You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slasd7.c 32 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. /* > \brief \b SLASD7 merges the two sets of singular values together into a single sorted set. Then it tries
  488. to deflate the size of the problem. Used by sbdsdc. */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download SLASD7 + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasd7.
  495. f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasd7.
  498. f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasd7.
  501. f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE SLASD7( ICOMPQ, NL, NR, SQRE, K, D, Z, ZW, VF, VFW, VL, */
  507. /* VLW, ALPHA, BETA, DSIGMA, IDX, IDXP, IDXQ, */
  508. /* PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM, */
  509. /* C, S, INFO ) */
  510. /* INTEGER GIVPTR, ICOMPQ, INFO, K, LDGCOL, LDGNUM, NL, */
  511. /* $ NR, SQRE */
  512. /* REAL ALPHA, BETA, C, S */
  513. /* INTEGER GIVCOL( LDGCOL, * ), IDX( * ), IDXP( * ), */
  514. /* $ IDXQ( * ), PERM( * ) */
  515. /* REAL D( * ), DSIGMA( * ), GIVNUM( LDGNUM, * ), */
  516. /* $ VF( * ), VFW( * ), VL( * ), VLW( * ), Z( * ), */
  517. /* $ ZW( * ) */
  518. /* > \par Purpose: */
  519. /* ============= */
  520. /* > */
  521. /* > \verbatim */
  522. /* > */
  523. /* > SLASD7 merges the two sets of singular values together into a single */
  524. /* > sorted set. Then it tries to deflate the size of the problem. There */
  525. /* > are two ways in which deflation can occur: when two or more singular */
  526. /* > values are close together or if there is a tiny entry in the Z */
  527. /* > vector. For each such occurrence the order of the related */
  528. /* > secular equation problem is reduced by one. */
  529. /* > */
  530. /* > SLASD7 is called from SLASD6. */
  531. /* > \endverbatim */
  532. /* Arguments: */
  533. /* ========== */
  534. /* > \param[in] ICOMPQ */
  535. /* > \verbatim */
  536. /* > ICOMPQ is INTEGER */
  537. /* > Specifies whether singular vectors are to be computed */
  538. /* > in compact form, as follows: */
  539. /* > = 0: Compute singular values only. */
  540. /* > = 1: Compute singular vectors of upper */
  541. /* > bidiagonal matrix in compact form. */
  542. /* > \endverbatim */
  543. /* > */
  544. /* > \param[in] NL */
  545. /* > \verbatim */
  546. /* > NL is INTEGER */
  547. /* > The row dimension of the upper block. NL >= 1. */
  548. /* > \endverbatim */
  549. /* > */
  550. /* > \param[in] NR */
  551. /* > \verbatim */
  552. /* > NR is INTEGER */
  553. /* > The row dimension of the lower block. NR >= 1. */
  554. /* > \endverbatim */
  555. /* > */
  556. /* > \param[in] SQRE */
  557. /* > \verbatim */
  558. /* > SQRE is INTEGER */
  559. /* > = 0: the lower block is an NR-by-NR square matrix. */
  560. /* > = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
  561. /* > */
  562. /* > The bidiagonal matrix has */
  563. /* > N = NL + NR + 1 rows and */
  564. /* > M = N + SQRE >= N columns. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[out] K */
  568. /* > \verbatim */
  569. /* > K is INTEGER */
  570. /* > Contains the dimension of the non-deflated matrix, this is */
