You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dstevr.c 35 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__10 = 10;
  487. static integer c__1 = 1;
  488. static integer c__2 = 2;
  489. static integer c__3 = 3;
  490. static integer c__4 = 4;
  491. /* > \brief <b> DSTEVR computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER
  492. matrices</b> */
  493. /* =========== DOCUMENTATION =========== */
  494. /* Online html documentation available at */
  495. /* http://www.netlib.org/lapack/explore-html/ */
  496. /* > \htmlonly */
  497. /* > Download DSTEVR + dependencies */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dstevr.
  499. f"> */
  500. /* > [TGZ]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dstevr.
  502. f"> */
  503. /* > [ZIP]</a> */
  504. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dstevr.
  505. f"> */
  506. /* > [TXT]</a> */
  507. /* > \endhtmlonly */
  508. /* Definition: */
  509. /* =========== */
  510. /* SUBROUTINE DSTEVR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, */
  511. /* M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, */
  512. /* LIWORK, INFO ) */
  513. /* CHARACTER JOBZ, RANGE */
  514. /* INTEGER IL, INFO, IU, LDZ, LIWORK, LWORK, M, N */
  515. /* DOUBLE PRECISION ABSTOL, VL, VU */
  516. /* INTEGER ISUPPZ( * ), IWORK( * ) */
  517. /* DOUBLE PRECISION D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * ) */
  518. /* > \par Purpose: */
  519. /* ============= */
  520. /* > */
  521. /* > \verbatim */
  522. /* > */
  523. /* > DSTEVR computes selected eigenvalues and, optionally, eigenvectors */
  524. /* > of a real symmetric tridiagonal matrix T. Eigenvalues and */
  525. /* > eigenvectors can be selected by specifying either a range of values */
  526. /* > or a range of indices for the desired eigenvalues. */
  527. /* > */
  528. /* > Whenever possible, DSTEVR calls DSTEMR to compute the */
  529. /* > eigenspectrum using Relatively Robust Representations. DSTEMR */
  530. /* > computes eigenvalues by the dqds algorithm, while orthogonal */
  531. /* > eigenvectors are computed from various "good" L D L^T representations */
  532. /* > (also known as Relatively Robust Representations). Gram-Schmidt */
  533. /* > orthogonalization is avoided as far as possible. More specifically, */
  534. /* > the various steps of the algorithm are as follows. For the i-th */
  535. /* > unreduced block of T, */
  536. /* > (a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T */
  537. /* > is a relatively robust representation, */
  538. /* > (b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T to high */
  539. /* > relative accuracy by the dqds algorithm, */
  540. /* > (c) If there is a cluster of close eigenvalues, "choose" sigma_i */
  541. /* > close to the cluster, and go to step (a), */
  542. /* > (d) Given the approximate eigenvalue lambda_j of L_i D_i L_i^T, */
  543. /* > compute the corresponding eigenvector by forming a */
  544. /* > rank-revealing twisted factorization. */
  545. /* > The desired accuracy of the output can be specified by the input */
  546. /* > parameter ABSTOL. */
  547. /* > */
  548. /* > For more details, see "A new O(n^2) algorithm for the symmetric */
  549. /* > tridiagonal eigenvalue/eigenvector problem", by Inderjit Dhillon, */
  550. /* > Computer Science Division Technical Report No. UCB//CSD-97-971, */
  551. /* > UC Berkeley, May 1997. */
  552. /* > */
  553. /* > */
  554. /* > Note 1 : DSTEVR calls DSTEMR when the full spectrum is requested */
  555. /* > on machines which conform to the ieee-754 floating point standard. */
  556. /* > DSTEVR calls DSTEBZ and DSTEIN on non-ieee machines and */
  557. /* > when partial spectrum requests are made. */
  558. /* > */
