You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slasd3.c 31 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static integer c__0 = 0;
  488. static real c_b13 = 1.f;
  489. static real c_b26 = 0.f;
  490. /* > \brief \b SLASD3 finds all square roots of the roots of the secular equation, as defined by the values in
  491. D and Z, and then updates the singular vectors by matrix multiplication. Used by sbdsdc. */
  492. /* =========== DOCUMENTATION =========== */
  493. /* Online html documentation available at */
  494. /* http://www.netlib.org/lapack/explore-html/ */
  495. /* > \htmlonly */
  496. /* > Download SLASD3 + dependencies */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasd3.
  498. f"> */
  499. /* > [TGZ]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasd3.
  501. f"> */
  502. /* > [ZIP]</a> */
  503. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasd3.
  504. f"> */
  505. /* > [TXT]</a> */
  506. /* > \endhtmlonly */
  507. /* Definition: */
  508. /* =========== */
  509. /* SUBROUTINE SLASD3( NL, NR, SQRE, K, D, Q, LDQ, DSIGMA, U, LDU, U2, */
  510. /* LDU2, VT, LDVT, VT2, LDVT2, IDXC, CTOT, Z, */
  511. /* INFO ) */
  512. /* INTEGER INFO, K, LDQ, LDU, LDU2, LDVT, LDVT2, NL, NR, */
  513. /* $ SQRE */
  514. /* INTEGER CTOT( * ), IDXC( * ) */
  515. /* REAL D( * ), DSIGMA( * ), Q( LDQ, * ), U( LDU, * ), */
  516. /* $ U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ), */
  517. /* $ Z( * ) */
  518. /* > \par Purpose: */
  519. /* ============= */
  520. /* > */
  521. /* > \verbatim */
  522. /* > */
  523. /* > SLASD3 finds all the square roots of the roots of the secular */
  524. /* > equation, as defined by the values in D and Z. It makes the */
  525. /* > appropriate calls to SLASD4 and then updates the singular */
  526. /* > vectors by matrix multiplication. */
  527. /* > */
  528. /* > This code makes very mild assumptions about floating point */
  529. /* > arithmetic. It will work on machines with a guard digit in */
  530. /* > add/subtract, or on those binary machines without guard digits */
  531. /* > which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. */
  532. /* > It could conceivably fail on hexadecimal or decimal machines */
  533. /* > without guard digits, but we know of none. */
  534. /* > */
  535. /* > SLASD3 is called from SLASD1. */
  536. /* > \endverbatim */
  537. /* Arguments: */
  538. /* ========== */
  539. /* > \param[in] NL */
  540. /* > \verbatim */
  541. /* > NL is INTEGER */
  542. /* > The row dimension of the upper block. NL >= 1. */
  543. /* > \endverbatim */
  544. /* > */
  545. /* > \param[in] NR */
  546. /* > \verbatim */
  547. /* > NR is INTEGER */
  548. /* > The row dimension of the lower block. NR >= 1. */
  549. /* > \endverbatim */
  550. /* > */
  551. /* > \param[in] SQRE */
  552. /* > \verbatim */
  553. /* > SQRE is INTEGER */
  554. /* > = 0: the lower block is an NR-by-NR square matrix. */
  555. /* > = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
  556. /* > */
  557. /* > The bidiagonal matrix has N = NL + NR + 1 rows and */
  558. /* > M = N + SQRE >= N columns. */
  559. /* > \endverbatim */
  560. /* > */
  561. /* > \param[in] K */
  562. /* > \verbatim */
  563. /* > K is INTEGER */
  564. /* > The size of the secular equation, 1 =< K = < N. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[out] D */
  568. /* > \verbatim */
  569. /* > D is REAL array, dimension(K) */
  570. /* > On exit the square roots of the roots of the secular equation, */
  571. /* > in ascending order. */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[out] Q */