  571. /* > the order of the related secular equation. 1 <= K <=N. */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[in,out] D */
  575. /* > \verbatim */
  576. /* > D is REAL array, dimension ( N ) */
  577. /* > On entry D contains the singular values of the two submatrices */
  578. /* > to be combined. On exit D contains the trailing (N-K) updated */
  579. /* > singular values (those which were deflated) sorted into */
  580. /* > increasing order. */
  581. /* > \endverbatim */
  582. /* > */
  583. /* > \param[out] Z */
  584. /* > \verbatim */
  585. /* > Z is REAL array, dimension ( M ) */
  586. /* > On exit Z contains the updating row vector in the secular */
  587. /* > equation. */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[out] ZW */
  591. /* > \verbatim */
  592. /* > ZW is REAL array, dimension ( M ) */
  593. /* > Workspace for Z. */
  594. /* > \endverbatim */
  595. /* > */
  596. /* > \param[in,out] VF */
  597. /* > \verbatim */
  598. /* > VF is REAL array, dimension ( M ) */
  599. /* > On entry, VF(1:NL+1) contains the first components of all */
  600. /* > right singular vectors of the upper block; and VF(NL+2:M) */
  601. /* > contains the first components of all right singular vectors */
  602. /* > of the lower block. On exit, VF contains the first components */
  603. /* > of all right singular vectors of the bidiagonal matrix. */
  604. /* > \endverbatim */
  605. /* > */
  606. /* > \param[out] VFW */
  607. /* > \verbatim */
  608. /* > VFW is REAL array, dimension ( M ) */
  609. /* > Workspace for VF. */
  610. /* > \endverbatim */
  611. /* > */
  612. /* > \param[in,out] VL */
  613. /* > \verbatim */
  614. /* > VL is REAL array, dimension ( M ) */
  615. /* > On entry, VL(1:NL+1) contains the last components of all */
  616. /* > right singular vectors of the upper block; and VL(NL+2:M) */
  617. /* > contains the last components of all right singular vectors */
  618. /* > of the lower block. On exit, VL contains the last components */
  619. /* > of all right singular vectors of the bidiagonal matrix. */
  620. /* > \endverbatim */
  621. /* > */
  622. /* > \param[out] VLW */
  623. /* > \verbatim */
  624. /* > VLW is REAL array, dimension ( M ) */
  625. /* > Workspace for VL. */
  626. /* > \endverbatim */
  627. /* > */
  628. /* > \param[in] ALPHA */
  629. /* > \verbatim */
  630. /* > ALPHA is REAL */
  631. /* > Contains the diagonal element associated with the added row. */
  632. /* > \endverbatim */
  633. /* > */
  634. /* > \param[in] BETA */
  635. /* > \verbatim */
  636. /* > BETA is REAL */
  637. /* > Contains the off-diagonal element associated with the added */
  638. /* > row. */
  639. /* > \endverbatim */
  640. /* > */
  641. /* > \param[out] DSIGMA */
  642. /* > \verbatim */
  643. /* > DSIGMA is REAL array, dimension ( N ) */
  644. /* > Contains a copy of the diagonal elements (K-1 singular values */
  645. /* > and one zero) in the secular equation. */
  646. /* > \endverbatim */
  647. /* > */
  648. /* > \param[out] IDX */
  649. /* > \verbatim */
  650. /* > IDX is INTEGER array, dimension ( N ) */
  651. /* > This will contain the permutation used to sort the contents of */
  652. /* > D into ascending order. */
  653. /* > \endverbatim */
  654. /* > */
