You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cggbal.c 32 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. static real c_b36 = 10.f;
  486. static real c_b72 = .5f;
  487. /* > \brief \b CGGBAL */
  488. /* =========== DOCUMENTATION =========== */
  489. /* Online html documentation available at */
  490. /* http://www.netlib.org/lapack/explore-html/ */
  491. /* > \htmlonly */
  492. /* > Download CGGBAL + dependencies */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cggbal.
  494. f"> */
  495. /* > [TGZ]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cggbal.
  497. f"> */
  498. /* > [ZIP]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cggbal.
  500. f"> */
  501. /* > [TXT]</a> */
  502. /* > \endhtmlonly */
  503. /* Definition: */
  504. /* =========== */
  505. /* SUBROUTINE CGGBAL( JOB, N, A, LDA, B, LDB, ILO, IHI, LSCALE, */
  506. /* RSCALE, WORK, INFO ) */
  507. /* CHARACTER JOB */
  508. /* INTEGER IHI, ILO, INFO, LDA, LDB, N */
  509. /* REAL LSCALE( * ), RSCALE( * ), WORK( * ) */
  510. /* COMPLEX A( LDA, * ), B( LDB, * ) */
  511. /* > \par Purpose: */
  512. /* ============= */
  513. /* > */
  514. /* > \verbatim */
  515. /* > */
  516. /* > CGGBAL balances a pair of general complex matrices (A,B). This */
  517. /* > involves, first, permuting A and B by similarity transformations to */
  518. /* > isolate eigenvalues in the first 1 to ILO$-$1 and last IHI+1 to N */
  519. /* > elements on the diagonal; and second, applying a diagonal similarity */
  520. /* > transformation to rows and columns ILO to IHI to make the rows */
  521. /* > and columns as close in norm as possible. Both steps are optional. */
  522. /* > */
  523. /* > Balancing may reduce the 1-norm of the matrices, and improve the */
  524. /* > accuracy of the computed eigenvalues and/or eigenvectors in the */
  525. /* > generalized eigenvalue problem A*x = lambda*B*x. */
  526. /* > \endverbatim */
  527. /* Arguments: */
  528. /* ========== */
  529. /* > \param[in] JOB */
  530. /* > \verbatim */
  531. /* > JOB is CHARACTER*1 */
  532. /* > Specifies the operations to be performed on A and B: */
  533. /* > = 'N': none: simply set ILO = 1, IHI = N, LSCALE(I) = 1.0 */
  534. /* > and RSCALE(I) = 1.0 for i=1,...,N; */
  535. /* > = 'P': permute only; */
  536. /* > = 'S': scale only; */
  537. /* > = 'B': both permute and scale. */
  538. /* > \endverbatim */
  539. /* > */
  540. /* > \param[in] N */
  541. /* > \verbatim */
  542. /* > N is INTEGER */
  543. /* > The order of the matrices A and B. N >= 0. */
  544. /* > \endverbatim */
  545. /* > */
  546. /* > \param[in,out] A */
  547. /* > \verbatim */
  548. /* > A is COMPLEX array, dimension (LDA,N) */
  549. /* > On entry, the input matrix A. */
  550. /* > On exit, A is overwritten by the balanced matrix. */
  551. /* > If JOB = 'N', A is not referenced. */
  552. /* > \endverbatim */
  553. /* > */
  554. /* > \param[in] LDA */
  555. /* > \verbatim */
  556. /* > LDA is INTEGER */
  557. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  558. /* > \endverbatim */
  559. /* > */
  560. /* > \param[in,out] B */
  561. /* > \verbatim */
  562. /* > B is COMPLEX array, dimension (LDB,N) */
  563. /* > On entry, the input matrix B. */
  564. /* > On exit, B is overwritten by the balanced matrix. */
  565. /* > If JOB = 'N', B is not referenced. */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in] LDB */
  569. /* > \verbatim */
  570. /* > LDB is INTEGER */
  571. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[out] ILO */
  575. /* > \verbatim */
  576. /* > ILO is INTEGER */
  577. /* > \endverbatim */
  578. /* > */
