692. /* L520: */
  1693. }
  1694. /* Computing MIN */
  1695. i__1 = *n, i__2 = i__ + *ka;
  1696. i__4 = f2cmin(i__1,i__2);
  1697. for (j = i__ + kbt + 1; j <= i__4; ++j) {
  1698. i__1 = k - j + ka1 + j * ab_dim1;
  1699. i__2 = k - j + ka1 + j * ab_dim1;
  1700. d_cnjg(&z__3, &bb[i__ - k + kb1 + k * bb_dim1]);
  1701. i__5 = i__ - j + ka1 + j * ab_dim1;
  1702. z__2.r = z__3.r * ab[i__5].r - z__3.i * ab[i__5].i,
  1703. z__2.i = z__3.r * ab[i__5].i + z__3.i * ab[i__5]
  1704. .r;
  1705. z__1.r = ab[i__2].r - z__2.r, z__1.i = ab[i__2].i -
  1706. z__2.i;
  1707. ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
  1708. /* L530: */
  1709. }
  1710. /* L540: */
  1711. }
  1712. i__3 = i__;
  1713. for (j = i1; j <= i__3; ++j) {
  1714. /* Computing MIN */
  1715. i__1 = j + *ka, i__2 = i__ + kbt;
  1716. i__4 = f2cmin(i__1,i__2);
  1717. for (k = i__ + 1; k <= i__4; ++k) {
  1718. i__1 = j - k + ka1 + k * ab_dim1;
  1719. i__2 = j - k + ka1 + k * ab_dim1;
  1720. i__5 = i__ - k + kb1 + k * bb_dim1;
  1721. i__6 = j - i__ + ka1 + i__ * ab_dim1;
  1722. z__2.r = bb[i__5].r * ab[i__6].r - bb[i__5].i * ab[i__6]
  1723. .i, z__2.i = bb[i__5].r * ab[i__6].i + bb[i__5].i
  1724. * ab[i__6].r;
  1725. z__1.r = ab[i__2].r - z__2.r, z__1.i = ab[i__2].i -
  1726. z__2.i;
  1727. ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
  1728. /* L550: */
  1729. }
  1730. /* L560: */
  1731. }
  1732. if (wantx) {
  1733. /* post-multiply X by inv(S(i)) */
  1734. d__1 = 1. / bii;
  1735. zdscal_(&nx, &d__1, &x[i__ * x_dim1 + 1], &c__1);
  1736. if (kbt > 0) {
  1737. z__1.r = -1., z__1.i = 0.;
  1738. i__3 = *ldbb - 1;
  1739. zgeru_(&nx, &kbt, &z__1, &x[i__ * x_dim1 + 1], &c__1, &bb[
  1740. *kb + (i__ + 1) * bb_dim1], &i__3, &x[(i__ + 1) *
  1741. x_dim1 + 1], ldx);
  1742. }
  1743. }
  1744. /* store a(i1,i) in RA1 for use in next loop over K */
  1745. i__3 = i1 - i__ + ka1 + i__ * ab_dim1;
  1746. ra1.r = ab[i__3].r, ra1.i = ab[i__3].i;
  1747. }
  1748. /* Generate and apply vectors of rotations to chase all the */
  1749. /* existing bulges KA positions up toward the top of the band */
  1750. i__3 = *kb - 1;
  1751. for (k = 1; k <= i__3; ++k) {
  1752. if (update) {
  1753. /* Determine the rotations which would annihilate the bulge */
  1754. /* which has in theory just been created */
  1755. if (i__ + k - ka1 > 0 && i__ + k < m) {
  1756. /* generate rotation to annihilate a(i+k-ka-1,i) */
  1757. zlartg_(&ab[k + 1 + i__ * ab_dim1], &ra1, &rwork[i__ + k
  1758. - *ka], &work[i__ + k - *ka], &ra);
  1759. /* create nonzero element a(i+k-ka-1,i+k) outside the */
  1760. /* band and store it in WORK(m-kb+i+k) */
  1761. i__4 = kb1 - k + (i__ + k) * bb_dim1;
  1762. z__2.r = -bb[i__4].r, z__2.i = -bb[i__4].i;
  1763. z__1.r = z__2.r * ra1.r - z__2.i * ra1.i, z__1.i = z__2.r
  1764. * ra1.i + z__2.i * ra1.r;
  1765. t.r = z__1.r, t.i = z__1.i;
  1766. i__4 = m - *kb + i__ + k;
  1767. i__1 = i__ + k - *ka;
  1768. z__2.r = rwork[i__1] * t.r, z__2.i = rwork[i__1] * t.i;
  1769. d_cnjg(&z__4, &work[i__ + k - *ka]);
  1770. i__2 = (i__ + k) * ab_dim1 + 1;
  1771. z__3.r = z__4.r * ab[i__2].r - z__4.i * ab[i__2].i,
  1772. z__3.i = z__4.r * ab[i__2].i + z__4.i * ab[i__2]
  1773. .r;
  1774. z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
  1775. work[i__4].r = z__1.r, work[i__4].i = z__1.i;