  575. /* > \verbatim */
  576. /* > Q is REAL array, dimension (LDQ,K) */
  577. /* > \endverbatim */
  578. /* > */
  579. /* > \param[in] LDQ */
  580. /* > \verbatim */
  581. /* > LDQ is INTEGER */
  582. /* > The leading dimension of the array Q. LDQ >= K. */
  583. /* > \endverbatim */
  584. /* > */
  585. /* > \param[in,out] DSIGMA */
  586. /* > \verbatim */
  587. /* > DSIGMA is REAL array, dimension(K) */
  588. /* > The first K elements of this array contain the old roots */
  589. /* > of the deflated updating problem. These are the poles */
  590. /* > of the secular equation. */
  591. /* > \endverbatim */
  592. /* > */
  593. /* > \param[out] U */
  594. /* > \verbatim */
  595. /* > U is REAL array, dimension (LDU, N) */
  596. /* > The last N - K columns of this matrix contain the deflated */
  597. /* > left singular vectors. */
  598. /* > \endverbatim */
  599. /* > */
  600. /* > \param[in] LDU */
  601. /* > \verbatim */
  602. /* > LDU is INTEGER */
  603. /* > The leading dimension of the array U. LDU >= N. */
  604. /* > \endverbatim */
  605. /* > */
  606. /* > \param[in] U2 */
  607. /* > \verbatim */
  608. /* > U2 is REAL array, dimension (LDU2, N) */
  609. /* > The first K columns of this matrix contain the non-deflated */
  610. /* > left singular vectors for the split problem. */
  611. /* > \endverbatim */
  612. /* > */
  613. /* > \param[in] LDU2 */
  614. /* > \verbatim */
  615. /* > LDU2 is INTEGER */
  616. /* > The leading dimension of the array U2. LDU2 >= N. */
  617. /* > \endverbatim */
  618. /* > */
  619. /* > \param[out] VT */
  620. /* > \verbatim */
  621. /* > VT is REAL array, dimension (LDVT, M) */
  622. /* > The last M - K columns of VT**T contain the deflated */
  623. /* > right singular vectors. */
  624. /* > \endverbatim */
  625. /* > */
  626. /* > \param[in] LDVT */
  627. /* > \verbatim */
  628. /* > LDVT is INTEGER */
  629. /* > The leading dimension of the array VT. LDVT >= N. */
  630. /* > \endverbatim */
  631. /* > */
  632. /* > \param[in,out] VT2 */
  633. /* > \verbatim */
  634. /* > VT2 is REAL array, dimension (LDVT2, N) */
  635. /* > The first K columns of VT2**T contain the non-deflated */
  636. /* > right singular vectors for the split problem. */
  637. /* > \endverbatim */
  638. /* > */
  639. /* > \param[in] LDVT2 */
  640. /* > \verbatim */
  641. /* > LDVT2 is INTEGER */
  642. /* > The leading dimension of the array VT2. LDVT2 >= N. */
  643. /* > \endverbatim */
  644. /* > */
  645. /* > \param[in] IDXC */
  646. /* > \verbatim */
  647. /* > IDXC is INTEGER array, dimension (N) */
  648. /* > The permutation used to arrange the columns of U (and rows of */
  649. /* > VT) into three groups: the first group contains non-zero */
  650. /* > entries only at and above (or before) NL +1; the second */
  651. /* > contains non-zero entries only at and below (or after) NL+2; */
  652. /* > and the third is dense. The first column of U and the row of */
  653. /* > VT are treated separately, however. */
  654. /* > */
  655. /* > The rows of the singular vectors found by SLASD4 */
  656. /* > must be likewise permuted before the matrix multiplies can */
  657. /* > take place. */
  658. /* > \endverbatim */
  659. /* > */
  660. /* > \param[in] CTOT */
  661. /* > \verbatim */
  662. /* > CTOT is INTEGER array, dimension (4) */
  663. /* > A count of the total number of the various types of columns */
  664. /* > in U (or rows in VT), as described in IDXC. The fourth column */
  665. /* > type is any column which has been deflated. */
  666. /* > \endverbatim */
  667. /* > */
  668. /* > \param[in,out] Z */
