You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgsvj0.c 46 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static integer c__0 = 0;
  488. static real c_b27 = 1.f;
  489. /* > \brief \b CGSVJ0 pre-processor for the routine cgesvj. */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download CGSVJ0 + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgsvj0.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgsvj0.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgsvj0.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE CGSVJ0( JOBV, M, N, A, LDA, D, SVA, MV, V, LDV, EPS, */
  508. /* SFMIN, TOL, NSWEEP, WORK, LWORK, INFO ) */
  509. /* INTEGER INFO, LDA, LDV, LWORK, M, MV, N, NSWEEP */
  510. /* REAL EPS, SFMIN, TOL */
  511. /* CHARACTER*1 JOBV */
  512. /* COMPLEX A( LDA, * ), D( N ), V( LDV, * ), WORK( LWORK ) */
  513. /* REAL SVA( N ) */
  514. /* > \par Purpose: */
  515. /* ============= */
  516. /* > */
  517. /* > \verbatim */
  518. /* > */
  519. /* > CGSVJ0 is called from CGESVJ as a pre-processor and that is its main */
  520. /* > purpose. It applies Jacobi rotations in the same way as CGESVJ does, but */
  521. /* > it does not check convergence (stopping criterion). Few tuning */
  522. /* > parameters (marked by [TP]) are available for the implementer. */
  523. /* > \endverbatim */
  524. /* Arguments: */
  525. /* ========== */
  526. /* > \param[in] JOBV */
  527. /* > \verbatim */
  528. /* > JOBV is CHARACTER*1 */
  529. /* > Specifies whether the output from this procedure is used */
  530. /* > to compute the matrix V: */
  531. /* > = 'V': the product of the Jacobi rotations is accumulated */
  532. /* > by postmulyiplying the N-by-N array V. */
  533. /* > (See the description of V.) */
  534. /* > = 'A': the product of the Jacobi rotations is accumulated */
  535. /* > by postmulyiplying the MV-by-N array V. */
  536. /* > (See the descriptions of MV and V.) */
  537. /* > = 'N': the Jacobi rotations are not accumulated. */
  538. /* > \endverbatim */
  539. /* > */
  540. /* > \param[in] M */
  541. /* > \verbatim */
  542. /* > M is INTEGER */
  543. /* > The number of rows of the input matrix A. M >= 0. */
  544. /* > \endverbatim */
  545. /* > */
  546. /* > \param[in] N */
  547. /* > \verbatim */
  548. /* > N is INTEGER */
  549. /* > The number of columns of the input matrix A. */
  550. /* > M >= N >= 0. */
  551. /* > \endverbatim */
  552. /* > */
  553. /* > \param[in,out] A */
  554. /* > \verbatim */
  555. /* > A is COMPLEX array, dimension (LDA,N) */
  556. /* > On entry, M-by-N matrix A, such that A*diag(D) represents */
  557. /* > the input matrix. */
  558. /* > On exit, */
  559. /* > A_onexit * diag(D_onexit) represents the input matrix A*diag(D) */
  560. /* > post-multiplied by a sequence of Jacobi rotations, where the */
  561. /* > rotation threshold and the total number of sweeps are given in */
  562. /* > TOL and NSWEEP, respectively. */
  563. /* > (See the descriptions of D, TOL and NSWEEP.) */
  564. /* > \endverbatim */
  565. /* > */
  566. /* > \param[in] LDA */
  567. /* > \verbatim */
  568. /* > LDA is INTEGER */
  569. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  570. /* > \endverbatim */
  571. /* > */
  572. /* > \param[in,out] D */
  573. /* > \verbatim */
  574. /* > D is COMPLEX array, dimension (N) */
  575. /* > The array D accumulates the scaling factors from the complex scaled */
  576. /* > Jacobi rotations. */
  577. /* > On entry, A*diag(D) represents the input matrix. */
  578. /* > On exit, A_onexit*diag(D_onexit) represents the input matrix */
  579. /* > post-multiplied by a sequence of Jacobi rotations, where the */
  580. /* > rotation threshold and the total number of sweeps are given in */
  581. /* > TOL and NSWEEP, respectively. */
  582. /* > (See the descriptions of A, TOL and NSWEEP.) */
  583. /* > \endverbatim */
  584. /* > */
  585. /* > \param[in,out] SVA */
  586. /* > \verbatim */
  587. /* > SVA is REAL array, dimension (N) */
  588. /* > On entry, SVA contains the Euclidean norms of the columns of */
  589. /* > the matrix A*diag(D). */
  590. /* > On exit, SVA contains the Euclidean norms of the columns of */