  1776. i__4 = (i__ + k) * ab_dim1 + 1;
  1777. i__1 = i__ + k - *ka;
  1778. z__2.r = work[i__1].r * t.r - work[i__1].i * t.i, z__2.i =
  1779. work[i__1].r * t.i + work[i__1].i * t.r;
  1780. i__2 = i__ + k - *ka;
  1781. i__5 = (i__ + k) * ab_dim1 + 1;
  1782. z__3.r = rwork[i__2] * ab[i__5].r, z__3.i = rwork[i__2] *
  1783. ab[i__5].i;
  1784. z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
  1785. ab[i__4].r = z__1.r, ab[i__4].i = z__1.i;
  1786. ra1.r = ra.r, ra1.i = ra.i;
  1787. }
  1788. }
  1789. /* Computing MAX */
  1790. i__4 = 1, i__1 = k + i0 - m + 1;
  1791. j2 = i__ + k + 1 - f2cmax(i__4,i__1) * ka1;
  1792. nr = (j2 + *ka - 1) / ka1;
  1793. j1 = j2 - (nr - 1) * ka1;
  1794. if (update) {
  1795. /* Computing MIN */
  1796. i__4 = j2, i__1 = i__ - (*ka << 1) + k - 1;
  1797. j2t = f2cmin(i__4,i__1);
  1798. } else {
  1799. j2t = j2;
  1800. }
  1801. nrt = (j2t + *ka - 1) / ka1;
  1802. i__4 = j2t;
  1803. i__1 = ka1;
  1804. for (j = j1; i__1 < 0 ? j >= i__4 : j <= i__4; j += i__1) {
  1805. /* create nonzero element a(j-1,j+ka) outside the band */
  1806. /* and store it in WORK(j) */
  1807. i__2 = j;
  1808. i__5 = j;
  1809. i__6 = (j + *ka - 1) * ab_dim1 + 1;
  1810. z__1.r = work[i__5].r * ab[i__6].r - work[i__5].i * ab[i__6]
  1811. .i, z__1.i = work[i__5].r * ab[i__6].i + work[i__5].i
  1812. * ab[i__6].r;
  1813. work[i__2].r = z__1.r, work[i__2].i = z__1.i;
  1814. i__2 = (j + *ka - 1) * ab_dim1 + 1;
  1815. i__5 = j;
  1816. i__6 = (j + *ka - 1) * ab_dim1 + 1;
  1817. z__1.r = rwork[i__5] * ab[i__6].r, z__1.i = rwork[i__5] * ab[
  1818. i__6].i;
  1819. ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
  1820. /* L570: */
  1821. }
  1822. /* generate rotations in 1st set to annihilate elements which */
  1823. /* have been created outside the band */
  1824. if (nrt > 0) {
  1825. zlargv_(&nrt, &ab[(j1 + *ka) * ab_dim1 + 1], &inca, &work[j1],
  1826. &ka1, &rwork[j1], &ka1);
  1827. }
  1828. if (nr > 0) {
  1829. /* apply rotations in 1st set from the left */
  1830. i__1 = *ka - 1;
  1831. for (l = 1; l <= i__1; ++l) {
  1832. zlartv_(&nr, &ab[ka1 - l + (j1 + l) * ab_dim1], &inca, &
  1833. ab[*ka - l + (j1 + l) * ab_dim1], &inca, &rwork[
  1834. j1], &work[j1], &ka1);
  1835. /* L580: */
  1836. }
  1837. /* apply rotations in 1st set from both sides to diagonal */
  1838. /* blocks */
  1839. zlar2v_(&nr, &ab[ka1 + j1 * ab_dim1], &ab[ka1 + (j1 - 1) *
  1840. ab_dim1], &ab[*ka + j1 * ab_dim1], &inca, &rwork[j1],
  1841. &work[j1], &ka1);
  1842. zlacgv_(&nr, &work[j1], &ka1);
  1843. }
  1844. /* start applying rotations in 1st set from the right */
  1845. i__1 = *kb - k + 1;
  1846. for (l = *ka - 1; l >= i__1; --l) {
  1847. nrt = (j2 + l - 1) / ka1;
  1848. j1t = j2 - (nrt - 1) * ka1;
  1849. if (nrt > 0) {
  1850. zlartv_(&nrt, &ab[l + j1t * ab_dim1], &inca, &ab[l + 1 + (
  1851. j1t - 1) * ab_dim1], &inca, &rwork[j1t], &work[
  1852. j1t], &ka1);
  1853. }
  1854. /* L590: */
  1855. }
  1856. if (wantx) {
  1857. /* post-multiply X by product of rotations in 1st set */
  1858. i__1 = j2;
  1859. i__4 = ka1;
  1860. for (j = j1; i__4 < 0 ? j >= i__1 : j <= i__1; j += i__4) {
  1861. zrot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
  1862. + 1], &c__1, &rwork[j], &work[j]);
  1863. /* L600: */
  1864. }
  1865. }
  1866. /* L610: */
  1867. }
  1868. if (update) {
