You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dggsvp3.c 33 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c_n1 = -1;
  487. static doublereal c_b14 = 0.;
  488. static doublereal c_b24 = 1.;
  489. /* > \brief \b DGGSVP3 */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download DGGSVP3 + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dggsvp3
  496. .f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dggsvp3
  499. .f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dggsvp3
  502. .f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE DGGSVP3( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, */
  508. /* TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ, */
  509. /* IWORK, TAU, WORK, LWORK, INFO ) */
  510. /* CHARACTER JOBQ, JOBU, JOBV */
  511. /* INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P, LWORK */
  512. /* DOUBLE PRECISION TOLA, TOLB */
  513. /* INTEGER IWORK( * ) */
  514. /* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), Q( LDQ, * ), */
  515. /* $ TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * ) */
  516. /* > \par Purpose: */
  517. /* ============= */
  518. /* > */
  519. /* > \verbatim */
  520. /* > */
  521. /* > DGGSVP3 computes orthogonal matrices U, V and Q such that */
  522. /* > */
  523. /* > N-K-L K L */
  524. /* > U**T*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0; */
  525. /* > L ( 0 0 A23 ) */
  526. /* > M-K-L ( 0 0 0 ) */
  527. /* > */
  528. /* > N-K-L K L */
  529. /* > = K ( 0 A12 A13 ) if M-K-L < 0; */
  530. /* > M-K ( 0 0 A23 ) */
  531. /* > */
  532. /* > N-K-L K L */
  533. /* > V**T*B*Q = L ( 0 0 B13 ) */
  534. /* > P-L ( 0 0 0 ) */
  535. /* > */
  536. /* > where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular */
  537. /* > upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0, */
  538. /* > otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective */
  539. /* > numerical rank of the (M+P)-by-N matrix (A**T,B**T)**T. */
  540. /* > */
  541. /* > This decomposition is the preprocessing step for computing the */
  542. /* > Generalized Singular Value Decomposition (GSVD), see subroutine */
  543. /* > DGGSVD3. */
  544. /* > \endverbatim */
  545. /* Arguments: */
  546. /* ========== */
  547. /* > \param[in] JOBU */
  548. /* > \verbatim */
  549. /* > JOBU is CHARACTER*1 */
  550. /* > = 'U': Orthogonal matrix U is computed; */
  551. /* > = 'N': U is not computed. */
  552. /* > \endverbatim */
  553. /* > */
  554. /* > \param[in] JOBV */
  555. /* > \verbatim */
  556. /* > JOBV is CHARACTER*1 */
  557. /* > = 'V': Orthogonal matrix V is computed; */
  558. /* > = 'N': V is not computed. */
  559. /* > \endverbatim */
  560. /* > */
  561. /* > \param[in] JOBQ */
  562. /* > \verbatim */
  563. /* > JOBQ is CHARACTER*1 */
  564. /* > = 'Q': Orthogonal matrix Q is computed; */
  565. /* > = 'N': Q is not computed. */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in] M */
  569. /* > \verbatim */
  570. /* > M is INTEGER */
  571. /* > The number of rows of the matrix A. M >= 0. */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[in] P */
  575. /* > \verbatim */
  576. /* > P is INTEGER */
  577. /* > The number of rows of the matrix B. P >= 0. */
  578. /* > \endverbatim */
  579. /* > */
  580. /* > \param[in] N */
  581. /* > \verbatim */
  582. /* > N is INTEGER */