  591. /* > the matrix A_onexit*diag(D_onexit). */
  592. /* > \endverbatim */
  593. /* > */
  594. /* > \param[in] MV */
  595. /* > \verbatim */
  596. /* > MV is INTEGER */
  597. /* > If JOBV = 'A', then MV rows of V are post-multipled by a */
  598. /* > sequence of Jacobi rotations. */
  599. /* > If JOBV = 'N', then MV is not referenced. */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[in,out] V */
  603. /* > \verbatim */
  604. /* > V is COMPLEX array, dimension (LDV,N) */
  605. /* > If JOBV = 'V' then N rows of V are post-multipled by a */
  606. /* > sequence of Jacobi rotations. */
  607. /* > If JOBV = 'A' then MV rows of V are post-multipled by a */
  608. /* > sequence of Jacobi rotations. */
  609. /* > If JOBV = 'N', then V is not referenced. */
  610. /* > \endverbatim */
  611. /* > */
  612. /* > \param[in] LDV */
  613. /* > \verbatim */
  614. /* > LDV is INTEGER */
  615. /* > The leading dimension of the array V, LDV >= 1. */
  616. /* > If JOBV = 'V', LDV >= N. */
  617. /* > If JOBV = 'A', LDV >= MV. */
  618. /* > \endverbatim */
  619. /* > */
  620. /* > \param[in] EPS */
  621. /* > \verbatim */
  622. /* > EPS is REAL */
  623. /* > EPS = SLAMCH('Epsilon') */
  624. /* > \endverbatim */
  625. /* > */
  626. /* > \param[in] SFMIN */
  627. /* > \verbatim */
  628. /* > SFMIN is REAL */
  629. /* > SFMIN = SLAMCH('Safe Minimum') */
  630. /* > \endverbatim */
  631. /* > */
  632. /* > \param[in] TOL */
  633. /* > \verbatim */
  634. /* > TOL is REAL */
  635. /* > TOL is the threshold for Jacobi rotations. For a pair */
  636. /* > A(:,p), A(:,q) of pivot columns, the Jacobi rotation is */
  637. /* > applied only if ABS(COS(angle(A(:,p),A(:,q)))) > TOL. */
  638. /* > \endverbatim */
  639. /* > */
  640. /* > \param[in] NSWEEP */
  641. /* > \verbatim */
  642. /* > NSWEEP is INTEGER */
  643. /* > NSWEEP is the number of sweeps of Jacobi rotations to be */
  644. /* > performed. */
  645. /* > \endverbatim */
  646. /* > */
  647. /* > \param[out] WORK */
  648. /* > \verbatim */
  649. /* > WORK is COMPLEX array, dimension (LWORK) */
  650. /* > \endverbatim */
  651. /* > */
  652. /* > \param[in] LWORK */
  653. /* > \verbatim */
  654. /* > LWORK is INTEGER */
  655. /* > LWORK is the dimension of WORK. LWORK >= M. */
  656. /* > \endverbatim */
  657. /* > */
  658. /* > \param[out] INFO */
  659. /* > \verbatim */
  660. /* > INFO is INTEGER */
  661. /* > = 0: successful exit. */
  662. /* > < 0: if INFO = -i, then the i-th argument had an illegal value */
  663. /* > \endverbatim */
  664. /* Authors: */
  665. /* ======== */
  666. /* > \author Univ. of Tennessee */
  667. /* > \author Univ. of California Berkeley */
  668. /* > \author Univ. of Colorado Denver */
  669. /* > \author NAG Ltd. */
  670. /* > \date June 2016 */
  671. /* > \ingroup complexOTHERcomputational */
  672. /* > \par Further Details: */
  673. /* ===================== */
  674. /* > */
  675. /* > CGSVJ0 is used just to enable CGESVJ to call a simplified version of */
  676. /* > itself to work on a submatrix of the original matrix. */
  677. /* > */
  678. /* > \par Contributor: */
  679. /* ================== */
  680. /* > */
  681. /* > Zlatko Drmac (Zagreb, Croatia) */
  682. /* > */
  683. /* > \par Bugs, Examples and Comments: */
  684. /* ================================= */
  685. /* > */
  686. /* > Please report all bugs and send interesting test examples and comments to */
  687. /* > drmac@math.hr. Thank you. */
  688. /* ===================================================================== */
  689. /* Subroutine */ int cgsvj0_(char *jobv, integer *m, integer *n, complex *a,
  690. integer *lda, complex *d__, real *sva, integer *mv, complex *v,
  691. integer *ldv, real *eps, real *sfmin, real *tol, integer *nsweep,
  692. complex *work, integer *lwork, integer *info)
  693. {
  694. /* System generated locals */
  695. integer a_dim1, a_offset, v_dim1, v_offset, i__1, i__2, i__3, i__4, i__5,
  696. i__6, i__7;
  697. real r__1, r__2;
  698. complex q__1, q__2, q__3;
  699. /* Local variables */
  700. real aapp;
  701. complex aapq;
  702. real aaqq;
  703. integer ierr;
  704. real bigtheta;
  705. extern /* Subroutine */ int crot_(integer *, complex *, integer *,