  1869. if (i2 > 0 && kbt > 0) {
  1870. /* create nonzero element a(i+kbt-ka-1,i+kbt) outside the */
  1871. /* band and store it in WORK(m-kb+i+kbt) */
  1872. i__3 = m - *kb + i__ + kbt;
  1873. i__4 = kb1 - kbt + (i__ + kbt) * bb_dim1;
  1874. z__2.r = -bb[i__4].r, z__2.i = -bb[i__4].i;
  1875. z__1.r = z__2.r * ra1.r - z__2.i * ra1.i, z__1.i = z__2.r *
  1876. ra1.i + z__2.i * ra1.r;
  1877. work[i__3].r = z__1.r, work[i__3].i = z__1.i;
  1878. }
  1879. }
  1880. for (k = *kb; k >= 1; --k) {
  1881. if (update) {
  1882. /* Computing MAX */
  1883. i__3 = 2, i__4 = k + i0 - m;
  1884. j2 = i__ + k + 1 - f2cmax(i__3,i__4) * ka1;
  1885. } else {
  1886. /* Computing MAX */
  1887. i__3 = 1, i__4 = k + i0 - m;
  1888. j2 = i__ + k + 1 - f2cmax(i__3,i__4) * ka1;
  1889. }
  1890. /* finish applying rotations in 2nd set from the right */
  1891. for (l = *kb - k; l >= 1; --l) {
  1892. nrt = (j2 + *ka + l - 1) / ka1;
  1893. j1t = j2 - (nrt - 1) * ka1;
  1894. if (nrt > 0) {
  1895. zlartv_(&nrt, &ab[l + (j1t + *ka) * ab_dim1], &inca, &ab[
  1896. l + 1 + (j1t + *ka - 1) * ab_dim1], &inca, &rwork[
  1897. m - *kb + j1t + *ka], &work[m - *kb + j1t + *ka],
  1898. &ka1);
  1899. }
  1900. /* L620: */
  1901. }
  1902. nr = (j2 + *ka - 1) / ka1;
  1903. j1 = j2 - (nr - 1) * ka1;
  1904. i__3 = j2;
  1905. i__4 = ka1;
  1906. for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
  1907. i__1 = m - *kb + j;
  1908. i__2 = m - *kb + j + *ka;
  1909. work[i__1].r = work[i__2].r, work[i__1].i = work[i__2].i;
  1910. rwork[m - *kb + j] = rwork[m - *kb + j + *ka];
  1911. /* L630: */
  1912. }
  1913. i__4 = j2;
  1914. i__3 = ka1;
  1915. for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  1916. /* create nonzero element a(j-1,j+ka) outside the band */
  1917. /* and store it in WORK(m-kb+j) */
  1918. i__1 = m - *kb + j;
  1919. i__2 = m - *kb + j;
  1920. i__5 = (j + *ka - 1) * ab_dim1 + 1;
  1921. z__1.r = work[i__2].r * ab[i__5].r - work[i__2].i * ab[i__5]
  1922. .i, z__1.i = work[i__2].r * ab[i__5].i + work[i__2].i
  1923. * ab[i__5].r;
  1924. work[i__1].r = z__1.r, work[i__1].i = z__1.i;
  1925. i__1 = (j + *ka - 1) * ab_dim1 + 1;
  1926. i__2 = m - *kb + j;
  1927. i__5 = (j + *ka - 1) * ab_dim1 + 1;
  1928. z__1.r = rwork[i__2] * ab[i__5].r, z__1.i = rwork[i__2] * ab[
  1929. i__5].i;
  1930. ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
  1931. /* L640: */
  1932. }
  1933. if (update) {
  1934. if (i__ + k > ka1 && k <= kbt) {
  1935. i__3 = m - *kb + i__ + k - *ka;
  1936. i__4 = m - *kb + i__ + k;
  1937. work[i__3].r = work[i__4].r, work[i__3].i = work[i__4].i;
  1938. }
  1939. }
  1940. /* L650: */
  1941. }
  1942. for (k = *kb; k >= 1; --k) {
  1943. /* Computing MAX */
  1944. i__3 = 1, i__4 = k + i0 - m;
  1945. j2 = i__ + k + 1 - f2cmax(i__3,i__4) * ka1;
  1946. nr = (j2 + *ka - 1) / ka1;
  1947. j1 = j2 - (nr - 1) * ka1;
  1948. if (nr > 0) {
  1949. /* generate rotations in 2nd set to annihilate elements */
  1950. /* which have been created outside the band */
  1951. zlargv_(&nr, &ab[(j1 + *ka) * ab_dim1 + 1], &inca, &work[m - *
  1952. kb + j1], &ka1, &rwork[m - *kb + j1], &ka1);
  1953. /* apply rotations in 2nd set from the left */
  1954. i__3 = *ka - 1;
  1955. for (l = 1; l <= i__3; ++l) {
  1956. zlartv_(&nr, &ab[ka1 - l + (j1 + l) * ab_dim1], &inca, &