  559. /* > Normal execution of DSTEMR may create NaNs and infinities and */
  560. /* > hence may abort due to a floating point exception in environments */
  561. /* > which do not handle NaNs and infinities in the ieee standard default */
  562. /* > manner. */
  563. /* > \endverbatim */
  564. /* Arguments: */
  565. /* ========== */
  566. /* > \param[in] JOBZ */
  567. /* > \verbatim */
  568. /* > JOBZ is CHARACTER*1 */
  569. /* > = 'N': Compute eigenvalues only; */
  570. /* > = 'V': Compute eigenvalues and eigenvectors. */
  571. /* > \endverbatim */
  572. /* > */
  573. /* > \param[in] RANGE */
  574. /* > \verbatim */
  575. /* > RANGE is CHARACTER*1 */
  576. /* > = 'A': all eigenvalues will be found. */
  577. /* > = 'V': all eigenvalues in the half-open interval (VL,VU] */
  578. /* > will be found. */
  579. /* > = 'I': the IL-th through IU-th eigenvalues will be found. */
  580. /* > For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and */
  581. /* > DSTEIN are called */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in] N */
  585. /* > \verbatim */
  586. /* > N is INTEGER */
  587. /* > The order of the matrix. N >= 0. */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[in,out] D */
  591. /* > \verbatim */
  592. /* > D is DOUBLE PRECISION array, dimension (N) */
  593. /* > On entry, the n diagonal elements of the tridiagonal matrix */
  594. /* > A. */
  595. /* > On exit, D may be multiplied by a constant factor chosen */
  596. /* > to avoid over/underflow in computing the eigenvalues. */
  597. /* > \endverbatim */
  598. /* > */
  599. /* > \param[in,out] E */
  600. /* > \verbatim */
  601. /* > E is DOUBLE PRECISION array, dimension (f2cmax(1,N-1)) */
  602. /* > On entry, the (n-1) subdiagonal elements of the tridiagonal */
  603. /* > matrix A in elements 1 to N-1 of E. */
  604. /* > On exit, E may be multiplied by a constant factor chosen */
  605. /* > to avoid over/underflow in computing the eigenvalues. */
  606. /* > \endverbatim */
  607. /* > */
  608. /* > \param[in] VL */
  609. /* > \verbatim */
  610. /* > VL is DOUBLE PRECISION */
  611. /* > If RANGE='V', the lower bound of the interval to */
  612. /* > be searched for eigenvalues. VL < VU. */
  613. /* > Not referenced if RANGE = 'A' or 'I'. */
  614. /* > \endverbatim */
  615. /* > */
  616. /* > \param[in] VU */
  617. /* > \verbatim */
  618. /* > VU is DOUBLE PRECISION */
  619. /* > If RANGE='V', the upper bound of the interval to */
  620. /* > be searched for eigenvalues. VL < VU. */
  621. /* > Not referenced if RANGE = 'A' or 'I'. */
  622. /* > \endverbatim */
  623. /* > */
  624. /* > \param[in] IL */
  625. /* > \verbatim */
  626. /* > IL is INTEGER */
  627. /* > If RANGE='I', the index of the */
  628. /* > smallest eigenvalue to be returned. */
  629. /* > 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
  630. /* > Not referenced if RANGE = 'A' or 'V'. */
  631. /* > \endverbatim */
  632. /* > */
  633. /* > \param[in] IU */
  634. /* > \verbatim */
  635. /* > IU is INTEGER */
  636. /* > If RANGE='I', the index of the */
  637. /* > largest eigenvalue to be returned. */
  638. /* > 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
  639. /* > Not referenced if RANGE = 'A' or 'V'. */
  640. /* > \endverbatim */
  641. /* > */
  642. /* > \param[in] ABSTOL */
  643. /* > \verbatim */
  644. /* > ABSTOL is DOUBLE PRECISION */
  645. /* > The absolute error tolerance for the eigenvalues. */
  646. /* > An approximate eigenvalue is accepted as converged */
  647. /* > when it is determined to lie in an interval [a,b] */
  648. /* > of width less than or equal to */
  649. /* > */
  650. /* > ABSTOL + EPS * f2cmax( |a|,|b| ) , */
  651. /* > */
  652. /* > where EPS is the machine precision. If ABSTOL is less than */