  706. complex *, integer *, real *, complex *);
  707. complex ompq;
  708. integer pskipped;
  709. real aapp0, aapq1, temp1;
  710. integer i__, p, q;
  711. real t;
  712. extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer
  713. *, complex *, integer *);
  714. real apoaq, aqoap;
  715. extern logical lsame_(char *, char *);
  716. real theta, small;
  717. extern /* Subroutine */ int ccopy_(integer *, complex *, integer *,
  718. complex *, integer *), cswap_(integer *, complex *, integer *,
  719. complex *, integer *);
  720. logical applv, rsvec;
  721. extern /* Subroutine */ int caxpy_(integer *, complex *, complex *,
  722. integer *, complex *, integer *);
  723. logical rotok;
  724. real rootsfmin;
  725. extern real scnrm2_(integer *, complex *, integer *);
  726. real cs, sn;
  727. extern /* Subroutine */ int clascl_(char *, integer *, integer *, real *,
  728. real *, integer *, integer *, complex *, integer *, integer *), xerbla_(char *, integer *, ftnlen);
  729. integer ijblsk, swband;
  730. extern integer isamax_(integer *, real *, integer *);
  731. integer blskip;
  732. extern /* Subroutine */ int classq_(integer *, complex *, integer *, real
  733. *, real *);
  734. real mxaapq, thsign, mxsinj;
  735. integer ir1, emptsw, notrot, iswrot, jbc;
  736. real big;
  737. integer kbl, lkahead, igl, ibr, jgl, nbl, mvl;
  738. real rootbig, rooteps;
  739. integer rowskip;
  740. real roottol;
  741. /* -- LAPACK computational routine (version 3.8.0) -- */
  742. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  743. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  744. /* June 2016 */
  745. /* ===================================================================== */
  746. /* from BLAS */
  747. /* from LAPACK */
  748. /* Test the input parameters. */
  749. /* Parameter adjustments */
  750. --sva;
  751. --d__;
  752. a_dim1 = *lda;
  753. a_offset = 1 + a_dim1 * 1;
  754. a -= a_offset;
  755. v_dim1 = *ldv;
  756. v_offset = 1 + v_dim1 * 1;
  757. v -= v_offset;
  758. --work;
  759. /* Function Body */
  760. applv = lsame_(jobv, "A");
  761. rsvec = lsame_(jobv, "V");
  762. if (! (rsvec || applv || lsame_(jobv, "N"))) {
  763. *info = -1;
  764. } else if (*m < 0) {
  765. *info = -2;
  766. } else if (*n < 0 || *n > *m) {
  767. *info = -3;
  768. } else if (*lda < *m) {
  769. *info = -5;
  770. } else if ((rsvec || applv) && *mv < 0) {
  771. *info = -8;
  772. } else if (rsvec && *ldv < *n || applv && *ldv < *mv) {
  773. *info = -10;
  774. } else if (*tol <= *eps) {
  775. *info = -13;
  776. } else if (*nsweep < 0) {
  777. *info = -14;
  778. } else if (*lwork < *m) {
  779. *info = -16;
  780. } else {
  781. *info = 0;
  782. }
  783. /* #:( */
  784. if (*info != 0) {
  785. i__1 = -(*info);
  786. xerbla_("CGSVJ0", &i__1, (ftnlen)6);
  787. return 0;
  788. }
  789. if (rsvec) {
  790. mvl = *n;
  791. } else if (applv) {
  792. mvl = *mv;
  793. }
  794. rsvec = rsvec || applv;
  795. rooteps = sqrt(*eps);
  796. rootsfmin = sqrt(*sfmin);
  797. small = *sfmin / *eps;
  798. big = 1.f / *sfmin;
  799. rootbig = 1.f / rootsfmin;
  800. bigtheta = 1.f / rooteps;
  801. roottol = sqrt(*tol);
  802. emptsw = *n * (*n - 1) / 2;
  803. notrot = 0;
  804. swband = 0;
  805. /* [TP] SWBAND is a tuning parameter [TP]. It is meaningful and effective */
  806. /* if CGESVJ is used as a computational routine in the preconditioned */
  807. /* Jacobi SVD algorithm CGEJSV. For sweeps i=1:SWBAND the procedure */
  808. /* works on pivots inside a band-like region around the diagonal. */
  809. /* The boundaries are determined dynamically, based on the number of */
  810. /* pivots above a threshold. */
  811. kbl = f2cmin(8,*n);
  812. /* [TP] KBL is a tuning parameter that defines the tile size in the */
  813. /* tiling of the p-q loops of pivot pairs. In general, an optimal */
  814. /* value of KBL depends on the matrix dimensions and on the */
  815. /* parameters of the computer's memory. */
  816. nbl = *n / kbl;
  817. if (nbl * kbl != *n) {
  818. ++nbl;
  819. }
  820. /* Computing 2nd power */
  821. i__1 = kbl;
  822. blskip = i__1 * i__1;