  1957. ab[*ka - l + (j1 + l) * ab_dim1], &inca, &rwork[m
  1958. - *kb + j1], &work[m - *kb + j1], &ka1);
  1959. /* L660: */
  1960. }
  1961. /* apply rotations in 2nd set from both sides to diagonal */
  1962. /* blocks */
  1963. zlar2v_(&nr, &ab[ka1 + j1 * ab_dim1], &ab[ka1 + (j1 - 1) *
  1964. ab_dim1], &ab[*ka + j1 * ab_dim1], &inca, &rwork[m - *
  1965. kb + j1], &work[m - *kb + j1], &ka1);
  1966. zlacgv_(&nr, &work[m - *kb + j1], &ka1);
  1967. }
  1968. /* start applying rotations in 2nd set from the right */
  1969. i__3 = *kb - k + 1;
  1970. for (l = *ka - 1; l >= i__3; --l) {
  1971. nrt = (j2 + l - 1) / ka1;
  1972. j1t = j2 - (nrt - 1) * ka1;
  1973. if (nrt > 0) {
  1974. zlartv_(&nrt, &ab[l + j1t * ab_dim1], &inca, &ab[l + 1 + (
  1975. j1t - 1) * ab_dim1], &inca, &rwork[m - *kb + j1t],
  1976. &work[m - *kb + j1t], &ka1);
  1977. }
  1978. /* L670: */
  1979. }
  1980. if (wantx) {
  1981. /* post-multiply X by product of rotations in 2nd set */
  1982. i__3 = j2;
  1983. i__4 = ka1;
  1984. for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
  1985. zrot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
  1986. + 1], &c__1, &rwork[m - *kb + j], &work[m - *kb +
  1987. j]);
  1988. /* L680: */
  1989. }
  1990. }
  1991. /* L690: */
  1992. }
  1993. i__4 = *kb - 1;
  1994. for (k = 1; k <= i__4; ++k) {
  1995. /* Computing MAX */
  1996. i__3 = 1, i__1 = k + i0 - m + 1;
  1997. j2 = i__ + k + 1 - f2cmax(i__3,i__1) * ka1;
  1998. /* finish applying rotations in 1st set from the right */
  1999. for (l = *kb - k; l >= 1; --l) {
  2000. nrt = (j2 + l - 1) / ka1;
  2001. j1t = j2 - (nrt - 1) * ka1;
  2002. if (nrt > 0) {
  2003. zlartv_(&nrt, &ab[l + j1t * ab_dim1], &inca, &ab[l + 1 + (
  2004. j1t - 1) * ab_dim1], &inca, &rwork[j1t], &work[
  2005. j1t], &ka1);
  2006. }
  2007. /* L700: */
  2008. }
  2009. /* L710: */
  2010. }
  2011. if (*kb > 1) {
  2012. i__4 = i2 - *ka;
  2013. for (j = 2; j <= i__4; ++j) {
  2014. rwork[j] = rwork[j + *ka];
  2015. i__3 = j;
  2016. i__1 = j + *ka;
  2017. work[i__3].r = work[i__1].r, work[i__3].i = work[i__1].i;
  2018. /* L720: */
  2019. }
  2020. }
  2021. } else {
  2022. /* Transform A, working with the lower triangle */
  2023. if (update) {
  2024. /* Form inv(S(i))**H * A * inv(S(i)) */
  2025. i__4 = i__ * bb_dim1 + 1;
  2026. bii = bb[i__4].r;
  2027. i__4 = i__ * ab_dim1 + 1;
  2028. i__3 = i__ * ab_dim1 + 1;
  2029. d__1 = ab[i__3].r / bii / bii;
  2030. ab[i__4].r = d__1, ab[i__4].i = 0.;
  2031. i__4 = i__ - 1;
  2032. for (j = i1; j <= i__4; ++j) {
  2033. i__3 = i__ - j + 1 + j * ab_dim1;
  2034. i__1 = i__ - j + 1 + j * ab_dim1;
  2035. z__1.r = ab[i__1].r / bii, z__1.i = ab[i__1].i / bii;
  2036. ab[i__3].r = z__1.r, ab[i__3].i = z__1.i;
  2037. /* L730: */
  2038. }
  2039. /* Computing MIN */
  2040. i__3 = *n, i__1 = i__ + *ka;
  2041. i__4 = f2cmin(i__3,i__1);
  2042. for (j = i__ + 1; j <= i__4; ++j) {
  2043. i__3 = j - i__ + 1 + i__ * ab_dim1;
  2044. i__1 = j - i__ + 1 + i__ * ab_dim1;
  2045. z__1.r = ab[i__1].r / bii, z__1.i = ab[i__1].i / bii;
  2046. ab[i__3].r = z__1.r, ab[i__3].i = z__1.i;
  2047. /* L740: */
  2048. }
  2049. i__4 = i__ + kbt;
  2050. for (k = i__ + 1; k <= i__4; ++k) {
  2051. i__3 = i__ + kbt;
  2052. for (j = k; j <= i__3; ++j) {
  2053. i__1 = j - k + 1 + k * ab_dim1;
  2054. i__2 = j - k + 1 + k * ab_dim1;