  653. /* > or equal to zero, then EPS*|T| will be used in its place, */
  654. /* > where |T| is the 1-norm of the tridiagonal matrix obtained */
  655. /* > by reducing A to tridiagonal form. */
  656. /* > */
  657. /* > See "Computing Small Singular Values of Bidiagonal Matrices */
  658. /* > with Guaranteed High Relative Accuracy," by Demmel and */
  659. /* > Kahan, LAPACK Working Note #3. */
  660. /* > */
  661. /* > If high relative accuracy is important, set ABSTOL to */
  662. /* > DLAMCH( 'Safe minimum' ). Doing so will guarantee that */
  663. /* > eigenvalues are computed to high relative accuracy when */
  664. /* > possible in future releases. The current code does not */
  665. /* > make any guarantees about high relative accuracy, but */
  666. /* > future releases will. See J. Barlow and J. Demmel, */
  667. /* > "Computing Accurate Eigensystems of Scaled Diagonally */
  668. /* > Dominant Matrices", LAPACK Working Note #7, for a discussion */
  669. /* > of which matrices define their eigenvalues to high relative */
  670. /* > accuracy. */
  671. /* > \endverbatim */
  672. /* > */
  673. /* > \param[out] M */
  674. /* > \verbatim */
  675. /* > M is INTEGER */
  676. /* > The total number of eigenvalues found. 0 <= M <= N. */
  677. /* > If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
  678. /* > \endverbatim */
  679. /* > */
  680. /* > \param[out] W */
  681. /* > \verbatim */
  682. /* > W is DOUBLE PRECISION array, dimension (N) */
  683. /* > The first M elements contain the selected eigenvalues in */
  684. /* > ascending order. */
  685. /* > \endverbatim */
  686. /* > */
  687. /* > \param[out] Z */
  688. /* > \verbatim */
  689. /* > Z is DOUBLE PRECISION array, dimension (LDZ, f2cmax(1,M) ) */
  690. /* > If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
  691. /* > contain the orthonormal eigenvectors of the matrix A */
  692. /* > corresponding to the selected eigenvalues, with the i-th */
  693. /* > column of Z holding the eigenvector associated with W(i). */
  694. /* > Note: the user must ensure that at least f2cmax(1,M) columns are */
  695. /* > supplied in the array Z; if RANGE = 'V', the exact value of M */
  696. /* > is not known in advance and an upper bound must be used. */
  697. /* > \endverbatim */
  698. /* > */
  699. /* > \param[in] LDZ */
  700. /* > \verbatim */
  701. /* > LDZ is INTEGER */
  702. /* > The leading dimension of the array Z. LDZ >= 1, and if */
  703. /* > JOBZ = 'V', LDZ >= f2cmax(1,N). */
  704. /* > \endverbatim */
  705. /* > */
  706. /* > \param[out] ISUPPZ */
  707. /* > \verbatim */
  708. /* > ISUPPZ is INTEGER array, dimension ( 2*f2cmax(1,M) ) */
  709. /* > The support of the eigenvectors in Z, i.e., the indices */
  710. /* > indicating the nonzero elements in Z. The i-th eigenvector */
  711. /* > is nonzero only in elements ISUPPZ( 2*i-1 ) through */
  712. /* > ISUPPZ( 2*i ). */
  713. /* > Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1 */
  714. /* > \endverbatim */
  715. /* > */
  716. /* > \param[out] WORK */
  717. /* > \verbatim */
  718. /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
  719. /* > On exit, if INFO = 0, WORK(1) returns the optimal (and */
  720. /* > minimal) LWORK. */
  721. /* > \endverbatim */
  722. /* > */
  723. /* > \param[in] LWORK */
  724. /* > \verbatim */
  725. /* > LWORK is INTEGER */
  726. /* > The dimension of the array WORK. LWORK >= f2cmax(1,20*N). */
  727. /* > */
  728. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  729. /* > only calculates the optimal sizes of the WORK and IWORK */
  730. /* > arrays, returns these values as the first entries of the WORK */
  731. /* > and IWORK arrays, and no error message related to LWORK or */
