You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slasyf_aa.c 29 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static real c_b6 = -1.f;
  487. static integer c__1 = 1;
  488. static real c_b8 = 1.f;
  489. static real c_b22 = 0.f;
  490. /* > \brief \b SLASYF_AA */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download SLASYF_AA + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasyf_
  497. aa.f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasyf_
  500. aa.f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasyf_
  503. aa.f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE SLASYF_AA( UPLO, J1, M, NB, A, LDA, IPIV, */
  509. /* H, LDH, WORK ) */
  510. /* CHARACTER UPLO */
  511. /* INTEGER J1, M, NB, LDA, LDH */
  512. /* INTEGER IPIV( * ) */
  513. /* REAL A( LDA, * ), H( LDH, * ), WORK( * ) */
  514. /* > \par Purpose: */
  515. /* ============= */
  516. /* > */
  517. /* > \verbatim */
  518. /* > */
  519. /* > DLATRF_AA factorizes a panel of a real symmetric matrix A using */
  520. /* > the Aasen's algorithm. The panel consists of a set of NB rows of A */
  521. /* > when UPLO is U, or a set of NB columns when UPLO is L. */
  522. /* > */
  523. /* > In order to factorize the panel, the Aasen's algorithm requires the */
  524. /* > last row, or column, of the previous panel. The first row, or column, */
  525. /* > of A is set to be the first row, or column, of an identity matrix, */
  526. /* > which is used to factorize the first panel. */
  527. /* > */
  528. /* > The resulting J-th row of U, or J-th column of L, is stored in the */
  529. /* > (J-1)-th row, or column, of A (without the unit diagonals), while */
  530. /* > the diagonal and subdiagonal of A are overwritten by those of T. */
  531. /* > */
  532. /* > \endverbatim */
  533. /* Arguments: */
  534. /* ========== */
  535. /* > \param[in] UPLO */
  536. /* > \verbatim */
  537. /* > UPLO is CHARACTER*1 */
  538. /* > = 'U': Upper triangle of A is stored; */
  539. /* > = 'L': Lower triangle of A is stored. */
  540. /* > \endverbatim */
  541. /* > */
  542. /* > \param[in] J1 */
  543. /* > \verbatim */
  544. /* > J1 is INTEGER */
  545. /* > The location of the first row, or column, of the panel */
  546. /* > within the submatrix of A, passed to this routine, e.g., */
  547. /* > when called by SSYTRF_AA, for the first panel, J1 is 1, */
  548. /* > while for the remaining panels, J1 is 2. */
  549. /* > \endverbatim */
  550. /* > */
  551. /* > \param[in] M */
  552. /* > \verbatim */
  553. /* > M is INTEGER */
  554. /* > The dimension of the submatrix. M >= 0. */
  555. /* > \endverbatim */
  556. /* > */
  557. /* > \param[in] NB */
  558. /* > \verbatim */
  559. /* > NB is INTEGER */
  560. /* > The dimension of the panel to be facotorized. */
  561. /* > \endverbatim */
  562. /* > */
  563. /* > \param[in,out] A */
  564. /* > \verbatim */
  565. /* > A is REAL array, dimension (LDA,M) for */
  566. /* > the first panel, while dimension (LDA,M+1) for the */
  567. /* > remaining panels. */
  568. /* > */