  2055. i__5 = j - i__ + 1 + i__ * bb_dim1;
  2056. d_cnjg(&z__5, &ab[k - i__ + 1 + i__ * ab_dim1]);
  2057. z__4.r = bb[i__5].r * z__5.r - bb[i__5].i * z__5.i,
  2058. z__4.i = bb[i__5].r * z__5.i + bb[i__5].i *
  2059. z__5.r;
  2060. z__3.r = ab[i__2].r - z__4.r, z__3.i = ab[i__2].i -
  2061. z__4.i;
  2062. d_cnjg(&z__7, &bb[k - i__ + 1 + i__ * bb_dim1]);
  2063. i__6 = j - i__ + 1 + i__ * ab_dim1;
  2064. z__6.r = z__7.r * ab[i__6].r - z__7.i * ab[i__6].i,
  2065. z__6.i = z__7.r * ab[i__6].i + z__7.i * ab[i__6]
  2066. .r;
  2067. z__2.r = z__3.r - z__6.r, z__2.i = z__3.i - z__6.i;
  2068. i__7 = i__ * ab_dim1 + 1;
  2069. d__1 = ab[i__7].r;
  2070. i__8 = j - i__ + 1 + i__ * bb_dim1;
  2071. z__9.r = d__1 * bb[i__8].r, z__9.i = d__1 * bb[i__8].i;
  2072. d_cnjg(&z__10, &bb[k - i__ + 1 + i__ * bb_dim1]);
  2073. z__8.r = z__9.r * z__10.r - z__9.i * z__10.i, z__8.i =
  2074. z__9.r * z__10.i + z__9.i * z__10.r;
  2075. z__1.r = z__2.r + z__8.r, z__1.i = z__2.i + z__8.i;
  2076. ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
  2077. /* L750: */
  2078. }
  2079. /* Computing MIN */
  2080. i__1 = *n, i__2 = i__ + *ka;
  2081. i__3 = f2cmin(i__1,i__2);
  2082. for (j = i__ + kbt + 1; j <= i__3; ++j) {
  2083. i__1 = j - k + 1 + k * ab_dim1;
  2084. i__2 = j - k + 1 + k * ab_dim1;
  2085. d_cnjg(&z__3, &bb[k - i__ + 1 + i__ * bb_dim1]);
  2086. i__5 = j - i__ + 1 + i__ * ab_dim1;
  2087. z__2.r = z__3.r * ab[i__5].r - z__3.i * ab[i__5].i,
  2088. z__2.i = z__3.r * ab[i__5].i + z__3.i * ab[i__5]
  2089. .r;
  2090. z__1.r = ab[i__2].r - z__2.r, z__1.i = ab[i__2].i -
  2091. z__2.i;
  2092. ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
  2093. /* L760: */
  2094. }
  2095. /* L770: */
  2096. }
  2097. i__4 = i__;
  2098. for (j = i1; j <= i__4; ++j) {
  2099. /* Computing MIN */
  2100. i__1 = j + *ka, i__2 = i__ + kbt;
  2101. i__3 = f2cmin(i__1,i__2);
  2102. for (k = i__ + 1; k <= i__3; ++k) {
  2103. i__1 = k - j + 1 + j * ab_dim1;
  2104. i__2 = k - j + 1 + j * ab_dim1;
  2105. i__5 = k - i__ + 1 + i__ * bb_dim1;
  2106. i__6 = i__ - j + 1 + j * ab_dim1;
  2107. z__2.r = bb[i__5].r * ab[i__6].r - bb[i__5].i * ab[i__6]
  2108. .i, z__2.i = bb[i__5].r * ab[i__6].i + bb[i__5].i
  2109. * ab[i__6].r;
  2110. z__1.r = ab[i__2].r - z__2.r, z__1.i = ab[i__2].i -
  2111. z__2.i;
  2112. ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
  2113. /* L780: */
  2114. }
  2115. /* L790: */
  2116. }
  2117. if (wantx) {
  2118. /* post-multiply X by inv(S(i)) */
  2119. d__1 = 1. / bii;
  2120. zdscal_(&nx, &d__1, &x[i__ * x_dim1 + 1], &c__1);
  2121. if (kbt > 0) {
  2122. z__1.r = -1., z__1.i = 0.;
  2123. zgerc_(&nx, &kbt, &z__1, &x[i__ * x_dim1 + 1], &c__1, &bb[
  2124. i__ * bb_dim1 + 2], &c__1, &x[(i__ + 1) * x_dim1
  2125. + 1], ldx);
  2126. }
  2127. }
  2128. /* store a(i,i1) in RA1 for use in next loop over K */
  2129. i__4 = i__ - i1 + 1 + i1 * ab_dim1;
  2130. ra1.r = ab[i__4].r, ra1.i = ab[i__4].i;
  2131. }
  2132. /* Generate and apply vectors of rotations to chase all the */
  2133. /* existing bulges KA positions up toward the top of the band */
  2134. i__4 = *kb - 1;
  2135. for (k = 1; k <= i__4; ++k) {
  2136. if (update) {
  2137. /* Determine the rotations which would annihilate the bulge */
  2138. /* which has in theory just been created */