  669. /* > \verbatim */
  670. /* > Z is REAL array, dimension (K) */
  671. /* > The first K elements of this array contain the components */
  672. /* > of the deflation-adjusted updating row vector. */
  673. /* > \endverbatim */
  674. /* > */
  675. /* > \param[out] INFO */
  676. /* > \verbatim */
  677. /* > INFO is INTEGER */
  678. /* > = 0: successful exit. */
  679. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  680. /* > > 0: if INFO = 1, a singular value did not converge */
  681. /* > \endverbatim */
  682. /* Authors: */
  683. /* ======== */
  684. /* > \author Univ. of Tennessee */
  685. /* > \author Univ. of California Berkeley */
  686. /* > \author Univ. of Colorado Denver */
  687. /* > \author NAG Ltd. */
  688. /* > \date June 2017 */
  689. /* > \ingroup OTHERauxiliary */
  690. /* > \par Contributors: */
  691. /* ================== */
  692. /* > */
  693. /* > Ming Gu and Huan Ren, Computer Science Division, University of */
  694. /* > California at Berkeley, USA */
  695. /* > */
  696. /* ===================================================================== */
  697. /* Subroutine */ int slasd3_(integer *nl, integer *nr, integer *sqre, integer
  698. *k, real *d__, real *q, integer *ldq, real *dsigma, real *u, integer *
  699. ldu, real *u2, integer *ldu2, real *vt, integer *ldvt, real *vt2,
  700. integer *ldvt2, integer *idxc, integer *ctot, real *z__, integer *
  701. info)
  702. {
  703. /* System generated locals */
  704. integer q_dim1, q_offset, u_dim1, u_offset, u2_dim1, u2_offset, vt_dim1,
  705. vt_offset, vt2_dim1, vt2_offset, i__1, i__2;
  706. real r__1, r__2;
  707. /* Local variables */
  708. real temp;
  709. extern real snrm2_(integer *, real *, integer *);
  710. integer i__, j, m, n, ctemp;
  711. extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *,
  712. integer *, real *, real *, integer *, real *, integer *, real *,
  713. real *, integer *);
  714. integer ktemp;
  715. extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
  716. integer *);
  717. extern real slamc3_(real *, real *);
  718. extern /* Subroutine */ int slasd4_(integer *, integer *, real *, real *,
  719. real *, real *, real *, real *, integer *);
  720. integer jc;
  721. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), slascl_(
  722. char *, integer *, integer *, real *, real *, integer *, integer *
  723. , real *, integer *, integer *), slacpy_(char *, integer *
  724. , integer *, real *, integer *, real *, integer *);
  725. real rho;
  726. integer nlp1, nlp2, nrp1;
  727. /* -- LAPACK auxiliary routine (version 3.7.1) -- */
  728. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  729. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  730. /* June 2017 */
  731. /* ===================================================================== */
  732. /* Test the input parameters. */
  733. /* Parameter adjustments */
  734. --d__;
  735. q_dim1 = *ldq;
  736. q_offset = 1 + q_dim1 * 1;
  737. q -= q_offset;
  738. --dsigma;
  739. u_dim1 = *ldu;
  740. u_offset = 1 + u_dim1 * 1;
  741. u -= u_offset;
  742. u2_dim1 = *ldu2;
  743. u2_offset = 1 + u2_dim1 * 1;
  744. u2 -= u2_offset;
  745. vt_dim1 = *ldvt;
  746. vt_offset = 1 + vt_dim1 * 1;
  747. vt -= vt_offset;
  748. vt2_dim1 = *ldvt2;
  749. vt2_offset = 1 + vt2_dim1 * 1;
  750. vt2 -= vt2_offset;
  751. --idxc;
  752. --ctot;
  753. --z__;
  754. /* Function Body */
  755. *info = 0;
  756. if (*nl < 1) {
  757. *info = -1;
  758. } else if (*nr < 1) {
  759. *info = -2;
  760. } else if (*sqre != 1 && *sqre != 0) {
  761. *info = -3;
  762. }
  763. n = *nl + *nr + 1;