  569. /* > On entry, A contains the last row, or column, of */
  570. /* > the previous panel, and the trailing submatrix of A */
  571. /* > to be factorized, except for the first panel, only */
  572. /* > the panel is passed. */
  573. /* > */
  574. /* > On exit, the leading panel is factorized. */
  575. /* > \endverbatim */
  576. /* > */
  577. /* > \param[in] LDA */
  578. /* > \verbatim */
  579. /* > LDA is INTEGER */
  580. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  581. /* > \endverbatim */
  582. /* > */
  583. /* > \param[out] IPIV */
  584. /* > \verbatim */
  585. /* > IPIV is INTEGER array, dimension (M) */
  586. /* > Details of the row and column interchanges, */
  587. /* > the row and column k were interchanged with the row and */
  588. /* > column IPIV(k). */
  589. /* > \endverbatim */
  590. /* > */
  591. /* > \param[in,out] H */
  592. /* > \verbatim */
  593. /* > H is REAL workspace, dimension (LDH,NB). */
  594. /* > */
  595. /* > \endverbatim */
  596. /* > */
  597. /* > \param[in] LDH */
  598. /* > \verbatim */
  599. /* > LDH is INTEGER */
  600. /* > The leading dimension of the workspace H. LDH >= f2cmax(1,M). */
  601. /* > \endverbatim */
  602. /* > */
  603. /* > \param[out] WORK */
  604. /* > \verbatim */
  605. /* > WORK is REAL workspace, dimension (M). */
  606. /* > \endverbatim */
  607. /* > */
  608. /* Authors: */
  609. /* ======== */
  610. /* > \author Univ. of Tennessee */
  611. /* > \author Univ. of California Berkeley */
  612. /* > \author Univ. of Colorado Denver */
  613. /* > \author NAG Ltd. */
  614. /* > \date November 2017 */
  615. /* > \ingroup realSYcomputational */
  616. /* ===================================================================== */
  617. /* Subroutine */ int slasyf_aa_(char *uplo, integer *j1, integer *m, integer
  618. *nb, real *a, integer *lda, integer *ipiv, real *h__, integer *ldh,
  619. real *work)
  620. {
  621. /* System generated locals */
  622. integer a_dim1, a_offset, h_dim1, h_offset, i__1;
  623. /* Local variables */
  624. integer j, k;
  625. real alpha;
  626. extern logical lsame_(char *, char *);
  627. extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *),
  628. sgemv_(char *, integer *, integer *, real *, real *, integer *,
  629. real *, integer *, real *, real *, integer *);
  630. integer i1, k1, i2;
  631. extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
  632. integer *), sswap_(integer *, real *, integer *, real *, integer *
  633. ), saxpy_(integer *, real *, real *, integer *, real *, integer *)
  634. ;
  635. integer mj;
  636. extern integer isamax_(integer *, real *, integer *);
  637. extern /* Subroutine */ int slaset_(char *, integer *, integer *, real *,
  638. real *, real *, integer *);
  639. real piv;
  640. /* -- LAPACK computational routine (version 3.8.0) -- */
  641. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  642. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  643. /* November 2017 */
  644. /* ===================================================================== */
  645. /* Parameter adjustments */