  823. /* [TP] BLKSKIP is a tuning parameter that depends on SWBAND and KBL. */
  824. rowskip = f2cmin(5,kbl);
  825. /* [TP] ROWSKIP is a tuning parameter. */
  826. lkahead = 1;
  827. /* [TP] LKAHEAD is a tuning parameter. */
  828. /* Quasi block transformations, using the lower (upper) triangular */
  829. /* structure of the input matrix. The quasi-block-cycling usually */
  830. /* invokes cubic convergence. Big part of this cycle is done inside */
  831. /* canonical subspaces of dimensions less than M. */
  832. i__1 = *nsweep;
  833. for (i__ = 1; i__ <= i__1; ++i__) {
  834. mxaapq = 0.f;
  835. mxsinj = 0.f;
  836. iswrot = 0;
  837. notrot = 0;
  838. pskipped = 0;
  839. /* Each sweep is unrolled using KBL-by-KBL tiles over the pivot pairs */
  840. /* 1 <= p < q <= N. This is the first step toward a blocked implementation */
  841. /* of the rotations. New implementation, based on block transformations, */
  842. /* is under development. */
  843. i__2 = nbl;
  844. for (ibr = 1; ibr <= i__2; ++ibr) {
  845. igl = (ibr - 1) * kbl + 1;
  846. /* Computing MIN */
  847. i__4 = lkahead, i__5 = nbl - ibr;
  848. i__3 = f2cmin(i__4,i__5);
  849. for (ir1 = 0; ir1 <= i__3; ++ir1) {
  850. igl += ir1 * kbl;
  851. /* Computing MIN */
  852. i__5 = igl + kbl - 1, i__6 = *n - 1;
  853. i__4 = f2cmin(i__5,i__6);
  854. for (p = igl; p <= i__4; ++p) {
  855. i__5 = *n - p + 1;
  856. q = isamax_(&i__5, &sva[p], &c__1) + p - 1;
  857. if (p != q) {
  858. cswap_(m, &a[p * a_dim1 + 1], &c__1, &a[q * a_dim1 +
  859. 1], &c__1);
  860. if (rsvec) {
  861. cswap_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q *
  862. v_dim1 + 1], &c__1);
  863. }
  864. temp1 = sva[p];
  865. sva[p] = sva[q];
  866. sva[q] = temp1;
  867. i__5 = p;
  868. aapq.r = d__[i__5].r, aapq.i = d__[i__5].i;
  869. i__5 = p;
  870. i__6 = q;
  871. d__[i__5].r = d__[i__6].r, d__[i__5].i = d__[i__6].i;
  872. i__5 = q;
  873. d__[i__5].r = aapq.r, d__[i__5].i = aapq.i;
  874. }
  875. if (ir1 == 0) {
  876. /* Column norms are periodically updated by explicit */
  877. /* norm computation. */
  878. /* Caveat: */
  879. /* Unfortunately, some BLAS implementations compute SNCRM2(M,A(1,p),1) */
  880. /* as SQRT(S=CDOTC(M,A(1,p),1,A(1,p),1)), which may cause the result to */
  881. /* overflow for ||A(:,p)||_2 > SQRT(overflow_threshold), and to */
  882. /* underflow for ||A(:,p)||_2 < SQRT(underflow_threshold). */
  883. /* Hence, SCNRM2 cannot be trusted, not even in the case when */
  884. /* the true norm is far from the under(over)flow boundaries. */
  885. /* If properly implemented SCNRM2 is available, the IF-THEN-ELSE-END IF */
  886. /* below should be replaced with "AAPP = SCNRM2( M, A(1,p), 1 )". */
  887. if (sva[p] < rootbig && sva[p] > rootsfmin) {
  888. sva[p] = scnrm2_(m, &a[p * a_dim1 + 1], &c__1);
  889. } else {
  890. temp1 = 0.f;
  891. aapp = 1.f;
  892. classq_(m, &a[p * a_dim1 + 1], &c__1, &temp1, &
  893. aapp);
  894. sva[p] = temp1 * sqrt(aapp);
  895. }
  896. aapp = sva[p];
  897. } else {
  898. aapp = sva[p];
  899. }
  900. if (aapp > 0.f) {
  901. pskipped = 0;
  902. /* Computing MIN */
  903. i__6 = igl + kbl - 1;
  904. i__5 = f2cmin(i__6,*n);
  905. for (q = p + 1; q <= i__5; ++q) {
  906. aaqq = sva[q];
  907. if (aaqq > 0.f) {
  908. aapp0 = aapp;
  909. if (aaqq >= 1.f) {
  910. rotok = small * aapp <= aaqq;
  911. if (aapp < big / aaqq) {
  912. cdotc_(&q__3, m, &a[p * a_dim1 + 1], &
  913. c__1, &a[q * a_dim1 + 1], &
  914. c__1);
  915. q__2.r = q__3.r / aaqq, q__2.i =
  916. q__3.i / aaqq;
  917. q__1.r = q__2.r / aapp, q__1.i =
  918. q__2.i / aapp;
  919. aapq.r = q__1.r, aapq.i = q__1.i;
  920. } else {
  921. ccopy_(m, &a[p * a_dim1 + 1], &c__1, &
  922. work[1], &c__1);
  923. clascl_("G", &c__0, &c__0, &aapp, &
  924. c_b27, m, &c__1, &work[1],
  925. lda, &ierr);
  926. cdotc_(&q__2, m, &work[1], &c__1, &a[
  927. q * a_dim1 + 1], &c__1);
  928. q__1.r = q__2.r / aaqq, q__1.i =
  929. q__2.i / aaqq;
  930. aapq.r = q__1.r, aapq.i = q__1.i;
  931. }
  932. } else {
  933. rotok = aapp <= aaqq / small;
  934. if (aapp > small / aaqq) {
  935. cdotc_(&q__3, m, &a[p * a_dim1 + 1], &
  936. c__1, &a[q * a_dim1 + 1], &
  937. c__1);
  938. q__2.r = q__3.r / aapp, q__2.i =