  2139. if (i__ + k - ka1 > 0 && i__ + k < m) {
  2140. /* generate rotation to annihilate a(i,i+k-ka-1) */
  2141. zlartg_(&ab[ka1 - k + (i__ + k - *ka) * ab_dim1], &ra1, &
  2142. rwork[i__ + k - *ka], &work[i__ + k - *ka], &ra);
  2143. /* create nonzero element a(i+k,i+k-ka-1) outside the */
  2144. /* band and store it in WORK(m-kb+i+k) */
  2145. i__3 = k + 1 + i__ * bb_dim1;
  2146. z__2.r = -bb[i__3].r, z__2.i = -bb[i__3].i;
  2147. z__1.r = z__2.r * ra1.r - z__2.i * ra1.i, z__1.i = z__2.r
  2148. * ra1.i + z__2.i * ra1.r;
  2149. t.r = z__1.r, t.i = z__1.i;
  2150. i__3 = m - *kb + i__ + k;
  2151. i__1 = i__ + k - *ka;
  2152. z__2.r = rwork[i__1] * t.r, z__2.i = rwork[i__1] * t.i;
  2153. d_cnjg(&z__4, &work[i__ + k - *ka]);
  2154. i__2 = ka1 + (i__ + k - *ka) * ab_dim1;
  2155. z__3.r = z__4.r * ab[i__2].r - z__4.i * ab[i__2].i,
  2156. z__3.i = z__4.r * ab[i__2].i + z__4.i * ab[i__2]
  2157. .r;
  2158. z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
  2159. work[i__3].r = z__1.r, work[i__3].i = z__1.i;
  2160. i__3 = ka1 + (i__ + k - *ka) * ab_dim1;
  2161. i__1 = i__ + k - *ka;
  2162. z__2.r = work[i__1].r * t.r - work[i__1].i * t.i, z__2.i =
  2163. work[i__1].r * t.i + work[i__1].i * t.r;
  2164. i__2 = i__ + k - *ka;
  2165. i__5 = ka1 + (i__ + k - *ka) * ab_dim1;
  2166. z__3.r = rwork[i__2] * ab[i__5].r, z__3.i = rwork[i__2] *
  2167. ab[i__5].i;
  2168. z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
  2169. ab[i__3].r = z__1.r, ab[i__3].i = z__1.i;
  2170. ra1.r = ra.r, ra1.i = ra.i;
  2171. }
  2172. }
  2173. /* Computing MAX */
  2174. i__3 = 1, i__1 = k + i0 - m + 1;
  2175. j2 = i__ + k + 1 - f2cmax(i__3,i__1) * ka1;
  2176. nr = (j2 + *ka - 1) / ka1;
  2177. j1 = j2 - (nr - 1) * ka1;
  2178. if (update) {
  2179. /* Computing MIN */
  2180. i__3 = j2, i__1 = i__ - (*ka << 1) + k - 1;
  2181. j2t = f2cmin(i__3,i__1);
  2182. } else {
  2183. j2t = j2;
  2184. }
  2185. nrt = (j2t + *ka - 1) / ka1;
  2186. i__3 = j2t;
  2187. i__1 = ka1;
  2188. for (j = j1; i__1 < 0 ? j >= i__3 : j <= i__3; j += i__1) {
  2189. /* create nonzero element a(j+ka,j-1) outside the band */
  2190. /* and store it in WORK(j) */
  2191. i__2 = j;
  2192. i__5 = j;
  2193. i__6 = ka1 + (j - 1) * ab_dim1;
  2194. z__1.r = work[i__5].r * ab[i__6].r - work[i__5].i * ab[i__6]
  2195. .i, z__1.i = work[i__5].r * ab[i__6].i + work[i__5].i
  2196. * ab[i__6].r;
  2197. work[i__2].r = z__1.r, work[i__2].i = z__1.i;
  2198. i__2 = ka1 + (j - 1) * ab_dim1;
  2199. i__5 = j;
  2200. i__6 = ka1 + (j - 1) * ab_dim1;
  2201. z__1.r = rwork[i__5] * ab[i__6].r, z__1.i = rwork[i__5] * ab[
  2202. i__6].i;
  2203. ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
  2204. /* L800: */
  2205. }
  2206. /* generate rotations in 1st set to annihilate elements which */
  2207. /* have been created outside the band */
  2208. if (nrt > 0) {
  2209. zlargv_(&nrt, &ab[ka1 + j1 * ab_dim1], &inca, &work[j1], &ka1,
  2210. &rwork[j1], &ka1);
  2211. }
  2212. if (nr > 0) {
  2213. /* apply rotations in 1st set from the right */
  2214. i__1 = *ka - 1;
  2215. for (l = 1; l <= i__1; ++l) {
  2216. zlartv_(&nr, &ab[l + 1 + j1 * ab_dim1], &inca, &ab[l + 2
  2217. + (j1 - 1) * ab_dim1], &inca, &rwork[j1], &work[
  2218. j1], &ka1);
  2219. /* L810: */
  2220. }
  2221. /* apply rotations in 1st set from both sides to diagonal */