  646. a_dim1 = *lda;
  647. a_offset = 1 + a_dim1 * 1;
  648. a -= a_offset;
  649. --ipiv;
  650. h_dim1 = *ldh;
  651. h_offset = 1 + h_dim1 * 1;
  652. h__ -= h_offset;
  653. --work;
  654. /* Function Body */
  655. j = 1;
  656. /* K1 is the first column of the panel to be factorized */
  657. /* i.e., K1 is 2 for the first block column, and 1 for the rest of the blocks */
  658. k1 = 2 - *j1 + 1;
  659. if (lsame_(uplo, "U")) {
  660. /* ..................................................... */
  661. /* Factorize A as U**T*D*U using the upper triangle of A */
  662. /* ..................................................... */
  663. L10:
  664. if (j > f2cmin(*m,*nb)) {
  665. goto L20;
  666. }
  667. /* K is the column to be factorized */
  668. /* when being called from SSYTRF_AA, */
  669. /* > for the first block column, J1 is 1, hence J1+J-1 is J, */
  670. /* > for the rest of the columns, J1 is 2, and J1+J-1 is J+1, */
  671. k = *j1 + j - 1;
  672. if (j == *m) {
  673. /* Only need to compute T(J, J) */
  674. mj = 1;
  675. } else {
  676. mj = *m - j + 1;
  677. }
  678. /* H(J:M, J) := A(J, J:M) - H(J:M, 1:(J-1)) * L(J1:(J-1), J), */
  679. /* where H(J:M, J) has been initialized to be A(J, J:M) */
  680. if (k > 2) {
  681. /* K is the column to be factorized */
  682. /* > for the first block column, K is J, skipping the first two */
  683. /* columns */
  684. /* > for the rest of the columns, K is J+1, skipping only the */
  685. /* first column */
  686. i__1 = j - k1;
  687. sgemv_("No transpose", &mj, &i__1, &c_b6, &h__[j + k1 * h_dim1],
  688. ldh, &a[j * a_dim1 + 1], &c__1, &c_b8, &h__[j + j *
  689. h_dim1], &c__1);
  690. }
  691. /* Copy H(i:M, i) into WORK */
  692. scopy_(&mj, &h__[j + j * h_dim1], &c__1, &work[1], &c__1);
  693. if (j > k1) {
  694. /* Compute WORK := WORK - L(J-1, J:M) * T(J-1,J), */
  695. /* where A(J-1, J) stores T(J-1, J) and A(J-2, J:M) stores U(J-1, J:M) */
  696. alpha = -a[k - 1 + j * a_dim1];
  697. saxpy_(&mj, &alpha, &a[k - 2 + j * a_dim1], lda, &work[1], &c__1);
  698. }
  699. /* Set A(J, J) = T(J, J) */
  700. a[k + j * a_dim1] = work[1];
  701. if (j < *m) {
  702. /* Compute WORK(2:M) = T(J, J) L(J, (J+1):M) */
  703. /* where A(J, J) stores T(J, J) and A(J-1, (J+1):M) stores U(J, (J+1):M) */
  704. if (k > 1) {
  705. alpha = -a[k + j * a_dim1];
  706. i__1 = *m - j;
  707. saxpy_(&i__1, &alpha, &a[k - 1 + (j + 1) * a_dim1], lda, &
  708. work[2], &c__1);
  709. }
  710. /* Find f2cmax(|WORK(2:M)|) */
  711. i__1 = *m - j;
  712. i2 = isamax_(&i__1, &work[2], &c__1) + 1;
  713. piv = work[i2];
  714. /* Apply symmetric pivot */
  715. if (i2 != 2 && piv != 0.f) {
  716. /* Swap WORK(I1) and WORK(I2) */
  717. i1 = 2;
  718. work[i2] = work[i1];
  719. work[i1] = piv;
  720. /* Swap A(I1, I1+1:M) with A(I1+1:M, I2) */
  721. i1 = i1 + j - 1;
  722. i2 = i2 + j - 1;
  723. i__1 = i2 - i1 - 1;
  724. sswap_(&i__1, &a[*j1 + i1 - 1 + (i1 + 1) * a_dim1], lda, &a[*
  725. j1 + i1 + i2 * a_dim1], &c__1);
  726. /* Swap A(I1, I2+1:M) with A(I2, I2+1:M) */
  727. if (i2 < *m) {