  764. m = n + *sqre;
  765. nlp1 = *nl + 1;
  766. nlp2 = *nl + 2;
  767. if (*k < 1 || *k > n) {
  768. *info = -4;
  769. } else if (*ldq < *k) {
  770. *info = -7;
  771. } else if (*ldu < n) {
  772. *info = -10;
  773. } else if (*ldu2 < n) {
  774. *info = -12;
  775. } else if (*ldvt < m) {
  776. *info = -14;
  777. } else if (*ldvt2 < m) {
  778. *info = -16;
  779. }
  780. if (*info != 0) {
  781. i__1 = -(*info);
  782. xerbla_("SLASD3", &i__1, (ftnlen)6);
  783. return 0;
  784. }
  785. /* Quick return if possible */
  786. if (*k == 1) {
  787. d__[1] = abs(z__[1]);
  788. scopy_(&m, &vt2[vt2_dim1 + 1], ldvt2, &vt[vt_dim1 + 1], ldvt);
  789. if (z__[1] > 0.f) {
  790. scopy_(&n, &u2[u2_dim1 + 1], &c__1, &u[u_dim1 + 1], &c__1);
  791. } else {
  792. i__1 = n;
  793. for (i__ = 1; i__ <= i__1; ++i__) {
  794. u[i__ + u_dim1] = -u2[i__ + u2_dim1];
  795. /* L10: */
  796. }
  797. }
  798. return 0;
  799. }
  800. /* Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can */
  801. /* be computed with high relative accuracy (barring over/underflow). */
  802. /* This is a problem on machines without a guard digit in */
  803. /* add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). */
  804. /* The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I), */
  805. /* which on any of these machines zeros out the bottommost */
  806. /* bit of DSIGMA(I) if it is 1; this makes the subsequent */
  807. /* subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation */
  808. /* occurs. On binary machines with a guard digit (almost all */
  809. /* machines) it does not change DSIGMA(I) at all. On hexadecimal */
  810. /* and decimal machines with a guard digit, it slightly */
  811. /* changes the bottommost bits of DSIGMA(I). It does not account */
  812. /* for hexadecimal or decimal machines without guard digits */
  813. /* (we know of none). We use a subroutine call to compute */
  814. /* 2*DSIGMA(I) to prevent optimizing compilers from eliminating */
  815. /* this code. */
  816. i__1 = *k;
  817. for (i__ = 1; i__ <= i__1; ++i__) {
  818. dsigma[i__] = slamc3_(&dsigma[i__], &dsigma[i__]) - dsigma[i__];
  819. /* L20: */
  820. }
  821. /* Keep a copy of Z. */
  822. scopy_(k, &z__[1], &c__1, &q[q_offset], &c__1);
  823. /* Normalize Z. */
  824. rho = snrm2_(k, &z__[1], &c__1);
  825. slascl_("G", &c__0, &c__0, &rho, &c_b13, k, &c__1, &z__[1], k, info);
  826. rho *= rho;
  827. /* Find the new singular values. */
  828. i__1 = *k;
  829. for (j = 1; j <= i__1; ++j) {
  830. slasd4_(k, &j, &dsigma[1], &z__[1], &u[j * u_dim1 + 1], &rho, &d__[j],
  831. &vt[j * vt_dim1 + 1], info);
  832. /* If the zero finder fails, report the convergence failure. */
  833. if (*info != 0) {
  834. return 0;
  835. }
  836. /* L30: */
  837. }
  838. /* Compute updated Z. */
  839. i__1 = *k;
  840. for (i__ = 1; i__ <= i__1; ++i__) {
  841. z__[i__] = u[i__ + *k * u_dim1] * vt[i__ + *k * vt_dim1];
  842. i__2 = i__ - 1;
  843. for (j = 1; j <= i__2; ++j) {
  844. z__[i__] *= u[i__ + j * u_dim1] * vt[i__ + j * vt_dim1] / (dsigma[
  845. i__] - dsigma[j]) / (dsigma[i__] + dsigma[j]);
  846. /* L40: */
  847. }
  848. i__2 = *k - 1;
  849. for (j = i__; j <= i__2; ++j) {
  850. z__[i__] *= u[i__ + j * u_dim1] * vt[i__ + j * vt_dim1] / (dsigma[
  851. i__] - dsigma[j + 1]) / (dsigma[i__] + dsigma[j + 1]);
  852. /* L50: */
  853. }
  854. r__2 = sqrt((r__1 = z__[i__], abs(r__1)));
  855. z__[i__] = r_sign(&r__2, &q[i__ + q_dim1]);
  856. /* L60: */
  857. }
  858. /* Compute left singular vectors of the modified diagonal matrix, */
  859. /* and store related information for the right singular vectors. */