  939. q__3.i / aapp;
  940. q__1.r = q__2.r / aaqq, q__1.i =
  941. q__2.i / aaqq;
  942. aapq.r = q__1.r, aapq.i = q__1.i;
  943. } else {
  944. ccopy_(m, &a[q * a_dim1 + 1], &c__1, &
  945. work[1], &c__1);
  946. clascl_("G", &c__0, &c__0, &aaqq, &
  947. c_b27, m, &c__1, &work[1],
  948. lda, &ierr);
  949. cdotc_(&q__2, m, &a[p * a_dim1 + 1], &
  950. c__1, &work[1], &c__1);
  951. q__1.r = q__2.r / aapp, q__1.i =
  952. q__2.i / aapp;
  953. aapq.r = q__1.r, aapq.i = q__1.i;
  954. }
  955. }
  956. /* AAPQ = AAPQ * CONJG( CWORK(p) ) * CWORK(q) */
  957. aapq1 = -c_abs(&aapq);
  958. /* Computing MAX */
  959. r__1 = mxaapq, r__2 = -aapq1;
  960. mxaapq = f2cmax(r__1,r__2);
  961. /* TO rotate or NOT to rotate, THAT is the question ... */
  962. if (abs(aapq1) > *tol) {
  963. r__1 = c_abs(&aapq);
  964. q__1.r = aapq.r / r__1, q__1.i = aapq.i /
  965. r__1;
  966. ompq.r = q__1.r, ompq.i = q__1.i;
  967. /* [RTD] ROTATED = ROTATED + ONE */
  968. if (ir1 == 0) {
  969. notrot = 0;
  970. pskipped = 0;
  971. ++iswrot;
  972. }
  973. if (rotok) {
  974. aqoap = aaqq / aapp;
  975. apoaq = aapp / aaqq;
  976. theta = (r__1 = aqoap - apoaq, abs(
  977. r__1)) * -.5f / aapq1;
  978. if (abs(theta) > bigtheta) {
  979. t = .5f / theta;
  980. cs = 1.f;
  981. r_cnjg(&q__2, &ompq);
  982. q__1.r = t * q__2.r, q__1.i = t *
  983. q__2.i;
  984. crot_(m, &a[p * a_dim1 + 1], &
  985. c__1, &a[q * a_dim1 + 1],
  986. &c__1, &cs, &q__1);
  987. if (rsvec) {
  988. r_cnjg(&q__2, &ompq);
  989. q__1.r = t * q__2.r, q__1.i = t * q__2.i;
  990. crot_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q *
  991. v_dim1 + 1], &c__1, &cs, &q__1);
  992. }
  993. /* Computing MAX */
  994. r__1 = 0.f, r__2 = t * apoaq *
  995. aapq1 + 1.f;
  996. sva[q] = aaqq * sqrt((f2cmax(r__1,
  997. r__2)));
  998. /* Computing MAX */
  999. r__1 = 0.f, r__2 = 1.f - t *
  1000. aqoap * aapq1;
  1001. aapp *= sqrt((f2cmax(r__1,r__2)));
  1002. /* Computing MAX */
  1003. r__1 = mxsinj, r__2 = abs(t);
  1004. mxsinj = f2cmax(r__1,r__2);
  1005. } else {
  1006. thsign = -r_sign(&c_b27, &aapq1);
  1007. t = 1.f / (theta + thsign * sqrt(
  1008. theta * theta + 1.f));
  1009. cs = sqrt(1.f / (t * t + 1.f));
  1010. sn = t * cs;
  1011. /* Computing MAX */
  1012. r__1 = mxsinj, r__2 = abs(sn);
  1013. mxsinj = f2cmax(r__1,r__2);
  1014. /* Computing MAX */
  1015. r__1 = 0.f, r__2 = t * apoaq *
  1016. aapq1 + 1.f;
  1017. sva[q] = aaqq * sqrt((f2cmax(r__1,
  1018. r__2)));
  1019. /* Computing MAX */
  1020. r__1 = 0.f, r__2 = 1.f - t *
  1021. aqoap * aapq1;
  1022. aapp *= sqrt((f2cmax(r__1,r__2)));
  1023. r_cnjg(&q__2, &ompq);
  1024. q__1.r = sn * q__2.r, q__1.i = sn
  1025. * q__2.i;
  1026. crot_(m, &a[p * a_dim1 + 1], &
  1027. c__1, &a[q * a_dim1 + 1],
  1028. &c__1, &cs, &q__1);
  1029. if (rsvec) {
  1030. r_cnjg(&q__2, &ompq);
  1031. q__1.r = sn * q__2.r, q__1.i = sn * q__2.i;
  1032. crot_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q *
  1033. v_dim1 + 1], &c__1, &cs, &q__1);
  1034. }
  1035. }
  1036. i__6 = p;
  1037. i__7 = q;
  1038. q__2.r = -d__[i__7].r, q__2.i = -d__[
  1039. i__7].i;
  1040. q__1.r = q__2.r * ompq.r - q__2.i *
  1041. ompq.i, q__1.i = q__2.r *
  1042. ompq.i + q__2.i * ompq.r;
  1043. d__[i__6].r = q__1.r, d__[i__6].i =
  1044. q__1.i;
  1045. } else {
  1046. ccopy_(m, &a[p * a_dim1 + 1], &c__1, &
  1047. work[1], &c__1);
  1048. clascl_("G", &c__0, &c__0, &aapp, &
  1049. c_b27, m, &c__1, &work[1],
  1050. lda, &ierr);
  1051. clascl_("G", &c__0, &c__0, &aaqq, &
  1052. c_b27, m, &c__1, &a[q *
  1053. a_dim1 + 1], lda, &ierr);
  1054. q__1.r = -aapq.r, q__1.i = -aapq.i;
  1055. caxpy_(m, &q__1, &work[1], &c__1, &a[
  1056. q * a_dim1 + 1], &c__1);
  1057. clascl_("G", &c__0, &c__0, &c_b27, &
  1058. aaqq, m, &c__1, &a[q * a_dim1
  1059. + 1], lda, &ierr);
  1060. /* Computing MAX */
  1061. r__1 = 0.f, r__2 = 1.f - aapq1 *
  1062. aapq1;
  1063. sva[q] = aaqq * sqrt((f2cmax(r__1,r__2)))
  1064. ;
  1065. mxsinj = f2cmax(mxsinj,*sfmin);
  1066. }
  1067. /* END IF ROTOK THEN ... ELSE */
  1068. /* In the case of cancellation in updating SVA(q), SVA(p) */
  1069. /* recompute SVA(q), SVA(p). */
  1070. /* Computing 2nd power */