  583. /* > The number of columns of the matrices A and B. N >= 0. */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[in,out] A */
  587. /* > \verbatim */
  588. /* > A is DOUBLE PRECISION array, dimension (LDA,N) */
  589. /* > On entry, the M-by-N matrix A. */
  590. /* > On exit, A contains the triangular (or trapezoidal) matrix */
  591. /* > described in the Purpose section. */
  592. /* > \endverbatim */
  593. /* > */
  594. /* > \param[in] LDA */
  595. /* > \verbatim */
  596. /* > LDA is INTEGER */
  597. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  598. /* > \endverbatim */
  599. /* > */
  600. /* > \param[in,out] B */
  601. /* > \verbatim */
  602. /* > B is DOUBLE PRECISION array, dimension (LDB,N) */
  603. /* > On entry, the P-by-N matrix B. */
  604. /* > On exit, B contains the triangular matrix described in */
  605. /* > the Purpose section. */
  606. /* > \endverbatim */
  607. /* > */
  608. /* > \param[in] LDB */
  609. /* > \verbatim */
  610. /* > LDB is INTEGER */
  611. /* > The leading dimension of the array B. LDB >= f2cmax(1,P). */
  612. /* > \endverbatim */
  613. /* > */
  614. /* > \param[in] TOLA */
  615. /* > \verbatim */
  616. /* > TOLA is DOUBLE PRECISION */
  617. /* > \endverbatim */
  618. /* > */
  619. /* > \param[in] TOLB */
  620. /* > \verbatim */
  621. /* > TOLB is DOUBLE PRECISION */
  622. /* > */
  623. /* > TOLA and TOLB are the thresholds to determine the effective */
  624. /* > numerical rank of matrix B and a subblock of A. Generally, */
  625. /* > they are set to */
  626. /* > TOLA = MAX(M,N)*norm(A)*MACHEPS, */
  627. /* > TOLB = MAX(P,N)*norm(B)*MACHEPS. */
  628. /* > The size of TOLA and TOLB may affect the size of backward */
  629. /* > errors of the decomposition. */
  630. /* > \endverbatim */
  631. /* > */
  632. /* > \param[out] K */
  633. /* > \verbatim */
  634. /* > K is INTEGER */
  635. /* > \endverbatim */
  636. /* > */
  637. /* > \param[out] L */
  638. /* > \verbatim */
  639. /* > L is INTEGER */
  640. /* > */
  641. /* > On exit, K and L specify the dimension of the subblocks */
  642. /* > described in Purpose section. */
  643. /* > K + L = effective numerical rank of (A**T,B**T)**T. */
  644. /* > \endverbatim */
  645. /* > */
  646. /* > \param[out] U */
  647. /* > \verbatim */
  648. /* > U is DOUBLE PRECISION array, dimension (LDU,M) */
  649. /* > If JOBU = 'U', U contains the orthogonal matrix U. */
  650. /* > If JOBU = 'N', U is not referenced. */
  651. /* > \endverbatim */
  652. /* > */
  653. /* > \param[in] LDU */
  654. /* > \verbatim */
  655. /* > LDU is INTEGER */
  656. /* > The leading dimension of the array U. LDU >= f2cmax(1,M) if */
  657. /* > JOBU = 'U'; LDU >= 1 otherwise. */
  658. /* > \endverbatim */
  659. /* > */
  660. /* > \param[out] V */
  661. /* > \verbatim */
  662. /* > V is DOUBLE PRECISION array, dimension (LDV,P) */
  663. /* > If JOBV = 'V', V contains the orthogonal matrix V. */
  664. /* > If JOBV = 'N', V is not referenced. */
  665. /* > \endverbatim */
  666. /* > */
  667. /* > \param[in] LDV */
  668. /* > \verbatim */
  669. /* > LDV is INTEGER */
  670. /* > The leading dimension of the array V. LDV >= f2cmax(1,P) if */
  671. /* > JOBV = 'V'; LDV >= 1 otherwise. */
  672. /* > \endverbatim */
  673. /* > */
  674. /* > \param[out] Q */
  675. /* > \verbatim */
  676. /* > Q is DOUBLE PRECISION array, dimension (LDQ,N) */