  860. i__1 = *k;
  861. for (i__ = 1; i__ <= i__1; ++i__) {
  862. vt[i__ * vt_dim1 + 1] = z__[1] / u[i__ * u_dim1 + 1] / vt[i__ *
  863. vt_dim1 + 1];
  864. u[i__ * u_dim1 + 1] = -1.f;
  865. i__2 = *k;
  866. for (j = 2; j <= i__2; ++j) {
  867. vt[j + i__ * vt_dim1] = z__[j] / u[j + i__ * u_dim1] / vt[j + i__
  868. * vt_dim1];
  869. u[j + i__ * u_dim1] = dsigma[j] * vt[j + i__ * vt_dim1];
  870. /* L70: */
  871. }
  872. temp = snrm2_(k, &u[i__ * u_dim1 + 1], &c__1);
  873. q[i__ * q_dim1 + 1] = u[i__ * u_dim1 + 1] / temp;
  874. i__2 = *k;
  875. for (j = 2; j <= i__2; ++j) {
  876. jc = idxc[j];
  877. q[j + i__ * q_dim1] = u[jc + i__ * u_dim1] / temp;
  878. /* L80: */
  879. }
  880. /* L90: */
  881. }
  882. /* Update the left singular vector matrix. */
  883. if (*k == 2) {
  884. sgemm_("N", "N", &n, k, k, &c_b13, &u2[u2_offset], ldu2, &q[q_offset],
  885. ldq, &c_b26, &u[u_offset], ldu);
  886. goto L100;
  887. }
  888. if (ctot[1] > 0) {
  889. sgemm_("N", "N", nl, k, &ctot[1], &c_b13, &u2[(u2_dim1 << 1) + 1],
  890. ldu2, &q[q_dim1 + 2], ldq, &c_b26, &u[u_dim1 + 1], ldu);
  891. if (ctot[3] > 0) {
  892. ktemp = ctot[1] + 2 + ctot[2];
  893. sgemm_("N", "N", nl, k, &ctot[3], &c_b13, &u2[ktemp * u2_dim1 + 1]
  894. , ldu2, &q[ktemp + q_dim1], ldq, &c_b13, &u[u_dim1 + 1],
  895. ldu);
  896. }
  897. } else if (ctot[3] > 0) {
  898. ktemp = ctot[1] + 2 + ctot[2];
  899. sgemm_("N", "N", nl, k, &ctot[3], &c_b13, &u2[ktemp * u2_dim1 + 1],
  900. ldu2, &q[ktemp + q_dim1], ldq, &c_b26, &u[u_dim1 + 1], ldu);
  901. } else {
  902. slacpy_("F", nl, k, &u2[u2_offset], ldu2, &u[u_offset], ldu);
  903. }
  904. scopy_(k, &q[q_dim1 + 1], ldq, &u[nlp1 + u_dim1], ldu);
  905. ktemp = ctot[1] + 2;
  906. ctemp = ctot[2] + ctot[3];
  907. sgemm_("N", "N", nr, k, &ctemp, &c_b13, &u2[nlp2 + ktemp * u2_dim1], ldu2,
  908. &q[ktemp + q_dim1], ldq, &c_b26, &u[nlp2 + u_dim1], ldu);
  909. /* Generate the right singular vectors. */
  910. L100:
  911. i__1 = *k;
  912. for (i__ = 1; i__ <= i__1; ++i__) {
  913. temp = snrm2_(k, &vt[i__ * vt_dim1 + 1], &c__1);
  914. q[i__ + q_dim1] = vt[i__ * vt_dim1 + 1] / temp;
  915. i__2 = *k;
  916. for (j = 2; j <= i__2; ++j) {
  917. jc = idxc[j];
  918. q[i__ + j * q_dim1] = vt[jc + i__ * vt_dim1] / temp;
  919. /* L110: */
  920. }
  921. /* L120: */
  922. }
  923. /* Update the right singular vector matrix. */
  924. if (*k == 2) {
  925. sgemm_("N", "N", k, &m, k, &c_b13, &q[q_offset], ldq, &vt2[vt2_offset]
  926. , ldvt2, &c_b26, &vt[vt_offset], ldvt);
  927. return 0;
  928. }
  929. ktemp = ctot[1] + 1;
  930. sgemm_("N", "N", k, &nlp1, &ktemp, &c_b13, &q[q_dim1 + 1], ldq, &vt2[
  931. vt2_dim1 + 1], ldvt2, &c_b26, &vt[vt_dim1 + 1], ldvt);
  932. ktemp = ctot[1] + 2 + ctot[2];
  933. if (ktemp <= *ldvt2) {
  934. sgemm_("N", "N", k, &nlp1, &ctot[3], &c_b13, &q[ktemp * q_dim1 + 1],
  935. ldq, &vt2[ktemp + vt2_dim1], ldvt2, &c_b13, &vt[vt_dim1 + 1],
  936. ldvt);
  937. }
  938. ktemp = ctot[1] + 1;
  939. nrp1 = *nr + *sqre;
  940. if (ktemp > 1) {
  941. i__1 = *k;
  942. for (i__ = 1; i__ <= i__1; ++i__) {
  943. q[i__ + ktemp * q_dim1] = q[i__ + q_dim1];
  944. /* L130: */
  945. }
  946. i__1 = m;
  947. for (i__ = nlp2; i__ <= i__1; ++i__) {
  948. vt2[ktemp + i__ * vt2_dim1] = vt2[i__ * vt2_dim1 + 1];
  949. /* L140: */
  950. }
  951. }
  952. ctemp = ctot[2] + 1 + ctot[3];
  953. sgemm_("N", "N", k, &nrp1, &ctemp, &c_b13, &q[ktemp * q_dim1 + 1], ldq, &
  954. vt2[ktemp + nlp2 * vt2_dim1], ldvt2, &c_b26, &vt[nlp2 * vt_dim1 +
  955. 1], ldvt);
  956. return 0;
  957. /* End of SLASD3 */
  958. } /* slasd3_ */