  732. /* > LIWORK is issued by XERBLA. */
  733. /* > \endverbatim */
  734. /* > */
  735. /* > \param[out] IWORK */
  736. /* > \verbatim */
  737. /* > IWORK is INTEGER array, dimension (MAX(1,LIWORK)) */
  738. /* > On exit, if INFO = 0, IWORK(1) returns the optimal (and */
  739. /* > minimal) LIWORK. */
  740. /* > \endverbatim */
  741. /* > */
  742. /* > \param[in] LIWORK */
  743. /* > \verbatim */
  744. /* > LIWORK is INTEGER */
  745. /* > The dimension of the array IWORK. LIWORK >= f2cmax(1,10*N). */
  746. /* > */
  747. /* > If LIWORK = -1, then a workspace query is assumed; the */
  748. /* > routine only calculates the optimal sizes of the WORK and */
  749. /* > IWORK arrays, returns these values as the first entries of */
  750. /* > the WORK and IWORK arrays, and no error message related to */
  751. /* > LWORK or LIWORK is issued by XERBLA. */
  752. /* > \endverbatim */
  753. /* > */
  754. /* > \param[out] INFO */
  755. /* > \verbatim */
  756. /* > INFO is INTEGER */
  757. /* > = 0: successful exit */
  758. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  759. /* > > 0: Internal error */
  760. /* > \endverbatim */
  761. /* Authors: */
  762. /* ======== */
  763. /* > \author Univ. of Tennessee */
  764. /* > \author Univ. of California Berkeley */
  765. /* > \author Univ. of Colorado Denver */
  766. /* > \author NAG Ltd. */
  767. /* > \date June 2016 */
  768. /* > \ingroup doubleOTHEReigen */
  769. /* > \par Contributors: */
  770. /* ================== */
  771. /* > */
  772. /* > Inderjit Dhillon, IBM Almaden, USA \n */
  773. /* > Osni Marques, LBNL/NERSC, USA \n */
  774. /* > Ken Stanley, Computer Science Division, University of */
  775. /* > California at Berkeley, USA \n */
  776. /* > */
  777. /* ===================================================================== */
  778. /* Subroutine */ int dstevr_(char *jobz, char *range, integer *n, doublereal *
  779. d__, doublereal *e, doublereal *vl, doublereal *vu, integer *il,
  780. integer *iu, doublereal *abstol, integer *m, doublereal *w,
  781. doublereal *z__, integer *ldz, integer *isuppz, doublereal *work,
  782. integer *lwork, integer *iwork, integer *liwork, integer *info)
  783. {
  784. /* System generated locals */
  785. integer z_dim1, z_offset, i__1, i__2;
  786. doublereal d__1, d__2;
  787. /* Local variables */
  788. integer imax;
  789. doublereal rmin, rmax;
  790. logical test;
  791. doublereal tnrm;
  792. integer itmp1, i__, j;
  793. extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
  794. integer *);
  795. doublereal sigma;
  796. extern logical lsame_(char *, char *);
  797. char order[1];
  798. extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
  799. doublereal *, integer *), dswap_(integer *, doublereal *, integer
  800. *, doublereal *, integer *);
  801. integer lwmin;
  802. logical wantz;
  803. integer jj;
  804. extern doublereal dlamch_(char *);
  805. logical alleig, indeig;
  806. integer iscale, ieeeok, indibl, indifl;
  807. logical valeig;
  808. doublereal safmin;
  809. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  810. integer *, integer *, ftnlen, ftnlen);
  811. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  812. doublereal bignum;
  813. extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
  814. integer indisp;
  815. extern /* Subroutine */ int dstein_(integer *, doublereal *, doublereal *,
  816. integer *, doublereal *, integer *, integer *, doublereal *,
  817. integer *, doublereal *, integer *, integer *, integer *),
  818. dsterf_(integer *, doublereal *, doublereal *, integer *);
  819. integer indiwo;
  820. extern /* Subroutine */ int dstebz_(char *, char *, integer *, doublereal
  821. *, doublereal *, integer *, integer *, doublereal *, doublereal *,