  655. /* > \param[out] IDXP */
  656. /* > \verbatim */
  657. /* > IDXP is INTEGER array, dimension ( N ) */
  658. /* > This will contain the permutation used to place deflated */
  659. /* > values of D at the end of the array. On output IDXP(2:K) */
  660. /* > points to the nondeflated D-values and IDXP(K+1:N) */
  661. /* > points to the deflated singular values. */
  662. /* > \endverbatim */
  663. /* > */
  664. /* > \param[in] IDXQ */
  665. /* > \verbatim */
  666. /* > IDXQ is INTEGER array, dimension ( N ) */
  667. /* > This contains the permutation which separately sorts the two */
  668. /* > sub-problems in D into ascending order. Note that entries in */
  669. /* > the first half of this permutation must first be moved one */
  670. /* > position backward; and entries in the second half */
  671. /* > must first have NL+1 added to their values. */
  672. /* > \endverbatim */
  673. /* > */
  674. /* > \param[out] PERM */
  675. /* > \verbatim */
  676. /* > PERM is INTEGER array, dimension ( N ) */
  677. /* > The permutations (from deflation and sorting) to be applied */
  678. /* > to each singular block. Not referenced if ICOMPQ = 0. */
  679. /* > \endverbatim */
  680. /* > */
  681. /* > \param[out] GIVPTR */
  682. /* > \verbatim */
  683. /* > GIVPTR is INTEGER */
  684. /* > The number of Givens rotations which took place in this */
  685. /* > subproblem. Not referenced if ICOMPQ = 0. */
  686. /* > \endverbatim */
  687. /* > */
  688. /* > \param[out] GIVCOL */
  689. /* > \verbatim */
  690. /* > GIVCOL is INTEGER array, dimension ( LDGCOL, 2 ) */
  691. /* > Each pair of numbers indicates a pair of columns to take place */
  692. /* > in a Givens rotation. Not referenced if ICOMPQ = 0. */
  693. /* > \endverbatim */
  694. /* > */
  695. /* > \param[in] LDGCOL */
  696. /* > \verbatim */
  697. /* > LDGCOL is INTEGER */
  698. /* > The leading dimension of GIVCOL, must be at least N. */
  699. /* > \endverbatim */
  700. /* > */
  701. /* > \param[out] GIVNUM */
  702. /* > \verbatim */
  703. /* > GIVNUM is REAL array, dimension ( LDGNUM, 2 ) */
  704. /* > Each number indicates the C or S value to be used in the */
  705. /* > corresponding Givens rotation. Not referenced if ICOMPQ = 0. */
  706. /* > \endverbatim */
  707. /* > */
  708. /* > \param[in] LDGNUM */
  709. /* > \verbatim */
  710. /* > LDGNUM is INTEGER */
  711. /* > The leading dimension of GIVNUM, must be at least N. */
  712. /* > \endverbatim */
  713. /* > */
  714. /* > \param[out] C */
  715. /* > \verbatim */
  716. /* > C is REAL */
  717. /* > C contains garbage if SQRE =0 and the C-value of a Givens */
  718. /* > rotation related to the right null space if SQRE = 1. */
  719. /* > \endverbatim */
  720. /* > */
  721. /* > \param[out] S */
  722. /* > \verbatim */
  723. /* > S is REAL */
  724. /* > S contains garbage if SQRE =0 and the S-value of a Givens */
  725. /* > rotation related to the right null space if SQRE = 1. */
  726. /* > \endverbatim */
  727. /* > */
  728. /* > \param[out] INFO */
  729. /* > \verbatim */
  730. /* > INFO is INTEGER */
  731. /* > = 0: successful exit. */
  732. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  733. /* > \endverbatim */
