You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clasyf_rk.c 50 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static complex c_b1 = {1.f,0.f};
  485. static integer c__1 = 1;
  486. /* > \brief \b CLASYF_RK computes a partial factorization of a complex symmetric indefinite matrix using bound
  487. ed Bunch-Kaufman (rook) diagonal pivoting method. */
  488. /* =========== DOCUMENTATION =========== */
  489. /* Online html documentation available at */
  490. /* http://www.netlib.org/lapack/explore-html/ */
  491. /* > \htmlonly */
  492. /* > Download CLASYF_RK + dependencies */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clasyf_
  494. rk.f"> */
  495. /* > [TGZ]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clasyf_
  497. rk.f"> */
  498. /* > [ZIP]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clasyf_
  500. rk.f"> */
  501. /* > [TXT]</a> */
  502. /* > \endhtmlonly */
  503. /* Definition: */
  504. /* =========== */
  505. /* SUBROUTINE CLASYF_RK( UPLO, N, NB, KB, A, LDA, E, IPIV, W, LDW, */
  506. /* INFO ) */
  507. /* CHARACTER UPLO */
  508. /* INTEGER INFO, KB, LDA, LDW, N, NB */
  509. /* INTEGER IPIV( * ) */
  510. /* COMPLEX A( LDA, * ), E( * ), W( LDW, * ) */
  511. /* > \par Purpose: */
  512. /* ============= */
  513. /* > */
  514. /* > \verbatim */
  515. /* > CLASYF_RK computes a partial factorization of a complex symmetric */
  516. /* > matrix A using the bounded Bunch-Kaufman (rook) diagonal */
  517. /* > pivoting method. The partial factorization has the form: */
  518. /* > */
  519. /* > A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or: */
  520. /* > ( 0 U22 ) ( 0 D ) ( U12**T U22**T ) */
  521. /* > */
  522. /* > A = ( L11 0 ) ( D 0 ) ( L11**T L21**T ) if UPLO = 'L', */
  523. /* > ( L21 I ) ( 0 A22 ) ( 0 I ) */
  524. /* > */
  525. /* > where the order of D is at most NB. The actual order is returned in */
  526. /* > the argument KB, and is either NB or NB-1, or N if N <= NB. */
  527. /* > */
  528. /* > CLASYF_RK is an auxiliary routine called by CSYTRF_RK. It uses */
  529. /* > blocked code (calling Level 3 BLAS) to update the submatrix */
  530. /* > A11 (if UPLO = 'U') or A22 (if UPLO = 'L'). */
  531. /* > \endverbatim */
  532. /* Arguments: */
  533. /* ========== */
  534. /* > \param[in] UPLO */
  535. /* > \verbatim */
  536. /* > UPLO is CHARACTER*1 */
  537. /* > Specifies whether the upper or lower triangular part of the */
  538. /* > symmetric matrix A is stored: */
  539. /* > = 'U': Upper triangular */
  540. /* > = 'L': Lower triangular */
  541. /* > \endverbatim */
  542. /* > */
  543. /* > \param[in] N */
  544. /* > \verbatim */
  545. /* > N is INTEGER */
  546. /* > The order of the matrix A. N >= 0. */
  547. /* > \endverbatim */
  548. /* > */
  549. /* > \param[in] NB */
  550. /* > \verbatim */
  551. /* > NB is INTEGER */
  552. /* > The maximum number of columns of the matrix A that should be */
  553. /* > factored. NB should be at least 2 to allow for 2-by-2 pivot */
  554. /* > blocks. */
  555. /* > \endverbatim */
  556. /* > */
  557. /* > \param[out] KB */
  558. /* > \verbatim */
  559. /* > KB is INTEGER */
  560. /* > The number of columns of A that were actually factored. */
  561. /* > KB is either NB-1 or NB, or N if N <= NB. */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in,out] A */
  565. /* > \verbatim */
  566. /* > A is COMPLEX array, dimension (LDA,N) */
  567. /* > On entry, the symmetric matrix A. */
  568. /* > If UPLO = 'U': the leading N-by-N upper triangular part */
  569. /* > of A contains the upper triangular part of the matrix A, */
  570. /* > and the strictly lower triangular part of A is not */
  571. /* > referenced. */
  572. /* > */
  573. /* > If UPLO = 'L': the leading N-by-N lower triangular part */
  574. /* > of A contains the lower triangular part of the matrix A, */
  575. /* > and the strictly upper triangular part of A is not */
  576. /* > referenced. */
  577. /* > */
  578. /* > On exit, contains: */
  579. /* > a) ONLY diagonal elements of the symmetric block diagonal */
  580. /* > matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); */
  581. /* > (superdiagonal (or subdiagonal) elements of D */
  582. /* > are stored on exit in array E), and */
  583. /* > b) If UPLO = 'U': factor U in the superdiagonal part of A. */
  584. /* > If UPLO = 'L': factor L in the subdiagonal part of A. */
  585. /* > \endverbatim */
  586. /* > */
  587. /* > \param[in] LDA */
  588. /* > \verbatim */
  589. /* > LDA is INTEGER */
  590. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  591. /* > \endverbatim */
  592. /* > */
  593. /* > \param[out] E */
  594. /* > \verbatim */
  595. /* > E is COMPLEX array, dimension (N) */