  2222. /* blocks */
  2223. zlar2v_(&nr, &ab[j1 * ab_dim1 + 1], &ab[(j1 - 1) * ab_dim1 +
  2224. 1], &ab[(j1 - 1) * ab_dim1 + 2], &inca, &rwork[j1], &
  2225. work[j1], &ka1);
  2226. zlacgv_(&nr, &work[j1], &ka1);
  2227. }
  2228. /* start applying rotations in 1st set from the left */
  2229. i__1 = *kb - k + 1;
  2230. for (l = *ka - 1; l >= i__1; --l) {
  2231. nrt = (j2 + l - 1) / ka1;
  2232. j1t = j2 - (nrt - 1) * ka1;
  2233. if (nrt > 0) {
  2234. zlartv_(&nrt, &ab[ka1 - l + 1 + (j1t - ka1 + l) * ab_dim1]
  2235. , &inca, &ab[ka1 - l + (j1t - ka1 + l) * ab_dim1],
  2236. &inca, &rwork[j1t], &work[j1t], &ka1);
  2237. }
  2238. /* L820: */
  2239. }
  2240. if (wantx) {
  2241. /* post-multiply X by product of rotations in 1st set */
  2242. i__1 = j2;
  2243. i__3 = ka1;
  2244. for (j = j1; i__3 < 0 ? j >= i__1 : j <= i__1; j += i__3) {
  2245. d_cnjg(&z__1, &work[j]);
  2246. zrot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
  2247. + 1], &c__1, &rwork[j], &z__1);
  2248. /* L830: */
  2249. }
  2250. }
  2251. /* L840: */
  2252. }
  2253. if (update) {
  2254. if (i2 > 0 && kbt > 0) {
  2255. /* create nonzero element a(i+kbt,i+kbt-ka-1) outside the */
  2256. /* band and store it in WORK(m-kb+i+kbt) */
  2257. i__4 = m - *kb + i__ + kbt;
  2258. i__3 = kbt + 1 + i__ * bb_dim1;
  2259. z__2.r = -bb[i__3].r, z__2.i = -bb[i__3].i;
  2260. z__1.r = z__2.r * ra1.r - z__2.i * ra1.i, z__1.i = z__2.r *
  2261. ra1.i + z__2.i * ra1.r;
  2262. work[i__4].r = z__1.r, work[i__4].i = z__1.i;
  2263. }
  2264. }
  2265. for (k = *kb; k >= 1; --k) {
  2266. if (update) {
  2267. /* Computing MAX */
  2268. i__4 = 2, i__3 = k + i0 - m;
  2269. j2 = i__ + k + 1 - f2cmax(i__4,i__3) * ka1;
  2270. } else {
  2271. /* Computing MAX */
  2272. i__4 = 1, i__3 = k + i0 - m;
  2273. j2 = i__ + k + 1 - f2cmax(i__4,i__3) * ka1;
  2274. }
  2275. /* finish applying rotations in 2nd set from the left */
  2276. for (l = *kb - k; l >= 1; --l) {
  2277. nrt = (j2 + *ka + l - 1) / ka1;
  2278. j1t = j2 - (nrt - 1) * ka1;
  2279. if (nrt > 0) {
  2280. zlartv_(&nrt, &ab[ka1 - l + 1 + (j1t + l - 1) * ab_dim1],
  2281. &inca, &ab[ka1 - l + (j1t + l - 1) * ab_dim1], &
  2282. inca, &rwork[m - *kb + j1t + *ka], &work[m - *kb
  2283. + j1t + *ka], &ka1);
  2284. }
  2285. /* L850: */
  2286. }
  2287. nr = (j2 + *ka - 1) / ka1;
  2288. j1 = j2 - (nr - 1) * ka1;
  2289. i__4 = j2;
  2290. i__3 = ka1;
  2291. for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  2292. i__1 = m - *kb + j;
  2293. i__2 = m - *kb + j + *ka;
  2294. work[i__1].r = work[i__2].r, work[i__1].i = work[i__2].i;
  2295. rwork[m - *kb + j] = rwork[m - *kb + j + *ka];
  2296. /* L860: */
  2297. }
  2298. i__3 = j2;
  2299. i__4 = ka1;
  2300. for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
  2301. /* create nonzero element a(j+ka,j-1) outside the band */
  2302. /* and store it in WORK(m-kb+j) */
  2303. i__1 = m - *kb + j;
  2304. i__2 = m - *kb + j;
  2305. i__5 = ka1 + (j - 1) * ab_dim1;
  2306. z__1.r = work[i__2].r * ab[i__5].r - work[i__2].i * ab[i__5]
  2307. .i, z__1.i = work[i__2].r * ab[i__5].i + work[i__2].i
  2308. * ab[i__5].r;
  2309. work[i__1].r = z__1.r, work[i__1].i = z__1.i;
  2310. i__1 = ka1 + (j - 1) * ab_dim1;
  2311. i__2 = m - *kb + j;
  2312. i__5 = ka1 + (j - 1) * ab_dim1;
  2313. z__1.r = rwork[i__2] * ab[i__5].r, z__1.i = rwork[i__2] * ab[