  1071. r__1 = sva[q] / aaqq;
  1072. if (r__1 * r__1 <= rooteps) {
  1073. if (aaqq < rootbig && aaqq >
  1074. rootsfmin) {
  1075. sva[q] = scnrm2_(m, &a[q * a_dim1
  1076. + 1], &c__1);
  1077. } else {
  1078. t = 0.f;
  1079. aaqq = 1.f;
  1080. classq_(m, &a[q * a_dim1 + 1], &
  1081. c__1, &t, &aaqq);
  1082. sva[q] = t * sqrt(aaqq);
  1083. }
  1084. }
  1085. if (aapp / aapp0 <= rooteps) {
  1086. if (aapp < rootbig && aapp >
  1087. rootsfmin) {
  1088. aapp = scnrm2_(m, &a[p * a_dim1 +
  1089. 1], &c__1);
  1090. } else {
  1091. t = 0.f;
  1092. aapp = 1.f;
  1093. classq_(m, &a[p * a_dim1 + 1], &
  1094. c__1, &t, &aapp);
  1095. aapp = t * sqrt(aapp);
  1096. }
  1097. sva[p] = aapp;
  1098. }
  1099. } else {
  1100. /* A(:,p) and A(:,q) already numerically orthogonal */
  1101. if (ir1 == 0) {
  1102. ++notrot;
  1103. }
  1104. /* [RTD] SKIPPED = SKIPPED + 1 */
  1105. ++pskipped;
  1106. }
  1107. } else {
  1108. /* A(:,q) is zero column */
  1109. if (ir1 == 0) {
  1110. ++notrot;
  1111. }
  1112. ++pskipped;
  1113. }
  1114. if (i__ <= swband && pskipped > rowskip) {
  1115. if (ir1 == 0) {
  1116. aapp = -aapp;
  1117. }
  1118. notrot = 0;
  1119. goto L2103;
  1120. }
  1121. /* L2002: */
  1122. }
  1123. /* END q-LOOP */
  1124. L2103:
  1125. /* bailed out of q-loop */
  1126. sva[p] = aapp;
  1127. } else {
  1128. sva[p] = aapp;
  1129. if (ir1 == 0 && aapp == 0.f) {
  1130. /* Computing MIN */
  1131. i__5 = igl + kbl - 1;
  1132. notrot = notrot + f2cmin(i__5,*n) - p;
  1133. }
  1134. }
  1135. /* L2001: */
  1136. }
  1137. /* end of the p-loop */
  1138. /* end of doing the block ( ibr, ibr ) */
  1139. /* L1002: */
  1140. }
  1141. /* end of ir1-loop */
  1142. /* ... go to the off diagonal blocks */
  1143. igl = (ibr - 1) * kbl + 1;
  1144. i__3 = nbl;
  1145. for (jbc = ibr + 1; jbc <= i__3; ++jbc) {
  1146. jgl = (jbc - 1) * kbl + 1;
  1147. /* doing the block at ( ibr, jbc ) */
  1148. ijblsk = 0;
  1149. /* Computing MIN */
  1150. i__5 = igl + kbl - 1;
  1151. i__4 = f2cmin(i__5,*n);
  1152. for (p = igl; p <= i__4; ++p) {
  1153. aapp = sva[p];
  1154. if (aapp > 0.f) {
  1155. pskipped = 0;
  1156. /* Computing MIN */
  1157. i__6 = jgl + kbl - 1;
  1158. i__5 = f2cmin(i__6,*n);
  1159. for (q = jgl; q <= i__5; ++q) {
  1160. aaqq = sva[q];
  1161. if (aaqq > 0.f) {
  1162. aapp0 = aapp;
  1163. /* Safe Gram matrix computation */
  1164. if (aaqq >= 1.f) {
  1165. if (aapp >= aaqq) {
  1166. rotok = small * aapp <= aaqq;
  1167. } else {
  1168. rotok = small * aaqq <= aapp;
  1169. }
  1170. if (aapp < big / aaqq) {
  1171. cdotc_(&q__3, m, &a[p * a_dim1 + 1], &
  1172. c__1, &a[q * a_dim1 + 1], &
  1173. c__1);
  1174. q__2.r = q__3.r / aaqq, q__2.i =
  1175. q__3.i / aaqq;
  1176. q__1.r = q__2.r / aapp, q__1.i =
  1177. q__2.i / aapp;
  1178. aapq.r = q__1.r, aapq.i = q__1.i;
  1179. } else {
  1180. ccopy_(m, &a[p * a_dim1 + 1], &c__1, &
  1181. work[1], &c__1);
  1182. clascl_("G", &c__0, &c__0, &aapp, &
  1183. c_b27, m, &c__1, &work[1],
  1184. lda, &ierr);
  1185. cdotc_(&q__2, m, &work[1], &c__1, &a[
  1186. q * a_dim1 + 1], &c__1);
  1187. q__1.r = q__2.r / aaqq, q__1.i =
  1188. q__2.i / aaqq;
  1189. aapq.r = q__1.r, aapq.i = q__1.i;
  1190. }
  1191. } else {
  1192. if (aapp >= aaqq) {
  1193. rotok = aapp <= aaqq / small;
  1194. } else {
  1195. rotok = aaqq <= aapp / small;
  1196. }
  1197. if (aapp > small / aaqq) {
  1198. cdotc_(&q__3, m, &a[p * a_dim1 + 1], &
  1199. c__1, &a[q * a_dim1 + 1], &
  1200. c__1);
  1201. r__1 = f2cmax(aaqq,aapp);
  1202. q__2.r = q__3.r / r__1, q__2.i =
  1203. q__3.i / r__1;
  1204. r__2 = f2cmin(aaqq,aapp);
  1205. q__1.r = q__2.r / r__2, q__1.i =
  1206. q__2.i / r__2;
  1207. aapq.r = q__1.r, aapq.i = q__1.i;
  1208. } else {
  1209. ccopy_(m, &a[q * a_dim1 + 1], &c__1, &
  1210. work[1], &c__1);
  1211. clascl_("G", &c__0, &c__0, &aaqq, &
  1212. c_b27, m, &c__1, &work[1],
  1213. lda, &ierr);
  1214. cdotc_(&q__2, m, &a[p * a_dim1 + 1], &
  1215. c__1, &work[1], &c__1);
  1216. q__1.r = q__2.r / aapp, q__1.i =
  1217. q__2.i / aapp;
  1218. aapq.r = q__1.r, aapq.i = q__1.i;
  1219. }
  1220. }
  1221. /* AAPQ = AAPQ * CONJG(CWORK(p))*CWORK(q) */
  1222. aapq1 = -c_abs(&aapq);