  596. /* > On exit, contains the superdiagonal (or subdiagonal) */
  597. /* > elements of the symmetric block diagonal matrix D */
  598. /* > with 1-by-1 or 2-by-2 diagonal blocks, where */
  599. /* > If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0; */
  600. /* > If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0. */
  601. /* > */
  602. /* > NOTE: For 1-by-1 diagonal block D(k), where */
  603. /* > 1 <= k <= N, the element E(k) is set to 0 in both */
  604. /* > UPLO = 'U' or UPLO = 'L' cases. */
  605. /* > \endverbatim */
  606. /* > */
  607. /* > \param[out] IPIV */
  608. /* > \verbatim */
  609. /* > IPIV is INTEGER array, dimension (N) */
  610. /* > IPIV describes the permutation matrix P in the factorization */
  611. /* > of matrix A as follows. The absolute value of IPIV(k) */
  612. /* > represents the index of row and column that were */
  613. /* > interchanged with the k-th row and column. The value of UPLO */
  614. /* > describes the order in which the interchanges were applied. */
  615. /* > Also, the sign of IPIV represents the block structure of */
  616. /* > the symmetric block diagonal matrix D with 1-by-1 or 2-by-2 */
  617. /* > diagonal blocks which correspond to 1 or 2 interchanges */
  618. /* > at each factorization step. */
  619. /* > */
  620. /* > If UPLO = 'U', */
  621. /* > ( in factorization order, k decreases from N to 1 ): */
  622. /* > a) A single positive entry IPIV(k) > 0 means: */
  623. /* > D(k,k) is a 1-by-1 diagonal block. */
  624. /* > If IPIV(k) != k, rows and columns k and IPIV(k) were */
  625. /* > interchanged in the submatrix A(1:N,N-KB+1:N); */
  626. /* > If IPIV(k) = k, no interchange occurred. */
  627. /* > */
  628. /* > */
  629. /* > b) A pair of consecutive negative entries */
  630. /* > IPIV(k) < 0 and IPIV(k-1) < 0 means: */
  631. /* > D(k-1:k,k-1:k) is a 2-by-2 diagonal block. */
  632. /* > (NOTE: negative entries in IPIV appear ONLY in pairs). */
  633. /* > 1) If -IPIV(k) != k, rows and columns */
  634. /* > k and -IPIV(k) were interchanged */
  635. /* > in the matrix A(1:N,N-KB+1:N). */
  636. /* > If -IPIV(k) = k, no interchange occurred. */
  637. /* > 2) If -IPIV(k-1) != k-1, rows and columns */
  638. /* > k-1 and -IPIV(k-1) were interchanged */
  639. /* > in the submatrix A(1:N,N-KB+1:N). */
  640. /* > If -IPIV(k-1) = k-1, no interchange occurred. */
  641. /* > */
  642. /* > c) In both cases a) and b) is always ABS( IPIV(k) ) <= k. */
  643. /* > */
  644. /* > d) NOTE: Any entry IPIV(k) is always NONZERO on output. */
  645. /* > */
  646. /* > If UPLO = 'L', */
  647. /* > ( in factorization order, k increases from 1 to N ): */
  648. /* > a) A single positive entry IPIV(k) > 0 means: */
  649. /* > D(k,k) is a 1-by-1 diagonal block. */
  650. /* > If IPIV(k) != k, rows and columns k and IPIV(k) were */
  651. /* > interchanged in the submatrix A(1:N,1:KB). */
  652. /* > If IPIV(k) = k, no interchange occurred. */
  653. /* > */
  654. /* > b) A pair of consecutive negative entries */
  655. /* > IPIV(k) < 0 and IPIV(k+1) < 0 means: */
  656. /* > D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
  657. /* > (NOTE: negative entries in IPIV appear ONLY in pairs). */
  658. /* > 1) If -IPIV(k) != k, rows and columns */
  659. /* > k and -IPIV(k) were interchanged */
  660. /* > in the submatrix A(1:N,1:KB). */
  661. /* > If -IPIV(k) = k, no interchange occurred. */
  662. /* > 2) If -IPIV(k+1) != k+1, rows and columns */
  663. /* > k-1 and -IPIV(k-1) were interchanged */
  664. /* > in the submatrix A(1:N,1:KB). */
  665. /* > If -IPIV(k+1) = k+1, no interchange occurred. */
  666. /* > */
  667. /* > c) In both cases a) and b) is always ABS( IPIV(k) ) >= k. */
  668. /* > */
  669. /* > d) NOTE: Any entry IPIV(k) is always NONZERO on output. */
  670. /* > \endverbatim */
  671. /* > */
  672. /* > \param[out] W */
  673. /* > \verbatim */
  674. /* > W is COMPLEX array, dimension (LDW,NB) */
  675. /* > \endverbatim */
  676. /* > */
  677. /* > \param[in] LDW */
  678. /* > \verbatim */
  679. /* > LDW is INTEGER */
  680. /* > The leading dimension of the array W. LDW >= f2cmax(1,N). */
  681. /* > \endverbatim */
  682. /* > */
  683. /* > \param[out] INFO */
  684. /* > \verbatim */
  685. /* > INFO is INTEGER */
  686. /* > = 0: successful exit */
  687. /* > */
  688. /* > < 0: If INFO = -k, the k-th argument had an illegal value */
  689. /* > */
  690. /* > > 0: If INFO = k, the matrix A is singular, because: */
  691. /* > If UPLO = 'U': column k in the upper */
  692. /* > triangular part of A contains all zeros. */
  693. /* > If UPLO = 'L': column k in the lower */
  694. /* > triangular part of A contains all zeros. */