  728. i__1 = *m - i2;
  729. sswap_(&i__1, &a[*j1 + i1 - 1 + (i2 + 1) * a_dim1], lda, &
  730. a[*j1 + i2 - 1 + (i2 + 1) * a_dim1], lda);
  731. }
  732. /* Swap A(I1, I1) with A(I2,I2) */
  733. piv = a[i1 + *j1 - 1 + i1 * a_dim1];
  734. a[*j1 + i1 - 1 + i1 * a_dim1] = a[*j1 + i2 - 1 + i2 * a_dim1];
  735. a[*j1 + i2 - 1 + i2 * a_dim1] = piv;
  736. /* Swap H(I1, 1:J1) with H(I2, 1:J1) */
  737. i__1 = i1 - 1;
  738. sswap_(&i__1, &h__[i1 + h_dim1], ldh, &h__[i2 + h_dim1], ldh);
  739. ipiv[i1] = i2;
  740. if (i1 > k1 - 1) {
  741. /* Swap L(1:I1-1, I1) with L(1:I1-1, I2), */
  742. /* skipping the first column */
  743. i__1 = i1 - k1 + 1;
  744. sswap_(&i__1, &a[i1 * a_dim1 + 1], &c__1, &a[i2 * a_dim1
  745. + 1], &c__1);
  746. }
  747. } else {
  748. ipiv[j + 1] = j + 1;
  749. }
  750. /* Set A(J, J+1) = T(J, J+1) */
  751. a[k + (j + 1) * a_dim1] = work[2];
  752. if (j < *nb) {
  753. /* Copy A(J+1:M, J+1) into H(J:M, J), */
  754. i__1 = *m - j;
  755. scopy_(&i__1, &a[k + 1 + (j + 1) * a_dim1], lda, &h__[j + 1 +
  756. (j + 1) * h_dim1], &c__1);
  757. }
  758. /* Compute L(J+2, J+1) = WORK( 3:M ) / T(J, J+1), */
  759. /* where A(J, J+1) = T(J, J+1) and A(J+2:M, J) = L(J+2:M, J+1) */
  760. if (j < *m - 1) {
  761. if (a[k + (j + 1) * a_dim1] != 0.f) {
  762. alpha = 1.f / a[k + (j + 1) * a_dim1];
  763. i__1 = *m - j - 1;
  764. scopy_(&i__1, &work[3], &c__1, &a[k + (j + 2) * a_dim1],
  765. lda);
  766. i__1 = *m - j - 1;
  767. sscal_(&i__1, &alpha, &a[k + (j + 2) * a_dim1], lda);
  768. } else {
  769. i__1 = *m - j - 1;
  770. slaset_("Full", &c__1, &i__1, &c_b22, &c_b22, &a[k + (j +
  771. 2) * a_dim1], lda);
  772. }
  773. }
  774. }
  775. ++j;
  776. goto L10;
  777. L20:
  778. ;
  779. } else {
  780. /* ..................................................... */
  781. /* Factorize A as L*D*L**T using the lower triangle of A */
  782. /* ..................................................... */
  783. L30:
  784. if (j > f2cmin(*m,*nb)) {
  785. goto L40;
  786. }
  787. /* K is the column to be factorized */
  788. /* when being called from SSYTRF_AA, */
  789. /* > for the first block column, J1 is 1, hence J1+J-1 is J, */
  790. /* > for the rest of the columns, J1 is 2, and J1+J-1 is J+1, */
  791. k = *j1 + j - 1;
  792. if (j == *m) {
  793. /* Only need to compute T(J, J) */
  794. mj = 1;
  795. } else {
  796. mj = *m - j + 1;
  797. }
  798. /* H(J:M, J) := A(J:M, J) - H(J:M, 1:(J-1)) * L(J, J1:(J-1))^T, */
  799. /* where H(J:M, J) has been initialized to be A(J:M, J) */
  800. if (k > 2) {
  801. /* K is the column to be factorized */
  802. /* > for the first block column, K is J, skipping the first two */
  803. /* columns */
  804. /* > for the rest of the columns, K is J+1, skipping only the */
  805. /* first column */
  806. i__1 = j - k1;
  807. sgemv_("No transpose", &mj, &i__1, &c_b6, &h__[j + k1 * h_dim1],
  808. ldh, &a[j + a_dim1], lda, &c_b8, &h__[j + j * h_dim1], &
  809. c__1);
  810. }
  811. /* Copy H(J:M, J) into WORK */
  812. scopy_(&mj, &h__[j + j * h_dim1], &c__1, &work[1], &c__1);
  813. if (j > k1) {