  677. /* > If JOBQ = 'Q', Q contains the orthogonal matrix Q. */
  678. /* > If JOBQ = 'N', Q is not referenced. */
  679. /* > \endverbatim */
  680. /* > */
  681. /* > \param[in] LDQ */
  682. /* > \verbatim */
  683. /* > LDQ is INTEGER */
  684. /* > The leading dimension of the array Q. LDQ >= f2cmax(1,N) if */
  685. /* > JOBQ = 'Q'; LDQ >= 1 otherwise. */
  686. /* > \endverbatim */
  687. /* > */
  688. /* > \param[out] IWORK */
  689. /* > \verbatim */
  690. /* > IWORK is INTEGER array, dimension (N) */
  691. /* > \endverbatim */
  692. /* > */
  693. /* > \param[out] TAU */
  694. /* > \verbatim */
  695. /* > TAU is DOUBLE PRECISION array, dimension (N) */
  696. /* > \endverbatim */
  697. /* > */
  698. /* > \param[out] WORK */
  699. /* > \verbatim */
  700. /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
  701. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  702. /* > \endverbatim */
  703. /* > */
  704. /* > \param[in] LWORK */
  705. /* > \verbatim */
  706. /* > LWORK is INTEGER */
  707. /* > The dimension of the array WORK. */
  708. /* > */
  709. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  710. /* > only calculates the optimal size of the WORK array, returns */
  711. /* > this value as the first entry of the WORK array, and no error */
  712. /* > message related to LWORK is issued by XERBLA. */
  713. /* > \endverbatim */
  714. /* > */
  715. /* > \param[out] INFO */
  716. /* > \verbatim */
  717. /* > INFO is INTEGER */
  718. /* > = 0: successful exit */
  719. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  720. /* > \endverbatim */
  721. /* Authors: */
  722. /* ======== */
  723. /* > \author Univ. of Tennessee */
  724. /* > \author Univ. of California Berkeley */
  725. /* > \author Univ. of Colorado Denver */
  726. /* > \author NAG Ltd. */
  727. /* > \date August 2015 */
  728. /* > \ingroup doubleOTHERcomputational */
  729. /* > \par Further Details: */
  730. /* ===================== */
  731. /* > */
  732. /* > \verbatim */
  733. /* > */
  734. /* > The subroutine uses LAPACK subroutine DGEQP3 for the QR factorization */
  735. /* > with column pivoting to detect the effective numerical rank of the */
  736. /* > a matrix. It may be replaced by a better rank determination strategy. */
  737. /* > */
  738. /* > DGGSVP3 replaces the deprecated subroutine DGGSVP. */
  739. /* > */
  740. /* > \endverbatim */
  741. /* > */
  742. /* ===================================================================== */
  743. /* Subroutine */ int dggsvp3_(char *jobu, char *jobv, char *jobq, integer *m,
  744. integer *p, integer *n, doublereal *a, integer *lda, doublereal *b,
  745. integer *ldb, doublereal *tola, doublereal *tolb, integer *k, integer
  746. *l, doublereal *u, integer *ldu, doublereal *v, integer *ldv,
  747. doublereal *q, integer *ldq, integer *iwork, doublereal *tau,
  748. doublereal *work, integer *lwork, integer *info)
  749. {
  750. /* System generated locals */
  751. integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, u_dim1,
  752. u_offset, v_dim1, v_offset, i__1, i__2, i__3;
  753. doublereal d__1;
  754. /* Local variables */
  755. integer i__, j;
  756. extern logical lsame_(char *, char *);
  757. logical wantq, wantu, wantv;
  758. extern /* Subroutine */ int dgeqp3_(integer *, integer *, doublereal *,