  1223. /* Computing MAX */
  1224. r__1 = mxaapq, r__2 = -aapq1;
  1225. mxaapq = f2cmax(r__1,r__2);
  1226. /* TO rotate or NOT to rotate, THAT is the question ... */
  1227. if (abs(aapq1) > *tol) {
  1228. r__1 = c_abs(&aapq);
  1229. q__1.r = aapq.r / r__1, q__1.i = aapq.i /
  1230. r__1;
  1231. ompq.r = q__1.r, ompq.i = q__1.i;
  1232. notrot = 0;
  1233. /* [RTD] ROTATED = ROTATED + 1 */
  1234. pskipped = 0;
  1235. ++iswrot;
  1236. if (rotok) {
  1237. aqoap = aaqq / aapp;
  1238. apoaq = aapp / aaqq;
  1239. theta = (r__1 = aqoap - apoaq, abs(
  1240. r__1)) * -.5f / aapq1;
  1241. if (aaqq > aapp0) {
  1242. theta = -theta;
  1243. }
  1244. if (abs(theta) > bigtheta) {
  1245. t = .5f / theta;
  1246. cs = 1.f;
  1247. r_cnjg(&q__2, &ompq);
  1248. q__1.r = t * q__2.r, q__1.i = t *
  1249. q__2.i;
  1250. crot_(m, &a[p * a_dim1 + 1], &
  1251. c__1, &a[q * a_dim1 + 1],
  1252. &c__1, &cs, &q__1);
  1253. if (rsvec) {
  1254. r_cnjg(&q__2, &ompq);
  1255. q__1.r = t * q__2.r, q__1.i = t * q__2.i;
  1256. crot_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q *
  1257. v_dim1 + 1], &c__1, &cs, &q__1);
  1258. }
  1259. /* Computing MAX */
  1260. r__1 = 0.f, r__2 = t * apoaq *
  1261. aapq1 + 1.f;
  1262. sva[q] = aaqq * sqrt((f2cmax(r__1,
  1263. r__2)));
  1264. /* Computing MAX */
  1265. r__1 = 0.f, r__2 = 1.f - t *
  1266. aqoap * aapq1;
  1267. aapp *= sqrt((f2cmax(r__1,r__2)));
  1268. /* Computing MAX */
  1269. r__1 = mxsinj, r__2 = abs(t);
  1270. mxsinj = f2cmax(r__1,r__2);
  1271. } else {
  1272. thsign = -r_sign(&c_b27, &aapq1);
  1273. if (aaqq > aapp0) {
  1274. thsign = -thsign;
  1275. }
  1276. t = 1.f / (theta + thsign * sqrt(
  1277. theta * theta + 1.f));
  1278. cs = sqrt(1.f / (t * t + 1.f));
  1279. sn = t * cs;
  1280. /* Computing MAX */
  1281. r__1 = mxsinj, r__2 = abs(sn);
  1282. mxsinj = f2cmax(r__1,r__2);
  1283. /* Computing MAX */
  1284. r__1 = 0.f, r__2 = t * apoaq *
  1285. aapq1 + 1.f;
  1286. sva[q] = aaqq * sqrt((f2cmax(r__1,
  1287. r__2)));
  1288. /* Computing MAX */
  1289. r__1 = 0.f, r__2 = 1.f - t *
  1290. aqoap * aapq1;
  1291. aapp *= sqrt((f2cmax(r__1,r__2)));
  1292. r_cnjg(&q__2, &ompq);
  1293. q__1.r = sn * q__2.r, q__1.i = sn
  1294. * q__2.i;
  1295. crot_(m, &a[p * a_dim1 + 1], &
  1296. c__1, &a[q * a_dim1 + 1],
  1297. &c__1, &cs, &q__1);
  1298. if (rsvec) {
  1299. r_cnjg(&q__2, &ompq);
  1300. q__1.r = sn * q__2.r, q__1.i = sn * q__2.i;
  1301. crot_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q *
  1302. v_dim1 + 1], &c__1, &cs, &q__1);
  1303. }
  1304. }
  1305. i__6 = p;
  1306. i__7 = q;
  1307. q__2.r = -d__[i__7].r, q__2.i = -d__[
  1308. i__7].i;
  1309. q__1.r = q__2.r * ompq.r - q__2.i *
  1310. ompq.i, q__1.i = q__2.r *
  1311. ompq.i + q__2.i * ompq.r;
  1312. d__[i__6].r = q__1.r, d__[i__6].i =
  1313. q__1.i;
  1314. } else {
  1315. if (aapp > aaqq) {
  1316. ccopy_(m, &a[p * a_dim1 + 1], &
  1317. c__1, &work[1], &c__1);
  1318. clascl_("G", &c__0, &c__0, &aapp,
  1319. &c_b27, m, &c__1, &work[1]
  1320. , lda, &ierr);
  1321. clascl_("G", &c__0, &c__0, &aaqq,
  1322. &c_b27, m, &c__1, &a[q *
  1323. a_dim1 + 1], lda, &ierr);
  1324. q__1.r = -aapq.r, q__1.i =
  1325. -aapq.i;
  1326. caxpy_(m, &q__1, &work[1], &c__1,
  1327. &a[q * a_dim1 + 1], &c__1)
  1328. ;
  1329. clascl_("G", &c__0, &c__0, &c_b27,
  1330. &aaqq, m, &c__1, &a[q *
  1331. a_dim1 + 1], lda, &ierr);
  1332. /* Computing MAX */
  1333. r__1 = 0.f, r__2 = 1.f - aapq1 *
  1334. aapq1;
  1335. sva[q] = aaqq * sqrt((f2cmax(r__1,
  1336. r__2)));
  1337. mxsinj = f2cmax(mxsinj,*sfmin);
  1338. } else {
  1339. ccopy_(m, &a[q * a_dim1 + 1], &
  1340. c__1, &work[1], &c__1);
  1341. clascl_("G", &c__0, &c__0, &aaqq,
  1342. &c_b27, m, &c__1, &work[1]
  1343. , lda, &ierr);
  1344. clascl_("G", &c__0, &c__0, &aapp,
  1345. &c_b27, m, &c__1, &a[p *
  1346. a_dim1 + 1], lda, &ierr);
  1347. r_cnjg(&q__2, &aapq);
  1348. q__1.r = -q__2.r, q__1.i =
  1349. -q__2.i;
  1350. caxpy_(m, &q__1, &work[1], &c__1,
  1351. &a[p * a_dim1 + 1], &c__1)
  1352. ;
  1353. clascl_("G", &c__0, &c__0, &c_b27,
  1354. &aapp, m, &c__1, &a[p *
  1355. a_dim1 + 1], lda, &ierr);
  1356. /* Computing MAX */