  695. /* > */
  696. /* > Therefore D(k,k) is exactly zero, and superdiagonal */
  697. /* > elements of column k of U (or subdiagonal elements of */
  698. /* > column k of L ) are all zeros. The factorization has */
  699. /* > been completed, but the block diagonal matrix D is */
  700. /* > exactly singular, and division by zero will occur if */
  701. /* > it is used to solve a system of equations. */
  702. /* > */
  703. /* > NOTE: INFO only stores the first occurrence of */
  704. /* > a singularity, any subsequent occurrence of singularity */
  705. /* > is not stored in INFO even though the factorization */
  706. /* > always completes. */
  707. /* > \endverbatim */
  708. /* Authors: */
  709. /* ======== */
  710. /* > \author Univ. of Tennessee */
  711. /* > \author Univ. of California Berkeley */
  712. /* > \author Univ. of Colorado Denver */
  713. /* > \author NAG Ltd. */
  714. /* > \date December 2016 */
  715. /* > \ingroup complexSYcomputational */
  716. /* > \par Contributors: */
  717. /* ================== */
  718. /* > */
  719. /* > \verbatim */
  720. /* > */
  721. /* > December 2016, Igor Kozachenko, */
  722. /* > Computer Science Division, */
  723. /* > University of California, Berkeley */
  724. /* > */
  725. /* > September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, */
  726. /* > School of Mathematics, */
  727. /* > University of Manchester */
  728. /* > */
  729. /* > \endverbatim */
  730. /* ===================================================================== */
  731. /* Subroutine */ void clasyf_rk_(char *uplo, integer *n, integer *nb, integer
  732. *kb, complex *a, integer *lda, complex *e, integer *ipiv, complex *w,
  733. integer *ldw, integer *info)
  734. {
  735. /* System generated locals */
  736. integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3, i__4, i__5;
  737. real r__1, r__2;
  738. complex q__1, q__2, q__3, q__4;
  739. /* Local variables */
  740. logical done;
  741. integer imax, jmax, j, k, p;
  742. complex t;
  743. real alpha;
  744. extern /* Subroutine */ void cscal_(integer *, complex *, complex *,
  745. integer *), cgemm_(char *, char *, integer *, integer *, integer *
  746. , complex *, complex *, integer *, complex *, integer *, complex *
  747. , complex *, integer *);
  748. extern logical lsame_(char *, char *);
  749. extern /* Subroutine */ void cgemv_(char *, integer *, integer *, complex *
  750. , complex *, integer *, complex *, integer *, complex *, complex *
  751. , integer *);
  752. real sfmin;
  753. extern /* Subroutine */ void ccopy_(integer *, complex *, integer *,
  754. complex *, integer *);
  755. integer itemp;
  756. extern /* Subroutine */ void cswap_(integer *, complex *, integer *,
  757. complex *, integer *);
  758. integer kstep;
  759. real stemp;
  760. complex r1, d11, d12, d21, d22;
  761. integer jb, ii, jj, kk, kp;
  762. real absakk;
  763. integer kw;
  764. extern integer icamax_(integer *, complex *, integer *);
  765. extern real slamch_(char *);
  766. real colmax, rowmax;
  767. integer kkw;
  768. /* -- LAPACK computational routine (version 3.7.0) -- */
  769. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  770. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  771. /* December 2016 */
  772. /* ===================================================================== */
  773. /* Parameter adjustments */
  774. a_dim1 = *lda;
  775. a_offset = 1 + a_dim1 * 1;
  776. a -= a_offset;
  777. --e;
  778. --ipiv;
  779. w_dim1 = *ldw;
  780. w_offset = 1 + w_dim1 * 1;
  781. w -= w_offset;
  782. /* Function Body */
  783. *info = 0;
  784. /* Initialize ALPHA for use in choosing pivot block size. */
  785. alpha = (sqrt(17.f) + 1.f) / 8.f;
  786. /* Compute machine safe minimum */
  787. sfmin = slamch_("S");
  788. if (lsame_(uplo, "U")) {
  789. /* Factorize the trailing columns of A using the upper triangle */
  790. /* of A and working backwards, and compute the matrix W = U12*D */
  791. /* for use in updating A11 */
  792. /* Initialize the first entry of array E, where superdiagonal */
  793. /* elements of D are stored */
  794. e[1].r = 0.f, e[1].i = 0.f;
  795. /* K is the main loop index, decreasing from N in steps of 1 or 2 */
  796. k = *n;
  797. L10:
  798. /* KW is the column of W which corresponds to column K of A */
  799. kw = *nb + k - *n;
  800. /* Exit from loop */
  801. if (k <= *n - *nb + 1 && *nb < *n || k < 1) {
  802. goto L30;
  803. }
  804. kstep = 1;
  805. p = k;
  806. /* Copy column K of A to column KW of W and update it */
  807. ccopy_(&k, &a[k * a_dim1 + 1], &c__1, &w[kw * w_dim1 + 1], &c__1);
  808. if (k < *n) {
  809. i__1 = *n - k;
  810. q__1.r = -1.f, q__1.i = 0.f;