  759. integer *, integer *, doublereal *, doublereal *, integer *,
  760. integer *), dgeqr2_(integer *, integer *, doublereal *, integer *,
  761. doublereal *, doublereal *, integer *), dgerq2_(integer *,
  762. integer *, doublereal *, integer *, doublereal *, doublereal *,
  763. integer *), dorg2r_(integer *, integer *, integer *, doublereal *,
  764. integer *, doublereal *, doublereal *, integer *), dorm2r_(char *
  765. , char *, integer *, integer *, integer *, doublereal *, integer *
  766. , doublereal *, doublereal *, integer *, doublereal *, integer *), dormr2_(char *, char *, integer *, integer *,
  767. integer *, doublereal *, integer *, doublereal *, doublereal *,
  768. integer *, doublereal *, integer *), dlacpy_(char
  769. *, integer *, integer *, doublereal *, integer *, doublereal *,
  770. integer *), dlaset_(char *, integer *, integer *,
  771. doublereal *, doublereal *, doublereal *, integer *),
  772. xerbla_(char *, integer *, ftnlen), dlapmt_(logical *, integer *,
  773. integer *, doublereal *, integer *, integer *);
  774. logical forwrd;
  775. integer lwkopt;
  776. logical lquery;
  777. /* -- LAPACK computational routine (version 3.7.0) -- */
  778. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  779. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  780. /* August 2015 */
  781. /* ===================================================================== */
  782. /* Test the input parameters */
  783. /* Parameter adjustments */
  784. a_dim1 = *lda;
  785. a_offset = 1 + a_dim1 * 1;
  786. a -= a_offset;
  787. b_dim1 = *ldb;
  788. b_offset = 1 + b_dim1 * 1;
  789. b -= b_offset;
  790. u_dim1 = *ldu;
  791. u_offset = 1 + u_dim1 * 1;
  792. u -= u_offset;
  793. v_dim1 = *ldv;
  794. v_offset = 1 + v_dim1 * 1;
  795. v -= v_offset;
  796. q_dim1 = *ldq;
  797. q_offset = 1 + q_dim1 * 1;
  798. q -= q_offset;
  799. --iwork;
  800. --tau;
  801. --work;
  802. /* Function Body */
  803. wantu = lsame_(jobu, "U");
  804. wantv = lsame_(jobv, "V");
  805. wantq = lsame_(jobq, "Q");
  806. forwrd = TRUE_;
  807. lquery = *lwork == -1;
  808. lwkopt = 1;
  809. /* Test the input arguments */
  810. *info = 0;
  811. if (! (wantu || lsame_(jobu, "N"))) {
  812. *info = -1;
  813. } else if (! (wantv || lsame_(jobv, "N"))) {
  814. *info = -2;
  815. } else if (! (wantq || lsame_(jobq, "N"))) {
  816. *info = -3;
  817. } else if (*m < 0) {
  818. *info = -4;
  819. } else if (*p < 0) {
  820. *info = -5;
  821. } else if (*n < 0) {
  822. *info = -6;
  823. } else if (*lda < f2cmax(1,*m)) {
  824. *info = -8;
  825. } else if (*ldb < f2cmax(1,*p)) {
  826. *info = -10;
  827. } else if (*ldu < 1 || wantu && *ldu < *m) {
  828. *info = -16;
  829. } else if (*ldv < 1 || wantv && *ldv < *p) {
  830. *info = -18;
  831. } else if (*ldq < 1 || wantq && *ldq < *n) {
  832. *info = -20;
  833. } else if (*lwork < 1 && ! lquery) {
  834. *info = -24;
  835. }
  836. /* Compute workspace */
  837. if (*info == 0) {
  838. dgeqp3_(p, n, &b[b_offset], ldb, &iwork[1], &tau[1], &work[1], &c_n1,
  839. info);
  840. lwkopt = (integer) work[1];
  841. if (wantv) {
  842. lwkopt = f2cmax(lwkopt,*p);
  843. }
  844. /* Computing MAX */
  845. i__1 = lwkopt, i__2 = f2cmin(*n,*p);
  846. lwkopt = f2cmax(i__1,i__2);
  847. lwkopt = f2cmax(lwkopt,*m);
  848. if (wantq) {
  849. lwkopt = f2cmax(lwkopt,*n);
  850. }