  814. /* Compute WORK := WORK - L(J:M, J-1) * T(J-1,J), */
  815. /* where A(J-1, J) = T(J-1, J) and A(J, J-2) = L(J, J-1) */
  816. alpha = -a[j + (k - 1) * a_dim1];
  817. saxpy_(&mj, &alpha, &a[j + (k - 2) * a_dim1], &c__1, &work[1], &
  818. c__1);
  819. }
  820. /* Set A(J, J) = T(J, J) */
  821. a[j + k * a_dim1] = work[1];
  822. if (j < *m) {
  823. /* Compute WORK(2:M) = T(J, J) L((J+1):M, J) */
  824. /* where A(J, J) = T(J, J) and A((J+1):M, J-1) = L((J+1):M, J) */
  825. if (k > 1) {
  826. alpha = -a[j + k * a_dim1];
  827. i__1 = *m - j;
  828. saxpy_(&i__1, &alpha, &a[j + 1 + (k - 1) * a_dim1], &c__1, &
  829. work[2], &c__1);
  830. }
  831. /* Find f2cmax(|WORK(2:M)|) */
  832. i__1 = *m - j;
  833. i2 = isamax_(&i__1, &work[2], &c__1) + 1;
  834. piv = work[i2];
  835. /* Apply symmetric pivot */
  836. if (i2 != 2 && piv != 0.f) {
  837. /* Swap WORK(I1) and WORK(I2) */
  838. i1 = 2;
  839. work[i2] = work[i1];
  840. work[i1] = piv;
  841. /* Swap A(I1+1:M, I1) with A(I2, I1+1:M) */
  842. i1 = i1 + j - 1;
  843. i2 = i2 + j - 1;
  844. i__1 = i2 - i1 - 1;
  845. sswap_(&i__1, &a[i1 + 1 + (*j1 + i1 - 1) * a_dim1], &c__1, &a[
  846. i2 + (*j1 + i1) * a_dim1], lda);
  847. /* Swap A(I2+1:M, I1) with A(I2+1:M, I2) */
  848. if (i2 < *m) {
  849. i__1 = *m - i2;
  850. sswap_(&i__1, &a[i2 + 1 + (*j1 + i1 - 1) * a_dim1], &c__1,
  851. &a[i2 + 1 + (*j1 + i2 - 1) * a_dim1], &c__1);
  852. }
  853. /* Swap A(I1, I1) with A(I2, I2) */
  854. piv = a[i1 + (*j1 + i1 - 1) * a_dim1];
  855. a[i1 + (*j1 + i1 - 1) * a_dim1] = a[i2 + (*j1 + i2 - 1) *
  856. a_dim1];
  857. a[i2 + (*j1 + i2 - 1) * a_dim1] = piv;
  858. /* Swap H(I1, I1:J1) with H(I2, I2:J1) */
  859. i__1 = i1 - 1;
  860. sswap_(&i__1, &h__[i1 + h_dim1], ldh, &h__[i2 + h_dim1], ldh);
  861. ipiv[i1] = i2;
  862. if (i1 > k1 - 1) {
  863. /* Swap L(1:I1-1, I1) with L(1:I1-1, I2), */
  864. /* skipping the first column */
  865. i__1 = i1 - k1 + 1;
  866. sswap_(&i__1, &a[i1 + a_dim1], lda, &a[i2 + a_dim1], lda);
  867. }
  868. } else {
  869. ipiv[j + 1] = j + 1;
  870. }
  871. /* Set A(J+1, J) = T(J+1, J) */
  872. a[j + 1 + k * a_dim1] = work[2];
  873. if (j < *nb) {
  874. /* Copy A(J+1:M, J+1) into H(J+1:M, J), */
  875. i__1 = *m - j;
  876. scopy_(&i__1, &a[j + 1 + (k + 1) * a_dim1], &c__1, &h__[j + 1
  877. + (j + 1) * h_dim1], &c__1);
  878. }
  879. /* Compute L(J+2, J+1) = WORK( 3:M ) / T(J, J+1), */
  880. /* where A(J, J+1) = T(J, J+1) and A(J+2:M, J) = L(J+2:M, J+1) */
  881. if (j < *m - 1) {
  882. if (a[j + 1 + k * a_dim1] != 0.f) {
  883. alpha = 1.f / a[j + 1 + k * a_dim1];
  884. i__1 = *m - j - 1;
  885. scopy_(&i__1, &work[3], &c__1, &a[j + 2 + k * a_dim1], &
  886. c__1);
  887. i__1 = *m - j - 1;
  888. sscal_(&i__1, &alpha, &a[j + 2 + k * a_dim1], &c__1);
  889. } else {
  890. i__1 = *m - j - 1;
  891. slaset_("Full", &i__1, &c__1, &c_b22, &c_b22, &a[j + 2 +
  892. k * a_dim1], lda);
  893. }
  894. }
  895. }
  896. ++j;
  897. goto L30;
  898. L40:
  899. ;
  900. }
  901. return 0;
  902. /* End of SLASYF_AA */
  903. } /* slasyf_aa__ */