  734. /* Authors: */
  735. /* ======== */
  736. /* > \author Univ. of Tennessee */
  737. /* > \author Univ. of California Berkeley */
  738. /* > \author Univ. of Colorado Denver */
  739. /* > \author NAG Ltd. */
  740. /* > \date December 2016 */
  741. /* > \ingroup OTHERauxiliary */
  742. /* > \par Contributors: */
  743. /* ================== */
  744. /* > */
  745. /* > Ming Gu and Huan Ren, Computer Science Division, University of */
  746. /* > California at Berkeley, USA */
  747. /* > */
  748. /* ===================================================================== */
  749. /* Subroutine */ int slasd7_(integer *icompq, integer *nl, integer *nr,
  750. integer *sqre, integer *k, real *d__, real *z__, real *zw, real *vf,
  751. real *vfw, real *vl, real *vlw, real *alpha, real *beta, real *dsigma,
  752. integer *idx, integer *idxp, integer *idxq, integer *perm, integer *
  753. givptr, integer *givcol, integer *ldgcol, real *givnum, integer *
  754. ldgnum, real *c__, real *s, integer *info)
  755. {
  756. /* System generated locals */
  757. integer givcol_dim1, givcol_offset, givnum_dim1, givnum_offset, i__1;
  758. real r__1, r__2;
  759. /* Local variables */
  760. integer idxi, idxj;
  761. extern /* Subroutine */ int srot_(integer *, real *, integer *, real *,
  762. integer *, real *, real *);
  763. integer i__, j, m, n, idxjp, jprev, k2;
  764. extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
  765. integer *);
  766. real z1;
  767. extern real slapy2_(real *, real *);
  768. integer jp;
  769. extern real slamch_(char *);
  770. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), slamrg_(
  771. integer *, integer *, real *, integer *, integer *, integer *);
  772. real hlftol, eps, tau, tol;
  773. integer nlp1, nlp2;
  774. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  775. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  776. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  777. /* December 2016 */
  778. /* ===================================================================== */
  779. /* Test the input parameters. */
  780. /* Parameter adjustments */
  781. --d__;
  782. --z__;
  783. --zw;
  784. --vf;
  785. --vfw;
  786. --vl;
  787. --vlw;
  788. --dsigma;
  789. --idx;
  790. --idxp;
  791. --idxq;
  792. --perm;
  793. givcol_dim1 = *ldgcol;
  794. givcol_offset = 1 + givcol_dim1 * 1;
  795. givcol -= givcol_offset;
  796. givnum_dim1 = *ldgnum;
  797. givnum_offset = 1 + givnum_dim1 * 1;
  798. givnum -= givnum_offset;
  799. /* Function Body */
  800. *info = 0;
  801. n = *nl + *nr + 1;
  802. m = n + *sqre;
  803. if (*icompq < 0 || *icompq > 1) {
  804. *info = -1;
  805. } else if (*nl < 1) {
  806. *info = -2;
  807. } else if (*nr < 1) {
  808. *info = -3;
  809. } else if (*sqre < 0 || *sqre > 1) {
  810. *info = -4;
  811. } else if (*ldgcol < n) {
  812. *info = -22;
  813. } else if (*ldgnum < n) {
  814. *info = -24;
  815. }
  816. if (*info != 0) {
  817. i__1 = -(*info);
  818. xerbla_("SLASD7", &i__1, (ftnlen)6);
  819. return 0;
  820. }
  821. nlp1 = *nl + 1;
  822. nlp2 = *nl + 2;
  823. if (*icompq == 1) {
  824. *givptr = 0;
  825. }
  826. /* Generate the first part of the vector Z and move the singular */