  2314. i__5].i;
  2315. ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
  2316. /* L870: */
  2317. }
  2318. if (update) {
  2319. if (i__ + k > ka1 && k <= kbt) {
  2320. i__4 = m - *kb + i__ + k - *ka;
  2321. i__3 = m - *kb + i__ + k;
  2322. work[i__4].r = work[i__3].r, work[i__4].i = work[i__3].i;
  2323. }
  2324. }
  2325. /* L880: */
  2326. }
  2327. for (k = *kb; k >= 1; --k) {
  2328. /* Computing MAX */
  2329. i__4 = 1, i__3 = k + i0 - m;
  2330. j2 = i__ + k + 1 - f2cmax(i__4,i__3) * ka1;
  2331. nr = (j2 + *ka - 1) / ka1;
  2332. j1 = j2 - (nr - 1) * ka1;
  2333. if (nr > 0) {
  2334. /* generate rotations in 2nd set to annihilate elements */
  2335. /* which have been created outside the band */
  2336. zlargv_(&nr, &ab[ka1 + j1 * ab_dim1], &inca, &work[m - *kb +
  2337. j1], &ka1, &rwork[m - *kb + j1], &ka1);
  2338. /* apply rotations in 2nd set from the right */
  2339. i__4 = *ka - 1;
  2340. for (l = 1; l <= i__4; ++l) {
  2341. zlartv_(&nr, &ab[l + 1 + j1 * ab_dim1], &inca, &ab[l + 2
  2342. + (j1 - 1) * ab_dim1], &inca, &rwork[m - *kb + j1]
  2343. , &work[m - *kb + j1], &ka1);
  2344. /* L890: */
  2345. }
  2346. /* apply rotations in 2nd set from both sides to diagonal */
  2347. /* blocks */
  2348. zlar2v_(&nr, &ab[j1 * ab_dim1 + 1], &ab[(j1 - 1) * ab_dim1 +
  2349. 1], &ab[(j1 - 1) * ab_dim1 + 2], &inca, &rwork[m - *
  2350. kb + j1], &work[m - *kb + j1], &ka1);
  2351. zlacgv_(&nr, &work[m - *kb + j1], &ka1);
  2352. }
  2353. /* start applying rotations in 2nd set from the left */
  2354. i__4 = *kb - k + 1;
  2355. for (l = *ka - 1; l >= i__4; --l) {
  2356. nrt = (j2 + l - 1) / ka1;
  2357. j1t = j2 - (nrt - 1) * ka1;
  2358. if (nrt > 0) {
  2359. zlartv_(&nrt, &ab[ka1 - l + 1 + (j1t - ka1 + l) * ab_dim1]
  2360. , &inca, &ab[ka1 - l + (j1t - ka1 + l) * ab_dim1],
  2361. &inca, &rwork[m - *kb + j1t], &work[m - *kb +
  2362. j1t], &ka1);
  2363. }
  2364. /* L900: */
  2365. }
  2366. if (wantx) {
  2367. /* post-multiply X by product of rotations in 2nd set */
  2368. i__4 = j2;
  2369. i__3 = ka1;
  2370. for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  2371. d_cnjg(&z__1, &work[m - *kb + j]);
  2372. zrot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
  2373. + 1], &c__1, &rwork[m - *kb + j], &z__1);
  2374. /* L910: */
  2375. }
  2376. }
  2377. /* L920: */
  2378. }
  2379. i__3 = *kb - 1;
  2380. for (k = 1; k <= i__3; ++k) {
  2381. /* Computing MAX */
  2382. i__4 = 1, i__1 = k + i0 - m + 1;
  2383. j2 = i__ + k + 1 - f2cmax(i__4,i__1) * ka1;
  2384. /* finish applying rotations in 1st set from the left */
  2385. for (l = *kb - k; l >= 1; --l) {
  2386. nrt = (j2 + l - 1) / ka1;
  2387. j1t = j2 - (nrt - 1) * ka1;
  2388. if (nrt > 0) {
  2389. zlartv_(&nrt, &ab[ka1 - l + 1 + (j1t - ka1 + l) * ab_dim1]
  2390. , &inca, &ab[ka1 - l + (j1t - ka1 + l) * ab_dim1],
  2391. &inca, &rwork[j1t], &work[j1t], &ka1);
  2392. }
  2393. /* L930: */
  2394. }
  2395. /* L940: */
  2396. }
  2397. if (*kb > 1) {
  2398. i__3 = i2 - *ka;
  2399. for (j = 2; j <= i__3; ++j) {
  2400. rwork[j] = rwork[j + *ka];
  2401. i__4 = j;
  2402. i__1 = j + *ka;
  2403. work[i__4].r = work[i__1].r, work[i__4].i = work[i__1].i;
  2404. /* L950: */
  2405. }
  2406. }
  2407. }
  2408. goto L490;
  2409. /* End of ZHBGST */
  2410. } /* zhbgst_ */