  822. doublereal *, integer *, integer *, doublereal *, integer *,
  823. integer *, doublereal *, integer *, integer *),
  824. dstemr_(char *, char *, integer *, doublereal *, doublereal *,
  825. doublereal *, doublereal *, integer *, integer *, integer *,
  826. doublereal *, doublereal *, integer *, integer *, integer *,
  827. logical *, doublereal *, integer *, integer *, integer *, integer
  828. *);
  829. integer liwmin;
  830. logical tryrac;
  831. integer nsplit;
  832. doublereal smlnum;
  833. logical lquery;
  834. doublereal eps, vll, vuu, tmp1;
  835. /* -- LAPACK driver routine (version 3.7.0) -- */
  836. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  837. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  838. /* June 2016 */
  839. /* ===================================================================== */
  840. /* Test the input parameters. */
  841. /* Parameter adjustments */
  842. --d__;
  843. --e;
  844. --w;
  845. z_dim1 = *ldz;
  846. z_offset = 1 + z_dim1 * 1;
  847. z__ -= z_offset;
  848. --isuppz;
  849. --work;
  850. --iwork;
  851. /* Function Body */
  852. ieeeok = ilaenv_(&c__10, "DSTEVR", "N", &c__1, &c__2, &c__3, &c__4, (
  853. ftnlen)6, (ftnlen)1);
  854. wantz = lsame_(jobz, "V");
  855. alleig = lsame_(range, "A");
  856. valeig = lsame_(range, "V");
  857. indeig = lsame_(range, "I");
  858. lquery = *lwork == -1 || *liwork == -1;
  859. /* Computing MAX */
  860. i__1 = 1, i__2 = *n * 20;
  861. lwmin = f2cmax(i__1,i__2);
  862. /* Computing MAX */
  863. i__1 = 1, i__2 = *n * 10;
  864. liwmin = f2cmax(i__1,i__2);
  865. *info = 0;
  866. if (! (wantz || lsame_(jobz, "N"))) {
  867. *info = -1;
  868. } else if (! (alleig || valeig || indeig)) {
  869. *info = -2;
  870. } else if (*n < 0) {
  871. *info = -3;
  872. } else {
  873. if (valeig) {
  874. if (*n > 0 && *vu <= *vl) {
  875. *info = -7;
  876. }
  877. } else if (indeig) {
  878. if (*il < 1 || *il > f2cmax(1,*n)) {
  879. *info = -8;
  880. } else if (*iu < f2cmin(*n,*il) || *iu > *n) {
  881. *info = -9;
  882. }
  883. }
  884. }
  885. if (*info == 0) {
  886. if (*ldz < 1 || wantz && *ldz < *n) {
  887. *info = -14;
  888. }
  889. }
  890. if (*info == 0) {
  891. work[1] = (doublereal) lwmin;
  892. iwork[1] = liwmin;
  893. if (*lwork < lwmin && ! lquery) {
  894. *info = -17;
  895. } else if (*liwork < liwmin && ! lquery) {
  896. *info = -19;
  897. }
  898. }
  899. if (*info != 0) {
  900. i__1 = -(*info);
  901. xerbla_("DSTEVR", &i__1, (ftnlen)6);
  902. return 0;
  903. } else if (lquery) {
  904. return 0;
  905. }
  906. /* Quick return if possible */
  907. *m = 0;
  908. if (*n == 0) {
  909. return 0;
  910. }
  911. if (*n == 1) {
  912. if (alleig || indeig) {
  913. *m = 1;
  914. w[1] = d__[1];
  915. } else {
  916. if (*vl < d__[1] && *vu >= d__[1]) {
  917. *m = 1;
  918. w[1] = d__[1];
  919. }
  920. }
  921. if (wantz) {
  922. z__[z_dim1 + 1] = 1.;
  923. }
  924. return 0;
  925. }
  926. /* Get machine constants. */
  927. safmin = dlamch_("Safe minimum");
  928. eps = dlamch_("Precision");
  929. smlnum = safmin / eps;
  930. bignum = 1. / smlnum;
  931. rmin = sqrt(smlnum);
  932. /* Computing MIN */
  933. d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin));
  934. rmax = f2cmin(d__1,d__2);
  935. /* Scale matrix to allowable range, if necessary. */
  936. iscale = 0;
  937. if (valeig) {
  938. vll = *vl;
  939. vuu = *vu;
  940. }
  941. tnrm = dlanst_("M", n, &d__[1], &e[1]);
  942. if (tnrm > 0. && tnrm < rmin) {
  943. iscale = 1;
  944. sigma = rmin / tnrm;
  945. } else if (tnrm > rmax) {
  946. iscale = 1;
  947. sigma = rmax / tnrm;
  948. }
  949. if (iscale == 1) {
  950. dscal_(n, &sigma, &d__[1], &c__1);
  951. i__1 = *n - 1;