  811. cgemv_("No transpose", &k, &i__1, &q__1, &a[(k + 1) * a_dim1 + 1],
  812. lda, &w[k + (kw + 1) * w_dim1], ldw, &c_b1, &w[kw *
  813. w_dim1 + 1], &c__1);
  814. }
  815. /* Determine rows and columns to be interchanged and whether */
  816. /* a 1-by-1 or 2-by-2 pivot block will be used */
  817. i__1 = k + kw * w_dim1;
  818. absakk = (r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&w[k + kw *
  819. w_dim1]), abs(r__2));
  820. /* IMAX is the row-index of the largest off-diagonal element in */
  821. /* column K, and COLMAX is its absolute value. */
  822. /* Determine both COLMAX and IMAX. */
  823. if (k > 1) {
  824. i__1 = k - 1;
  825. imax = icamax_(&i__1, &w[kw * w_dim1 + 1], &c__1);
  826. i__1 = imax + kw * w_dim1;
  827. colmax = (r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&w[imax +
  828. kw * w_dim1]), abs(r__2));
  829. } else {
  830. colmax = 0.f;
  831. }
  832. if (f2cmax(absakk,colmax) == 0.f) {
  833. /* Column K is zero or underflow: set INFO and continue */
  834. if (*info == 0) {
  835. *info = k;
  836. }
  837. kp = k;
  838. ccopy_(&k, &w[kw * w_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &c__1);
  839. /* Set E( K ) to zero */
  840. if (k > 1) {
  841. i__1 = k;
  842. e[i__1].r = 0.f, e[i__1].i = 0.f;
  843. }
  844. } else {
  845. /* ============================================================ */
  846. /* Test for interchange */
  847. /* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX */
  848. /* (used to handle NaN and Inf) */
  849. if (! (absakk < alpha * colmax)) {
  850. /* no interchange, use 1-by-1 pivot block */
  851. kp = k;
  852. } else {
  853. done = FALSE_;
  854. /* Loop until pivot found */
  855. L12:
  856. /* Begin pivot search loop body */
  857. /* Copy column IMAX to column KW-1 of W and update it */
  858. ccopy_(&imax, &a[imax * a_dim1 + 1], &c__1, &w[(kw - 1) *
  859. w_dim1 + 1], &c__1);
  860. i__1 = k - imax;
  861. ccopy_(&i__1, &a[imax + (imax + 1) * a_dim1], lda, &w[imax +
  862. 1 + (kw - 1) * w_dim1], &c__1);
  863. if (k < *n) {
  864. i__1 = *n - k;
  865. q__1.r = -1.f, q__1.i = 0.f;
  866. cgemv_("No transpose", &k, &i__1, &q__1, &a[(k + 1) *
  867. a_dim1 + 1], lda, &w[imax + (kw + 1) * w_dim1],
  868. ldw, &c_b1, &w[(kw - 1) * w_dim1 + 1], &c__1);
  869. }
  870. /* JMAX is the column-index of the largest off-diagonal */
  871. /* element in row IMAX, and ROWMAX is its absolute value. */
  872. /* Determine both ROWMAX and JMAX. */
  873. if (imax != k) {
  874. i__1 = k - imax;
  875. jmax = imax + icamax_(&i__1, &w[imax + 1 + (kw - 1) *
  876. w_dim1], &c__1);
  877. i__1 = jmax + (kw - 1) * w_dim1;
  878. rowmax = (r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&
  879. w[jmax + (kw - 1) * w_dim1]), abs(r__2));
  880. } else {
  881. rowmax = 0.f;
  882. }
  883. if (imax > 1) {
  884. i__1 = imax - 1;
  885. itemp = icamax_(&i__1, &w[(kw - 1) * w_dim1 + 1], &c__1);
  886. i__1 = itemp + (kw - 1) * w_dim1;
  887. stemp = (r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&w[
  888. itemp + (kw - 1) * w_dim1]), abs(r__2));
  889. if (stemp > rowmax) {
  890. rowmax = stemp;
  891. jmax = itemp;
  892. }
  893. }
  894. /* Equivalent to testing for */
  895. /* CABS1( W( IMAX, KW-1 ) ).GE.ALPHA*ROWMAX */
  896. /* (used to handle NaN and Inf) */
  897. i__1 = imax + (kw - 1) * w_dim1;
  898. if (! ((r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&w[imax
  899. + (kw - 1) * w_dim1]), abs(r__2)) < alpha * rowmax)) {
  900. /* interchange rows and columns K and IMAX, */
  901. /* use 1-by-1 pivot block */
  902. kp = imax;
  903. /* copy column KW-1 of W to column KW of W */
  904. ccopy_(&k, &w[(kw - 1) * w_dim1 + 1], &c__1, &w[kw *
  905. w_dim1 + 1], &c__1);
  906. done = TRUE_;
  907. /* Equivalent to testing for ROWMAX.EQ.COLMAX, */
  908. /* (used to handle NaN and Inf) */
  909. } else if (p == jmax || rowmax <= colmax) {
  910. /* interchange rows and columns K-1 and IMAX, */
  911. /* use 2-by-2 pivot block */
  912. kp = imax;
  913. kstep = 2;
  914. done = TRUE_;
  915. } else {
  916. /* Pivot not found: set params and repeat */
  917. p = imax;
  918. colmax = rowmax;
  919. imax = jmax;
  920. /* Copy updated JMAXth (next IMAXth) column to Kth of W */
  921. ccopy_(&k, &w[(kw - 1) * w_dim1 + 1], &c__1, &w[kw *
  922. w_dim1 + 1], &c__1);
  923. }
  924. /* End pivot search loop body */
  925. if (! done) {
  926. goto L12;
  927. }
  928. }
  929. /* ============================================================ */
  930. kk = k - kstep + 1;
  931. /* KKW is the column of W which corresponds to column KK of A */
  932. kkw = *nb + kk - *n;
  933. if (kstep == 2 && p != k) {
  934. /* Copy non-updated column K to column P */