  1357. r__1 = 0.f, r__2 = 1.f - aapq1 *
  1358. aapq1;
  1359. sva[p] = aapp * sqrt((f2cmax(r__1,
  1360. r__2)));
  1361. mxsinj = f2cmax(mxsinj,*sfmin);
  1362. }
  1363. }
  1364. /* END IF ROTOK THEN ... ELSE */
  1365. /* In the case of cancellation in updating SVA(q), SVA(p) */
  1366. /* Computing 2nd power */
  1367. r__1 = sva[q] / aaqq;
  1368. if (r__1 * r__1 <= rooteps) {
  1369. if (aaqq < rootbig && aaqq >
  1370. rootsfmin) {
  1371. sva[q] = scnrm2_(m, &a[q * a_dim1
  1372. + 1], &c__1);
  1373. } else {
  1374. t = 0.f;
  1375. aaqq = 1.f;
  1376. classq_(m, &a[q * a_dim1 + 1], &
  1377. c__1, &t, &aaqq);
  1378. sva[q] = t * sqrt(aaqq);
  1379. }
  1380. }
  1381. /* Computing 2nd power */
  1382. r__1 = aapp / aapp0;
  1383. if (r__1 * r__1 <= rooteps) {
  1384. if (aapp < rootbig && aapp >
  1385. rootsfmin) {
  1386. aapp = scnrm2_(m, &a[p * a_dim1 +
  1387. 1], &c__1);
  1388. } else {
  1389. t = 0.f;
  1390. aapp = 1.f;
  1391. classq_(m, &a[p * a_dim1 + 1], &
  1392. c__1, &t, &aapp);
  1393. aapp = t * sqrt(aapp);
  1394. }
  1395. sva[p] = aapp;
  1396. }
  1397. /* end of OK rotation */
  1398. } else {
  1399. ++notrot;
  1400. /* [RTD] SKIPPED = SKIPPED + 1 */
  1401. ++pskipped;
  1402. ++ijblsk;
  1403. }
  1404. } else {
  1405. ++notrot;
  1406. ++pskipped;
  1407. ++ijblsk;
  1408. }
  1409. if (i__ <= swband && ijblsk >= blskip) {
  1410. sva[p] = aapp;
  1411. notrot = 0;
  1412. goto L2011;
  1413. }
  1414. if (i__ <= swband && pskipped > rowskip) {
  1415. aapp = -aapp;
  1416. notrot = 0;
  1417. goto L2203;
  1418. }
  1419. /* L2200: */
  1420. }
  1421. /* end of the q-loop */
  1422. L2203:
  1423. sva[p] = aapp;
  1424. } else {
  1425. if (aapp == 0.f) {
  1426. /* Computing MIN */
  1427. i__5 = jgl + kbl - 1;
  1428. notrot = notrot + f2cmin(i__5,*n) - jgl + 1;
  1429. }
  1430. if (aapp < 0.f) {
  1431. notrot = 0;
  1432. }
  1433. }
  1434. /* L2100: */
  1435. }
  1436. /* end of the p-loop */
  1437. /* L2010: */
  1438. }
  1439. /* end of the jbc-loop */
  1440. L2011:
  1441. /* 2011 bailed out of the jbc-loop */
  1442. /* Computing MIN */
  1443. i__4 = igl + kbl - 1;
  1444. i__3 = f2cmin(i__4,*n);
  1445. for (p = igl; p <= i__3; ++p) {
  1446. sva[p] = (r__1 = sva[p], abs(r__1));
  1447. /* L2012: */
  1448. }
  1449. /* ** */
  1450. /* L2000: */
  1451. }
  1452. /* 2000 :: end of the ibr-loop */
  1453. if (sva[*n] < rootbig && sva[*n] > rootsfmin) {
  1454. sva[*n] = scnrm2_(m, &a[*n * a_dim1 + 1], &c__1);
  1455. } else {
  1456. t = 0.f;
  1457. aapp = 1.f;
  1458. classq_(m, &a[*n * a_dim1 + 1], &c__1, &t, &aapp);
  1459. sva[*n] = t * sqrt(aapp);
  1460. }
  1461. /* Additional steering devices */
  1462. if (i__ < swband && (mxaapq <= roottol || iswrot <= *n)) {
  1463. swband = i__;
  1464. }
  1465. if (i__ > swband + 1 && mxaapq < sqrt((real) (*n)) * *tol && (real) (*
  1466. n) * mxaapq * mxsinj < *tol) {
  1467. goto L1994;
  1468. }
  1469. if (notrot >= emptsw) {
  1470. goto L1994;
  1471. }
  1472. /* L1993: */
  1473. }
  1474. /* end i=1:NSWEEP loop */
  1475. /* #:( Reaching this point means that the procedure has not converged. */
  1476. *info = *nsweep - 1;
  1477. goto L1995;
  1478. L1994:
  1479. /* #:) Reaching this point means numerical convergence after the i-th */
  1480. /* sweep. */
  1481. *info = 0;
  1482. /* #:) INFO = 0 confirms successful iterations. */
  1483. L1995:
  1484. /* Sort the vector SVA() of column norms. */
  1485. i__1 = *n - 1;
  1486. for (p = 1; p <= i__1; ++p) {
  1487. i__2 = *n - p + 1;
  1488. q = isamax_(&i__2, &sva[p], &c__1) + p - 1;
  1489. if (p != q) {
  1490. temp1 = sva[p];
  1491. sva[p] = sva[q];
  1492. sva[q] = temp1;
  1493. i__2 = p;
  1494. aapq.r = d__[i__2].r, aapq.i = d__[i__2].i;
  1495. i__2 = p;
  1496. i__3 = q;
  1497. d__[i__2].r = d__[i__3].r, d__[i__2].i = d__[i__3].i;
  1498. i__2 = q;
  1499. d__[i__2].r = aapq.r, d__[i__2].i = aapq.i;
  1500. cswap_(m, &a[p * a_dim1 + 1], &c__1, &a[q * a_dim1 + 1], &c__1);
  1501. if (rsvec) {
  1502. cswap_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q * v_dim1 + 1], &
  1503. c__1);
  1504. }
  1505. }
  1506. /* L5991: */
  1507. }
  1508. return 0;
  1509. } /* cgsvj0_ */