  851. dgeqp3_(m, n, &a[a_offset], lda, &iwork[1], &tau[1], &work[1], &c_n1,
  852. info);
  853. /* Computing MAX */
  854. i__1 = lwkopt, i__2 = (integer) work[1];
  855. lwkopt = f2cmax(i__1,i__2);
  856. lwkopt = f2cmax(1,lwkopt);
  857. work[1] = (doublereal) lwkopt;
  858. }
  859. if (*info != 0) {
  860. i__1 = -(*info);
  861. xerbla_("DGGSVP3", &i__1, (ftnlen)7);
  862. return 0;
  863. }
  864. if (lquery) {
  865. return 0;
  866. }
  867. /* QR with column pivoting of B: B*P = V*( S11 S12 ) */
  868. /* ( 0 0 ) */
  869. i__1 = *n;
  870. for (i__ = 1; i__ <= i__1; ++i__) {
  871. iwork[i__] = 0;
  872. /* L10: */
  873. }
  874. dgeqp3_(p, n, &b[b_offset], ldb, &iwork[1], &tau[1], &work[1], lwork,
  875. info);
  876. /* Update A := A*P */
  877. dlapmt_(&forwrd, m, n, &a[a_offset], lda, &iwork[1]);
  878. /* Determine the effective rank of matrix B. */
  879. *l = 0;
  880. i__1 = f2cmin(*p,*n);
  881. for (i__ = 1; i__ <= i__1; ++i__) {
  882. if ((d__1 = b[i__ + i__ * b_dim1], abs(d__1)) > *tolb) {
  883. ++(*l);
  884. }
  885. /* L20: */
  886. }
  887. if (wantv) {
  888. /* Copy the details of V, and form V. */
  889. dlaset_("Full", p, p, &c_b14, &c_b14, &v[v_offset], ldv);
  890. if (*p > 1) {
  891. i__1 = *p - 1;
  892. dlacpy_("Lower", &i__1, n, &b[b_dim1 + 2], ldb, &v[v_dim1 + 2],
  893. ldv);
  894. }
  895. i__1 = f2cmin(*p,*n);
  896. dorg2r_(p, p, &i__1, &v[v_offset], ldv, &tau[1], &work[1], info);
  897. }
  898. /* Clean up B */
  899. i__1 = *l - 1;
  900. for (j = 1; j <= i__1; ++j) {
  901. i__2 = *l;
  902. for (i__ = j + 1; i__ <= i__2; ++i__) {
  903. b[i__ + j * b_dim1] = 0.;
  904. /* L30: */
  905. }
  906. /* L40: */
  907. }
  908. if (*p > *l) {
  909. i__1 = *p - *l;
  910. dlaset_("Full", &i__1, n, &c_b14, &c_b14, &b[*l + 1 + b_dim1], ldb);
  911. }
  912. if (wantq) {
  913. /* Set Q = I and Update Q := Q*P */
  914. dlaset_("Full", n, n, &c_b14, &c_b24, &q[q_offset], ldq);
  915. dlapmt_(&forwrd, n, n, &q[q_offset], ldq, &iwork[1]);
  916. }
  917. if (*p >= *l && *n != *l) {
  918. /* RQ factorization of (S11 S12): ( S11 S12 ) = ( 0 S12 )*Z */
  919. dgerq2_(l, n, &b[b_offset], ldb, &tau[1], &work[1], info);
  920. /* Update A := A*Z**T */
  921. dormr2_("Right", "Transpose", m, n, l, &b[b_offset], ldb, &tau[1], &a[
  922. a_offset], lda, &work[1], info);
  923. if (wantq) {
  924. /* Update Q := Q*Z**T */
  925. dormr2_("Right", "Transpose", n, n, l, &b[b_offset], ldb, &tau[1],
  926. &q[q_offset], ldq, &work[1], info);
  927. }
  928. /* Clean up B */
  929. i__1 = *n - *l;
  930. dlaset_("Full", l, &i__1, &c_b14, &c_b14, &b[b_offset], ldb);
  931. i__1 = *n;
  932. for (j = *n - *l + 1; j <= i__1; ++j) {
  933. i__2 = *l;
  934. for (i__ = j - *n + *l + 1; i__ <= i__2; ++i__) {
  935. b[i__ + j * b_dim1] = 0.;
  936. /* L50: */
  937. }
  938. /* L60: */
  939. }
  940. }
  941. /* Let N-L L */
  942. /* A = ( A11 A12 ) M, */
  943. /* then the following does the complete QR decomposition of A11: */
  944. /* A11 = U*( 0 T12 )*P1**T */
  945. /* ( 0 0 ) */
  946. i__1 = *n - *l;
  947. for (i__ = 1; i__ <= i__1; ++i__) {
  948. iwork[i__] = 0;
  949. /* L70: */
  950. }
  951. i__1 = *n - *l;
  952. dgeqp3_(m, &i__1, &a[a_offset], lda, &iwork[1], &tau[1], &work[1], lwork,
  953. info);
  954. /* Determine the effective rank of A11 */
  955. *k = 0;
  956. /* Computing MIN */
  957. i__2 = *m, i__3 = *n - *l;