  935. i__1 = k - p;
  936. ccopy_(&i__1, &a[p + 1 + k * a_dim1], &c__1, &a[p + (p + 1) *
  937. a_dim1], lda);
  938. ccopy_(&p, &a[k * a_dim1 + 1], &c__1, &a[p * a_dim1 + 1], &
  939. c__1);
  940. /* Interchange rows K and P in last N-K+1 columns of A */
  941. /* and last N-K+2 columns of W */
  942. i__1 = *n - k + 1;
  943. cswap_(&i__1, &a[k + k * a_dim1], lda, &a[p + k * a_dim1],
  944. lda);
  945. i__1 = *n - kk + 1;
  946. cswap_(&i__1, &w[k + kkw * w_dim1], ldw, &w[p + kkw * w_dim1],
  947. ldw);
  948. }
  949. /* Updated column KP is already stored in column KKW of W */
  950. if (kp != kk) {
  951. /* Copy non-updated column KK to column KP */
  952. i__1 = kp + k * a_dim1;
  953. i__2 = kk + k * a_dim1;
  954. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  955. i__1 = k - 1 - kp;
  956. ccopy_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + (kp +
  957. 1) * a_dim1], lda);
  958. ccopy_(&kp, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1 + 1], &
  959. c__1);
  960. /* Interchange rows KK and KP in last N-KK+1 columns */
  961. /* of A and W */
  962. i__1 = *n - kk + 1;
  963. cswap_(&i__1, &a[kk + kk * a_dim1], lda, &a[kp + kk * a_dim1],
  964. lda);
  965. i__1 = *n - kk + 1;
  966. cswap_(&i__1, &w[kk + kkw * w_dim1], ldw, &w[kp + kkw *
  967. w_dim1], ldw);
  968. }
  969. if (kstep == 1) {
  970. /* 1-by-1 pivot block D(k): column KW of W now holds */
  971. /* W(k) = U(k)*D(k) */
  972. /* where U(k) is the k-th column of U */
  973. /* Store U(k) in column k of A */
  974. ccopy_(&k, &w[kw * w_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &
  975. c__1);
  976. if (k > 1) {
  977. i__1 = k + k * a_dim1;
  978. if ((r__1 = a[i__1].r, abs(r__1)) + (r__2 = r_imag(&a[k +
  979. k * a_dim1]), abs(r__2)) >= sfmin) {
  980. c_div(&q__1, &c_b1, &a[k + k * a_dim1]);
  981. r1.r = q__1.r, r1.i = q__1.i;
  982. i__1 = k - 1;
  983. cscal_(&i__1, &r1, &a[k * a_dim1 + 1], &c__1);
  984. } else /* if(complicated condition) */ {
  985. i__1 = k + k * a_dim1;
  986. if (a[i__1].r != 0.f || a[i__1].i != 0.f) {
  987. i__1 = k - 1;
  988. for (ii = 1; ii <= i__1; ++ii) {
  989. i__2 = ii + k * a_dim1;
  990. c_div(&q__1, &a[ii + k * a_dim1], &a[k + k *
  991. a_dim1]);
  992. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  993. /* L14: */
  994. }
  995. }
  996. }
  997. /* Store the superdiagonal element of D in array E */
  998. i__1 = k;
  999. e[i__1].r = 0.f, e[i__1].i = 0.f;
  1000. }
  1001. } else {
  1002. /* 2-by-2 pivot block D(k): columns KW and KW-1 of W now */
  1003. /* hold */
  1004. /* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */
  1005. /* where U(k) and U(k-1) are the k-th and (k-1)-th columns */
  1006. /* of U */
  1007. if (k > 2) {
  1008. /* Store U(k) and U(k-1) in columns k and k-1 of A */
  1009. i__1 = k - 1 + kw * w_dim1;
  1010. d12.r = w[i__1].r, d12.i = w[i__1].i;
  1011. c_div(&q__1, &w[k + kw * w_dim1], &d12);
  1012. d11.r = q__1.r, d11.i = q__1.i;
  1013. c_div(&q__1, &w[k - 1 + (kw - 1) * w_dim1], &d12);
  1014. d22.r = q__1.r, d22.i = q__1.i;
  1015. q__3.r = d11.r * d22.r - d11.i * d22.i, q__3.i = d11.r *
  1016. d22.i + d11.i * d22.r;
  1017. q__2.r = q__3.r - 1.f, q__2.i = q__3.i + 0.f;
  1018. c_div(&q__1, &c_b1, &q__2);
  1019. t.r = q__1.r, t.i = q__1.i;
  1020. i__1 = k - 2;
  1021. for (j = 1; j <= i__1; ++j) {
  1022. i__2 = j + (k - 1) * a_dim1;
  1023. i__3 = j + (kw - 1) * w_dim1;
  1024. q__4.r = d11.r * w[i__3].r - d11.i * w[i__3].i,
  1025. q__4.i = d11.r * w[i__3].i + d11.i * w[i__3]
  1026. .r;
  1027. i__4 = j + kw * w_dim1;
  1028. q__3.r = q__4.r - w[i__4].r, q__3.i = q__4.i - w[i__4]
  1029. .i;
  1030. c_div(&q__2, &q__3, &d12);
  1031. q__1.r = t.r * q__2.r - t.i * q__2.i, q__1.i = t.r *
  1032. q__2.i + t.i * q__2.r;
  1033. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1034. i__2 = j + k * a_dim1;
  1035. i__3 = j + kw * w_dim1;
  1036. q__4.r = d22.r * w[i__3].r - d22.i * w[i__3].i,
  1037. q__4.i = d22.r * w[i__3].i + d22.i * w[i__3]
  1038. .r;
  1039. i__4 = j + (kw - 1) * w_dim1;
  1040. q__3.r = q__4.r - w[i__4].r, q__3.i = q__4.i - w[i__4]
  1041. .i;
  1042. c_div(&q__2, &q__3, &d12);
  1043. q__1.r = t.r * q__2.r - t.i * q__2.i, q__1.i = t.r *
  1044. q__2.i + t.i * q__2.r;
  1045. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1046. /* L20: */
  1047. }
  1048. }
  1049. /* Copy diagonal elements of D(K) to A, */
  1050. /* copy superdiagonal element of D(K) to E(K) and */
  1051. /* ZERO out superdiagonal entry of A */
  1052. i__1 = k - 1 + (k - 1) * a_dim1;
  1053. i__2 = k - 1 + (kw - 1) * w_dim1;
  1054. a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
  1055. i__1 = k - 1 + k * a_dim1;
  1056. a[i__1].r = 0.f, a[i__1].i = 0.f;