  952. dscal_(&i__1, &sigma, &e[1], &c__1);
  953. if (valeig) {
  954. vll = *vl * sigma;
  955. vuu = *vu * sigma;
  956. }
  957. }
  958. /* Initialize indices into workspaces. Note: These indices are used only */
  959. /* if DSTERF or DSTEMR fail. */
  960. /* IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and */
  961. /* stores the block indices of each of the M<=N eigenvalues. */
  962. indibl = 1;
  963. /* IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and */
  964. /* stores the starting and finishing indices of each block. */
  965. indisp = indibl + *n;
  966. /* IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors */
  967. /* that corresponding to eigenvectors that fail to converge in */
  968. /* DSTEIN. This information is discarded; if any fail, the driver */
  969. /* returns INFO > 0. */
  970. indifl = indisp + *n;
  971. /* INDIWO is the offset of the remaining integer workspace. */
  972. indiwo = indisp + *n;
  973. /* If all eigenvalues are desired, then */
  974. /* call DSTERF or DSTEMR. If this fails for some eigenvalue, then */
  975. /* try DSTEBZ. */
  976. test = FALSE_;
  977. if (indeig) {
  978. if (*il == 1 && *iu == *n) {
  979. test = TRUE_;
  980. }
  981. }
  982. if ((alleig || test) && ieeeok == 1) {
  983. i__1 = *n - 1;
  984. dcopy_(&i__1, &e[1], &c__1, &work[1], &c__1);
  985. if (! wantz) {
  986. dcopy_(n, &d__[1], &c__1, &w[1], &c__1);
  987. dsterf_(n, &w[1], &work[1], info);
  988. } else {
  989. dcopy_(n, &d__[1], &c__1, &work[*n + 1], &c__1);
  990. if (*abstol <= *n * 2. * eps) {
  991. tryrac = TRUE_;
  992. } else {
  993. tryrac = FALSE_;
  994. }
  995. i__1 = *lwork - (*n << 1);
  996. dstemr_(jobz, "A", n, &work[*n + 1], &work[1], vl, vu, il, iu, m,
  997. &w[1], &z__[z_offset], ldz, n, &isuppz[1], &tryrac, &work[
  998. (*n << 1) + 1], &i__1, &iwork[1], liwork, info);
  999. }
  1000. if (*info == 0) {
  1001. *m = *n;
  1002. goto L10;
  1003. }
  1004. *info = 0;
  1005. }
  1006. /* Otherwise, call DSTEBZ and, if eigenvectors are desired, DSTEIN. */
  1007. if (wantz) {
  1008. *(unsigned char *)order = 'B';
  1009. } else {
  1010. *(unsigned char *)order = 'E';
  1011. }
  1012. dstebz_(range, order, n, &vll, &vuu, il, iu, abstol, &d__[1], &e[1], m, &
  1013. nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[1], &iwork[
  1014. indiwo], info);
  1015. if (wantz) {
  1016. dstein_(n, &d__[1], &e[1], m, &w[1], &iwork[indibl], &iwork[indisp], &
  1017. z__[z_offset], ldz, &work[1], &iwork[indiwo], &iwork[indifl],
  1018. info);
  1019. }
  1020. /* If matrix was scaled, then rescale eigenvalues appropriately. */
  1021. L10:
  1022. if (iscale == 1) {
  1023. if (*info == 0) {
  1024. imax = *m;
  1025. } else {
  1026. imax = *info - 1;
  1027. }
  1028. d__1 = 1. / sigma;
  1029. dscal_(&imax, &d__1, &w[1], &c__1);
  1030. }
  1031. /* If eigenvalues are not in order, then sort them, along with */
  1032. /* eigenvectors. */
  1033. if (wantz) {
  1034. i__1 = *m - 1;
  1035. for (j = 1; j <= i__1; ++j) {
  1036. i__ = 0;
  1037. tmp1 = w[j];
  1038. i__2 = *m;
  1039. for (jj = j + 1; jj <= i__2; ++jj) {
  1040. if (w[jj] < tmp1) {
  1041. i__ = jj;
  1042. tmp1 = w[jj];
  1043. }
  1044. /* L20: */
  1045. }
  1046. if (i__ != 0) {
  1047. itmp1 = iwork[i__];
  1048. w[i__] = w[j];
  1049. iwork[i__] = iwork[j];
  1050. w[j] = tmp1;
  1051. iwork[j] = itmp1;
  1052. dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1],
  1053. &c__1);
  1054. }
  1055. /* L30: */
  1056. }
  1057. }
  1058. /* Causes problems with tests 19 & 20: */
  1059. /* IF (wantz .and. INDEIG ) Z( 1,1) = Z(1,1) / 1.002 + .002 */
  1060. work[1] = (doublereal) lwmin;
  1061. iwork[1] = liwmin;
  1062. return 0;
  1063. /* End of DSTEVR */
  1064. } /* dstevr_ */