  827. /* values in the first part of D one position backward. */
  828. z1 = *alpha * vl[nlp1];
  829. vl[nlp1] = 0.f;
  830. tau = vf[nlp1];
  831. for (i__ = *nl; i__ >= 1; --i__) {
  832. z__[i__ + 1] = *alpha * vl[i__];
  833. vl[i__] = 0.f;
  834. vf[i__ + 1] = vf[i__];
  835. d__[i__ + 1] = d__[i__];
  836. idxq[i__ + 1] = idxq[i__] + 1;
  837. /* L10: */
  838. }
  839. vf[1] = tau;
  840. /* Generate the second part of the vector Z. */
  841. i__1 = m;
  842. for (i__ = nlp2; i__ <= i__1; ++i__) {
  843. z__[i__] = *beta * vf[i__];
  844. vf[i__] = 0.f;
  845. /* L20: */
  846. }
  847. /* Sort the singular values into increasing order */
  848. i__1 = n;
  849. for (i__ = nlp2; i__ <= i__1; ++i__) {
  850. idxq[i__] += nlp1;
  851. /* L30: */
  852. }
  853. /* DSIGMA, IDXC, IDXC, and ZW are used as storage space. */
  854. i__1 = n;
  855. for (i__ = 2; i__ <= i__1; ++i__) {
  856. dsigma[i__] = d__[idxq[i__]];
  857. zw[i__] = z__[idxq[i__]];
  858. vfw[i__] = vf[idxq[i__]];
  859. vlw[i__] = vl[idxq[i__]];
  860. /* L40: */
  861. }
  862. slamrg_(nl, nr, &dsigma[2], &c__1, &c__1, &idx[2]);
  863. i__1 = n;
  864. for (i__ = 2; i__ <= i__1; ++i__) {
  865. idxi = idx[i__] + 1;
  866. d__[i__] = dsigma[idxi];
  867. z__[i__] = zw[idxi];
  868. vf[i__] = vfw[idxi];
  869. vl[i__] = vlw[idxi];
  870. /* L50: */
  871. }
  872. /* Calculate the allowable deflation tolerance */
  873. eps = slamch_("Epsilon");
  874. /* Computing MAX */
  875. r__1 = abs(*alpha), r__2 = abs(*beta);
  876. tol = f2cmax(r__1,r__2);
  877. /* Computing MAX */
  878. r__2 = (r__1 = d__[n], abs(r__1));
  879. tol = eps * 64.f * f2cmax(r__2,tol);
  880. /* There are 2 kinds of deflation -- first a value in the z-vector */
  881. /* is small, second two (or more) singular values are very close */
  882. /* together (their difference is small). */
  883. /* If the value in the z-vector is small, we simply permute the */
  884. /* array so that the corresponding singular value is moved to the */
  885. /* end. */
  886. /* If two values in the D-vector are close, we perform a two-sided */
  887. /* rotation designed to make one of the corresponding z-vector */
  888. /* entries zero, and then permute the array so that the deflated */
  889. /* singular value is moved to the end. */
  890. /* If there are multiple singular values then the problem deflates. */
  891. /* Here the number of equal singular values are found. As each equal */
  892. /* singular value is found, an elementary reflector is computed to */
  893. /* rotate the corresponding singular subspace so that the */
  894. /* corresponding components of Z are zero in this new basis. */
  895. *k = 1;
  896. k2 = n + 1;
  897. i__1 = n;
  898. for (j = 2; j <= i__1; ++j) {
  899. if ((r__1 = z__[j], abs(r__1)) <= tol) {
  900. /* Deflate due to small z component. */
  901. --k2;
  902. idxp[k2] = j;
  903. if (j == n) {
  904. goto L100;
  905. }
  906. } else {
  907. jprev = j;
  908. goto L70;
  909. }
  910. /* L60: */
  911. }
  912. L70:
  913. j = jprev;
  914. L80:
  915. ++j;
  916. if (j > n) {
  917. goto L90;
  918. }
  919. if ((r__1 = z__[j], abs(r__1)) <= tol) {
  920. /* Deflate due to small z component. */
  921. --k2;
  922. idxp[k2] = j;
  923. } else {