  1057. i__1 = k + k * a_dim1;
  1058. i__2 = k + kw * w_dim1;
  1059. a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
  1060. i__1 = k;
  1061. i__2 = k - 1 + kw * w_dim1;
  1062. e[i__1].r = w[i__2].r, e[i__1].i = w[i__2].i;
  1063. i__1 = k - 1;
  1064. e[i__1].r = 0.f, e[i__1].i = 0.f;
  1065. }
  1066. /* End column K is nonsingular */
  1067. }
  1068. /* Store details of the interchanges in IPIV */
  1069. if (kstep == 1) {
  1070. ipiv[k] = kp;
  1071. } else {
  1072. ipiv[k] = -p;
  1073. ipiv[k - 1] = -kp;
  1074. }
  1075. /* Decrease K and return to the start of the main loop */
  1076. k -= kstep;
  1077. goto L10;
  1078. L30:
  1079. /* Update the upper triangle of A11 (= A(1:k,1:k)) as */
  1080. /* A11 := A11 - U12*D*U12**T = A11 - U12*W**T */
  1081. /* computing blocks of NB columns at a time */
  1082. i__1 = -(*nb);
  1083. for (j = (k - 1) / *nb * *nb + 1; i__1 < 0 ? j >= 1 : j <= 1; j +=
  1084. i__1) {
  1085. /* Computing MIN */
  1086. i__2 = *nb, i__3 = k - j + 1;
  1087. jb = f2cmin(i__2,i__3);
  1088. /* Update the upper triangle of the diagonal block */
  1089. i__2 = j + jb - 1;
  1090. for (jj = j; jj <= i__2; ++jj) {
  1091. i__3 = jj - j + 1;
  1092. i__4 = *n - k;
  1093. q__1.r = -1.f, q__1.i = 0.f;
  1094. cgemv_("No transpose", &i__3, &i__4, &q__1, &a[j + (k + 1) *
  1095. a_dim1], lda, &w[jj + (kw + 1) * w_dim1], ldw, &c_b1,
  1096. &a[j + jj * a_dim1], &c__1);
  1097. /* L40: */
  1098. }
  1099. /* Update the rectangular superdiagonal block */
  1100. if (j >= 2) {
  1101. i__2 = j - 1;
  1102. i__3 = *n - k;
  1103. q__1.r = -1.f, q__1.i = 0.f;
  1104. cgemm_("No transpose", "Transpose", &i__2, &jb, &i__3, &q__1,
  1105. &a[(k + 1) * a_dim1 + 1], lda, &w[j + (kw + 1) *
  1106. w_dim1], ldw, &c_b1, &a[j * a_dim1 + 1], lda);
  1107. }
  1108. /* L50: */
  1109. }
  1110. /* Set KB to the number of columns factorized */
  1111. *kb = *n - k;
  1112. } else {
  1113. /* Factorize the leading columns of A using the lower triangle */
  1114. /* of A and working forwards, and compute the matrix W = L21*D */
  1115. /* for use in updating A22 */
  1116. /* Initialize the unused last entry of the subdiagonal array E. */
  1117. i__1 = *n;
  1118. e[i__1].r = 0.f, e[i__1].i = 0.f;
  1119. /* K is the main loop index, increasing from 1 in steps of 1 or 2 */
  1120. k = 1;
  1121. L70:
  1122. /* Exit from loop */
  1123. if (k >= *nb && *nb < *n || k > *n) {
  1124. goto L90;
  1125. }
  1126. kstep = 1;
  1127. p = k;
  1128. /* Copy column K of A to column K of W and update it */
  1129. i__1 = *n - k + 1;
  1130. ccopy_(&i__1, &a[k + k * a_dim1], &c__1, &w[k + k * w_dim1], &c__1);
  1131. if (k > 1) {
  1132. i__1 = *n - k + 1;
  1133. i__2 = k - 1;
  1134. q__1.r = -1.f, q__1.i = 0.f;
  1135. cgemv_("No transpose", &i__1, &i__2, &q__1, &a[k + a_dim1], lda, &
  1136. w[k + w_dim1], ldw, &c_b1, &w[k + k * w_dim1], &c__1);
  1137. }
  1138. /* Determine rows and columns to be interchanged and whether */
  1139. /* a 1-by-1 or 2-by-2 pivot block will be used */
  1140. i__1 = k + k * w_dim1;
  1141. absakk = (r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&w[k + k *
  1142. w_dim1]), abs(r__2));
  1143. /* IMAX is the row-index of the largest off-diagonal element in */
  1144. /* column K, and COLMAX is its absolute value. */
  1145. /* Determine both COLMAX and IMAX. */
  1146. if (k < *n) {
  1147. i__1 = *n - k;
  1148. imax = k + icamax_(&i__1, &w[k + 1 + k * w_dim1], &c__1);
  1149. i__1 = imax + k * w_dim1;
  1150. colmax = (r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&w[imax +
  1151. k * w_dim1]), abs(r__2));
  1152. } else {
  1153. colmax = 0.f;
  1154. }
  1155. if (f2cmax(absakk,colmax) == 0.f) {
  1156. /* Column K is zero or underflow: set INFO and continue */
  1157. if (*info == 0) {
  1158. *info = k;
  1159. }
  1160. kp = k;
  1161. i__1 = *n - k + 1;
  1162. ccopy_(&i__1, &w[k + k * w_dim1], &c__1, &a[k + k * a_dim1], &
  1163. c__1);
  1164. /* Set E( K ) to zero */
  1165. if (k < *n) {
  1166. i__1 = k;
  1167. e[i__1].r = 0.f, e[i__1].i = 0.f;
  1168. }
  1169. } else {
  1170. /* ============================================================ */
  1171. /* Test for interchange */
  1172. /* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX */
  1173. /* (used to handle NaN and Inf) */
  1174. if (! (absakk < alpha * colmax)) {
  1175. /* no interchange, use 1-by-1 pivot block */
  1176. kp = k;
  1177. } else {
  1178. done = FALSE_;
  1179. /* Loop until pivot found */
  1180. L72:
  1181. /* Begin pivot search loop body */
  1182. /* Copy column IMAX to column K+1 of W and update it */
  1183. i__1 = imax - k;
  1184. ccopy_(&i__1, &a[imax + k * a_dim1], lda, &w[k + (k + 1) *