  958. i__1 = f2cmin(i__2,i__3);
  959. for (i__ = 1; i__ <= i__1; ++i__) {
  960. if ((d__1 = a[i__ + i__ * a_dim1], abs(d__1)) > *tola) {
  961. ++(*k);
  962. }
  963. /* L80: */
  964. }
  965. /* Update A12 := U**T*A12, where A12 = A( 1:M, N-L+1:N ) */
  966. /* Computing MIN */
  967. i__2 = *m, i__3 = *n - *l;
  968. i__1 = f2cmin(i__2,i__3);
  969. dorm2r_("Left", "Transpose", m, l, &i__1, &a[a_offset], lda, &tau[1], &a[(
  970. *n - *l + 1) * a_dim1 + 1], lda, &work[1], info);
  971. if (wantu) {
  972. /* Copy the details of U, and form U */
  973. dlaset_("Full", m, m, &c_b14, &c_b14, &u[u_offset], ldu);
  974. if (*m > 1) {
  975. i__1 = *m - 1;
  976. i__2 = *n - *l;
  977. dlacpy_("Lower", &i__1, &i__2, &a[a_dim1 + 2], lda, &u[u_dim1 + 2]
  978. , ldu);
  979. }
  980. /* Computing MIN */
  981. i__2 = *m, i__3 = *n - *l;
  982. i__1 = f2cmin(i__2,i__3);
  983. dorg2r_(m, m, &i__1, &u[u_offset], ldu, &tau[1], &work[1], info);
  984. }
  985. if (wantq) {
  986. /* Update Q( 1:N, 1:N-L ) = Q( 1:N, 1:N-L )*P1 */
  987. i__1 = *n - *l;
  988. dlapmt_(&forwrd, n, &i__1, &q[q_offset], ldq, &iwork[1]);
  989. }
  990. /* Clean up A: set the strictly lower triangular part of */
  991. /* A(1:K, 1:K) = 0, and A( K+1:M, 1:N-L ) = 0. */
  992. i__1 = *k - 1;
  993. for (j = 1; j <= i__1; ++j) {
  994. i__2 = *k;
  995. for (i__ = j + 1; i__ <= i__2; ++i__) {
  996. a[i__ + j * a_dim1] = 0.;
  997. /* L90: */
  998. }
  999. /* L100: */
  1000. }
  1001. if (*m > *k) {
  1002. i__1 = *m - *k;
  1003. i__2 = *n - *l;
  1004. dlaset_("Full", &i__1, &i__2, &c_b14, &c_b14, &a[*k + 1 + a_dim1],
  1005. lda);
  1006. }
  1007. if (*n - *l > *k) {
  1008. /* RQ factorization of ( T11 T12 ) = ( 0 T12 )*Z1 */
  1009. i__1 = *n - *l;
  1010. dgerq2_(k, &i__1, &a[a_offset], lda, &tau[1], &work[1], info);
  1011. if (wantq) {
  1012. /* Update Q( 1:N,1:N-L ) = Q( 1:N,1:N-L )*Z1**T */
  1013. i__1 = *n - *l;
  1014. dormr2_("Right", "Transpose", n, &i__1, k, &a[a_offset], lda, &
  1015. tau[1], &q[q_offset], ldq, &work[1], info);
  1016. }
  1017. /* Clean up A */
  1018. i__1 = *n - *l - *k;
  1019. dlaset_("Full", k, &i__1, &c_b14, &c_b14, &a[a_offset], lda);
  1020. i__1 = *n - *l;
  1021. for (j = *n - *l - *k + 1; j <= i__1; ++j) {
  1022. i__2 = *k;
  1023. for (i__ = j - *n + *l + *k + 1; i__ <= i__2; ++i__) {
  1024. a[i__ + j * a_dim1] = 0.;
  1025. /* L110: */
  1026. }
  1027. /* L120: */
  1028. }
  1029. }
  1030. if (*m > *k) {
  1031. /* QR factorization of A( K+1:M,N-L+1:N ) */
  1032. i__1 = *m - *k;
  1033. dgeqr2_(&i__1, l, &a[*k + 1 + (*n - *l + 1) * a_dim1], lda, &tau[1], &
  1034. work[1], info);
  1035. if (wantu) {
  1036. /* Update U(:,K+1:M) := U(:,K+1:M)*U1 */
  1037. i__1 = *m - *k;
  1038. /* Computing MIN */
  1039. i__3 = *m - *k;
  1040. i__2 = f2cmin(i__3,*l);
  1041. dorm2r_("Right", "No transpose", m, &i__1, &i__2, &a[*k + 1 + (*n
  1042. - *l + 1) * a_dim1], lda, &tau[1], &u[(*k + 1) * u_dim1 +
  1043. 1], ldu, &work[1], info);
  1044. }
  1045. /* Clean up */
  1046. i__1 = *n;
  1047. for (j = *n - *l + 1; j <= i__1; ++j) {
  1048. i__2 = *m;
  1049. for (i__ = j - *n + *k + *l + 1; i__ <= i__2; ++i__) {
  1050. a[i__ + j * a_dim1] = 0.;
  1051. /* L130: */
  1052. }
  1053. /* L140: */
  1054. }
  1055. }
  1056. work[1] = (doublereal) lwkopt;
  1057. return 0;
  1058. /* End of DGGSVP3 */
  1059. } /* dggsvp3_ */