  924. /* Check if singular values are close enough to allow deflation. */
  925. if ((r__1 = d__[j] - d__[jprev], abs(r__1)) <= tol) {
  926. /* Deflation is possible. */
  927. *s = z__[jprev];
  928. *c__ = z__[j];
  929. /* Find sqrt(a**2+b**2) without overflow or */
  930. /* destructive underflow. */
  931. tau = slapy2_(c__, s);
  932. z__[j] = tau;
  933. z__[jprev] = 0.f;
  934. *c__ /= tau;
  935. *s = -(*s) / tau;
  936. /* Record the appropriate Givens rotation */
  937. if (*icompq == 1) {
  938. ++(*givptr);
  939. idxjp = idxq[idx[jprev] + 1];
  940. idxj = idxq[idx[j] + 1];
  941. if (idxjp <= nlp1) {
  942. --idxjp;
  943. }
  944. if (idxj <= nlp1) {
  945. --idxj;
  946. }
  947. givcol[*givptr + (givcol_dim1 << 1)] = idxjp;
  948. givcol[*givptr + givcol_dim1] = idxj;
  949. givnum[*givptr + (givnum_dim1 << 1)] = *c__;
  950. givnum[*givptr + givnum_dim1] = *s;
  951. }
  952. srot_(&c__1, &vf[jprev], &c__1, &vf[j], &c__1, c__, s);
  953. srot_(&c__1, &vl[jprev], &c__1, &vl[j], &c__1, c__, s);
  954. --k2;
  955. idxp[k2] = jprev;
  956. jprev = j;
  957. } else {
  958. ++(*k);
  959. zw[*k] = z__[jprev];
  960. dsigma[*k] = d__[jprev];
  961. idxp[*k] = jprev;
  962. jprev = j;
  963. }
  964. }
  965. goto L80;
  966. L90:
  967. /* Record the last singular value. */
  968. ++(*k);
  969. zw[*k] = z__[jprev];
  970. dsigma[*k] = d__[jprev];
  971. idxp[*k] = jprev;
  972. L100:
  973. /* Sort the singular values into DSIGMA. The singular values which */
  974. /* were not deflated go into the first K slots of DSIGMA, except */
  975. /* that DSIGMA(1) is treated separately. */
  976. i__1 = n;
  977. for (j = 2; j <= i__1; ++j) {
  978. jp = idxp[j];
  979. dsigma[j] = d__[jp];
  980. vfw[j] = vf[jp];
  981. vlw[j] = vl[jp];
  982. /* L110: */
  983. }
  984. if (*icompq == 1) {
  985. i__1 = n;
  986. for (j = 2; j <= i__1; ++j) {
  987. jp = idxp[j];
  988. perm[j] = idxq[idx[jp] + 1];
  989. if (perm[j] <= nlp1) {
  990. --perm[j];
  991. }
  992. /* L120: */
  993. }
  994. }
  995. /* The deflated singular values go back into the last N - K slots of */
  996. /* D. */
  997. i__1 = n - *k;
  998. scopy_(&i__1, &dsigma[*k + 1], &c__1, &d__[*k + 1], &c__1);
  999. /* Determine DSIGMA(1), DSIGMA(2), Z(1), VF(1), VL(1), VF(M), and */
  1000. /* VL(M). */
  1001. dsigma[1] = 0.f;
  1002. hlftol = tol / 2.f;
  1003. if (abs(dsigma[2]) <= hlftol) {
  1004. dsigma[2] = hlftol;
  1005. }
  1006. if (m > n) {
  1007. z__[1] = slapy2_(&z1, &z__[m]);
  1008. if (z__[1] <= tol) {
  1009. *c__ = 1.f;
  1010. *s = 0.f;
  1011. z__[1] = tol;
  1012. } else {
  1013. *c__ = z1 / z__[1];
  1014. *s = -z__[m] / z__[1];
  1015. }
  1016. srot_(&c__1, &vf[m], &c__1, &vf[1], &c__1, c__, s);
  1017. srot_(&c__1, &vl[m], &c__1, &vl[1], &c__1, c__, s);
  1018. } else {
  1019. if (abs(z1) <= tol) {
  1020. z__[1] = tol;
  1021. } else {
  1022. z__[1] = z1;
  1023. }
  1024. }
  1025. /* Restore Z, VF, and VL. */
  1026. i__1 = *k - 1;
  1027. scopy_(&i__1, &zw[2], &c__1, &z__[2], &c__1);
  1028. i__1 = n - 1;
  1029. scopy_(&i__1, &vfw[2], &c__1, &vf[2], &c__1);
  1030. i__1 = n - 1;
  1031. scopy_(&i__1, &vlw[2], &c__1, &vl[2], &c__1);
  1032. return 0;
  1033. /* End of SLASD7 */
  1034. } /* slasd7_ */