  1185. w_dim1], &c__1);
  1186. i__1 = *n - imax + 1;
  1187. ccopy_(&i__1, &a[imax + imax * a_dim1], &c__1, &w[imax + (k +
  1188. 1) * w_dim1], &c__1);
  1189. if (k > 1) {
  1190. i__1 = *n - k + 1;
  1191. i__2 = k - 1;
  1192. q__1.r = -1.f, q__1.i = 0.f;
  1193. cgemv_("No transpose", &i__1, &i__2, &q__1, &a[k + a_dim1]
  1194. , lda, &w[imax + w_dim1], ldw, &c_b1, &w[k + (k +
  1195. 1) * w_dim1], &c__1);
  1196. }
  1197. /* JMAX is the column-index of the largest off-diagonal */
  1198. /* element in row IMAX, and ROWMAX is its absolute value. */
  1199. /* Determine both ROWMAX and JMAX. */
  1200. if (imax != k) {
  1201. i__1 = imax - k;
  1202. jmax = k - 1 + icamax_(&i__1, &w[k + (k + 1) * w_dim1], &
  1203. c__1);
  1204. i__1 = jmax + (k + 1) * w_dim1;
  1205. rowmax = (r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&
  1206. w[jmax + (k + 1) * w_dim1]), abs(r__2));
  1207. } else {
  1208. rowmax = 0.f;
  1209. }
  1210. if (imax < *n) {
  1211. i__1 = *n - imax;
  1212. itemp = imax + icamax_(&i__1, &w[imax + 1 + (k + 1) *
  1213. w_dim1], &c__1);
  1214. i__1 = itemp + (k + 1) * w_dim1;
  1215. stemp = (r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&w[
  1216. itemp + (k + 1) * w_dim1]), abs(r__2));
  1217. if (stemp > rowmax) {
  1218. rowmax = stemp;
  1219. jmax = itemp;
  1220. }
  1221. }
  1222. /* Equivalent to testing for */
  1223. /* CABS1( W( IMAX, K+1 ) ).GE.ALPHA*ROWMAX */
  1224. /* (used to handle NaN and Inf) */
  1225. i__1 = imax + (k + 1) * w_dim1;
  1226. if (! ((r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&w[imax
  1227. + (k + 1) * w_dim1]), abs(r__2)) < alpha * rowmax)) {
  1228. /* interchange rows and columns K and IMAX, */
  1229. /* use 1-by-1 pivot block */
  1230. kp = imax;
  1231. /* copy column K+1 of W to column K of W */
  1232. i__1 = *n - k + 1;
  1233. ccopy_(&i__1, &w[k + (k + 1) * w_dim1], &c__1, &w[k + k *
  1234. w_dim1], &c__1);
  1235. done = TRUE_;
  1236. /* Equivalent to testing for ROWMAX.EQ.COLMAX, */
  1237. /* (used to handle NaN and Inf) */
  1238. } else if (p == jmax || rowmax <= colmax) {
  1239. /* interchange rows and columns K+1 and IMAX, */
  1240. /* use 2-by-2 pivot block */
  1241. kp = imax;
  1242. kstep = 2;
  1243. done = TRUE_;
  1244. } else {
  1245. /* Pivot not found: set params and repeat */
  1246. p = imax;
  1247. colmax = rowmax;
  1248. imax = jmax;
  1249. /* Copy updated JMAXth (next IMAXth) column to Kth of W */
  1250. i__1 = *n - k + 1;
  1251. ccopy_(&i__1, &w[k + (k + 1) * w_dim1], &c__1, &w[k + k *
  1252. w_dim1], &c__1);
  1253. }
  1254. /* End pivot search loop body */
  1255. if (! done) {
  1256. goto L72;
  1257. }
  1258. }
  1259. /* ============================================================ */
  1260. kk = k + kstep - 1;
  1261. if (kstep == 2 && p != k) {
  1262. /* Copy non-updated column K to column P */
  1263. i__1 = p - k;
  1264. ccopy_(&i__1, &a[k + k * a_dim1], &c__1, &a[p + k * a_dim1],
  1265. lda);
  1266. i__1 = *n - p + 1;
  1267. ccopy_(&i__1, &a[p + k * a_dim1], &c__1, &a[p + p * a_dim1], &
  1268. c__1);
  1269. /* Interchange rows K and P in first K columns of A */
  1270. /* and first K+1 columns of W */
  1271. cswap_(&k, &a[k + a_dim1], lda, &a[p + a_dim1], lda);
  1272. cswap_(&kk, &w[k + w_dim1], ldw, &w[p + w_dim1], ldw);
  1273. }
  1274. /* Updated column KP is already stored in column KK of W */
  1275. if (kp != kk) {
  1276. /* Copy non-updated column KK to column KP */
  1277. i__1 = kp + k * a_dim1;
  1278. i__2 = kk + k * a_dim1;
  1279. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  1280. i__1 = kp - k - 1;
  1281. ccopy_(&i__1, &a[k + 1 + kk * a_dim1], &c__1, &a[kp + (k + 1)
  1282. * a_dim1], lda);
  1283. i__1 = *n - kp + 1;
  1284. ccopy_(&i__1, &a[kp + kk * a_dim1], &c__1, &a[kp + kp *
  1285. a_dim1], &c__1);
  1286. /* Interchange rows KK and KP in first KK columns of A and W */
  1287. cswap_(&kk, &a[kk + a_dim1], lda, &a[kp + a_dim1], lda);
  1288. cswap_(&kk, &w[kk + w_dim1], ldw, &w[kp + w_dim1], ldw);
  1289. }
  1290. if (kstep == 1) {
  1291. /* 1-by-1 pivot block D(k): column k of W now holds */
  1292. /* W(k) = L(k)*D(k) */
  1293. /* where L(k) is the k-th column of L */
  1294. /* Store L(k) in column k of A */
  1295. i__1 = *n - k + 1;
  1296. ccopy_(&i__1, &w[k + k * w_dim1], &c__1, &a[k + k * a_dim1], &
  1297. c__1);
  1298. if (k < *n) {
  1299. i__1 = k + k * a_dim1;
  1300. if ((r__1 = a[i__1].r, abs(r__1)) + (r__2 = r_imag(&a[k +
  1301. k * a_dim1]), abs(r__2)) >= sfmin) {
  1302. c_div(&q__1, &c_b1, &a[k + k * a_dim1]);
  1303. r1.r = q__1.r, r1.i = q__1.i;
  1304. i__1 = *n - k;
  1305. cscal_(&i__1, &r1, &a[k + 1 + k * a_dim1], &c__1);
  1306. } else /* if(complicated condition) */ {
  1307. i__1 = k + k * a_dim1;
  1308. if (a[i__1].r != 0.f || a[i__1].i != 0.f) {
  1309. i__1 = *n;
  1310. for (ii = k + 1; ii <= i__1; ++ii) {
  1311. i__2 = ii + k * a_dim1;
  1312. c_div(&q__1, &a[ii + k * a_dim1], &a[k + k *
  1313. a_dim1]);
  1314. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1315. /* L74: */
  1316. }
  1317. }
  1318. }
  1319. /* Store the subdiagonal element of D in array E */
  1320. i__1 = k;
  1321. e[i__1].r = 0.f, e[i__1].i = 0.f;
  1322. }
  1323. } else {
  1324. /* 2-by-2 pivot block D(k): columns k and k+1 of W now hold */
  1325. /* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */
  1326. /* where L(k) and L(k+1) are the k-th and (k+1)-th columns */
  1327. /* of L */
  1328. if (k < *n - 1) {
  1329. /* Store L(k) and L(k+1) in columns k and k+1 of A */
  1330. i__1 = k + 1 + k * w_dim1;
  1331. d21.r = w[i__1].r, d21.i = w[i__1].i;
  1332. c_div(&q__1, &w[k + 1 + (k + 1) * w_dim1], &d21);
  1333. d11.r = q__1.r, d11.i = q__1.i;
  1334. c_div(&q__1, &w[k + k * w_dim1], &d21);
  1335. d22.r = q__1.r, d22.i = q__1.i;
  1336. q__3.r = d11.r * d22.r - d11.i * d22.i, q__3.i = d11.r *
  1337. d22.i + d11.i * d22.r;
  1338. q__2.r = q__3.r - 1.f, q__2.i = q__3.i + 0.f;
  1339. c_div(&q__1, &c_b1, &q__2);
  1340. t.r = q__1.r, t.i = q__1.i;
  1341. i__1 = *n;
  1342. for (j = k + 2; j <= i__1; ++j) {
  1343. i__2 = j + k * a_dim1;
  1344. i__3 = j + k * w_dim1;
  1345. q__4.r = d11.r * w[i__3].r - d11.i * w[i__3].i,
  1346. q__4.i = d11.r * w[i__3].i + d11.i * w[i__3]
  1347. .r;
  1348. i__4 = j + (k + 1) * w_dim1;
  1349. q__3.r = q__4.r - w[i__4].r, q__3.i = q__4.i - w[i__4]
  1350. .i;
  1351. c_div(&q__2, &q__3, &d21);
  1352. q__1.r = t.r * q__2.r - t.i * q__2.i, q__1.i = t.r *
  1353. q__2.i + t.i * q__2.r;
  1354. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1355. i__2 = j + (k + 1) * a_dim1;
  1356. i__3 = j + (k + 1) * w_dim1;
  1357. q__4.r = d22.r * w[i__3].r - d22.i * w[i__3].i,
  1358. q__4.i = d22.r * w[i__3].i + d22.i * w[i__3]
  1359. .r;
  1360. i__4 = j + k * w_dim1;
  1361. q__3.r = q__4.r - w[i__4].r, q__3.i = q__4.i - w[i__4]
  1362. .i;
  1363. c_div(&q__2, &q__3, &d21);
  1364. q__1.r = t.r * q__2.r - t.i * q__2.i, q__1.i = t.r *
  1365. q__2.i + t.i * q__2.r;
  1366. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1367. /* L80: */
  1368. }
  1369. }
  1370. /* Copy diagonal elements of D(K) to A, */
  1371. /* copy subdiagonal element of D(K) to E(K) and */
  1372. /* ZERO out subdiagonal entry of A */
  1373. i__1 = k + k * a_dim1;
  1374. i__2 = k + k * w_dim1;
  1375. a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
  1376. i__1 = k + 1 + k * a_dim1;
  1377. a[i__1].r = 0.f, a[i__1].i = 0.f;
  1378. i__1 = k + 1 + (k + 1) * a_dim1;
  1379. i__2 = k + 1 + (k + 1) * w_dim1;
  1380. a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
  1381. i__1 = k;
  1382. i__2 = k + 1 + k * w_dim1;
  1383. e[i__1].r = w[i__2].r, e[i__1].i = w[i__2].i;
  1384. i__1 = k + 1;
  1385. e[i__1].r = 0.f, e[i__1].i = 0.f;
  1386. }
  1387. /* End column K is nonsingular */
  1388. }
  1389. /* Store details of the interchanges in IPIV */
  1390. if (kstep == 1) {
  1391. ipiv[k] = kp;
  1392. } else {
  1393. ipiv[k] = -p;
  1394. ipiv[k + 1] = -kp;
  1395. }
  1396. /* Increase K and return to the start of the main loop */
  1397. k += kstep;
  1398. goto L70;
  1399. L90:
  1400. /* Update the lower triangle of A22 (= A(k:n,k:n)) as */
  1401. /* A22 := A22 - L21*D*L21**T = A22 - L21*W**T */
  1402. /* computing blocks of NB columns at a time */
  1403. i__1 = *n;
  1404. i__2 = *nb;
  1405. for (j = k; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
  1406. /* Computing MIN */
  1407. i__3 = *nb, i__4 = *n - j + 1;
  1408. jb = f2cmin(i__3,i__4);
  1409. /* Update the lower triangle of the diagonal block */
  1410. i__3 = j + jb - 1;
  1411. for (jj = j; jj <= i__3; ++jj) {
  1412. i__4 = j + jb - jj;
  1413. i__5 = k - 1;
  1414. q__1.r = -1.f, q__1.i = 0.f;
  1415. cgemv_("No transpose", &i__4, &i__5, &q__1, &a[jj + a_dim1],
  1416. lda, &w[jj + w_dim1], ldw, &c_b1, &a[jj + jj * a_dim1]
  1417. , &c__1);
  1418. /* L100: */
  1419. }
  1420. /* Update the rectangular subdiagonal block */
  1421. if (j + jb <= *n) {
  1422. i__3 = *n - j - jb + 1;
  1423. i__4 = k - 1;
  1424. q__1.r = -1.f, q__1.i = 0.f;
  1425. cgemm_("No transpose", "Transpose", &i__3, &jb, &i__4, &q__1,
  1426. &a[j + jb + a_dim1], lda, &w[j + w_dim1], ldw, &c_b1,
  1427. &a[j + jb + j * a_dim1], lda);
  1428. }
  1429. /* L110: */
  1430. }
  1431. /* Set KB to the number of columns factorized */
  1432. *kb = k - 1;
  1433. }
  1434. return;
  1435. /* End of CLASYF_RK */
  1436. } /* clasyf_rk__ */