  579. /* > \param[out] IHI */
  580. /* > \verbatim */
  581. /* > IHI is INTEGER */
  582. /* > ILO and IHI are set to integers such that on exit */
  583. /* > A(i,j) = 0 and B(i,j) = 0 if i > j and */
  584. /* > j = 1,...,ILO-1 or i = IHI+1,...,N. */
  585. /* > If JOB = 'N' or 'S', ILO = 1 and IHI = N. */
  586. /* > \endverbatim */
  587. /* > */
  588. /* > \param[out] LSCALE */
  589. /* > \verbatim */
  590. /* > LSCALE is REAL array, dimension (N) */
  591. /* > Details of the permutations and scaling factors applied */
  592. /* > to the left side of A and B. If P(j) is the index of the */
  593. /* > row interchanged with row j, and D(j) is the scaling factor */
  594. /* > applied to row j, then */
  595. /* > LSCALE(j) = P(j) for J = 1,...,ILO-1 */
  596. /* > = D(j) for J = ILO,...,IHI */
  597. /* > = P(j) for J = IHI+1,...,N. */
  598. /* > The order in which the interchanges are made is N to IHI+1, */
  599. /* > then 1 to ILO-1. */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[out] RSCALE */
  603. /* > \verbatim */
  604. /* > RSCALE is REAL array, dimension (N) */
  605. /* > Details of the permutations and scaling factors applied */
  606. /* > to the right side of A and B. If P(j) is the index of the */
  607. /* > column interchanged with column j, and D(j) is the scaling */
  608. /* > factor applied to column j, then */
  609. /* > RSCALE(j) = P(j) for J = 1,...,ILO-1 */
  610. /* > = D(j) for J = ILO,...,IHI */
  611. /* > = P(j) for J = IHI+1,...,N. */
  612. /* > The order in which the interchanges are made is N to IHI+1, */
  613. /* > then 1 to ILO-1. */
  614. /* > \endverbatim */
  615. /* > */
  616. /* > \param[out] WORK */
  617. /* > \verbatim */
  618. /* > WORK is REAL array, dimension (lwork) */
  619. /* > lwork must be at least f2cmax(1,6*N) when JOB = 'S' or 'B', and */
  620. /* > at least 1 when JOB = 'N' or 'P'. */
  621. /* > \endverbatim */
  622. /* > */
  623. /* > \param[out] INFO */
  624. /* > \verbatim */
  625. /* > INFO is INTEGER */
  626. /* > = 0: successful exit */
  627. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  628. /* > \endverbatim */
  629. /* Authors: */
  630. /* ======== */
  631. /* > \author Univ. of Tennessee */
  632. /* > \author Univ. of California Berkeley */
  633. /* > \author Univ. of Colorado Denver */
  634. /* > \author NAG Ltd. */
  635. /* > \date December 2016 */
  636. /* > \ingroup complexGBcomputational */
  637. /* > \par Further Details: */
  638. /* ===================== */
  639. /* > */
  640. /* > \verbatim */
  641. /* > */
  642. /* > See R.C. WARD, Balancing the generalized eigenvalue problem, */
  643. /* > SIAM J. Sci. Stat. Comp. 2 (1981), 141-152. */
  644. /* > \endverbatim */
  645. /* > */
  646. /* ===================================================================== */
  647. /* Subroutine */ void cggbal_(char *job, integer *n, complex *a, integer *lda,
  648. complex *b, integer *ldb, integer *ilo, integer *ihi, real *lscale,
  649. real *rscale, real *work, integer *info)
  650. {
  651. /* System generated locals */
  652. integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
  653. real r__1, r__2, r__3;
  654. /* Local variables */
  655. integer lcab;
  656. real beta, coef;
  657. integer irab, lrab;
  658. real basl, cmax;
  659. extern real sdot_(integer *, real *, integer *, real *, integer *);
  660. real coef2, coef5;
  661. integer i__, j, k, l, m;
  662. real gamma, t, alpha;
  663. extern logical lsame_(char *, char *);
  664. extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *);
  665. real sfmin;
  666. extern /* Subroutine */ void cswap_(integer *, complex *, integer *,
  667. complex *, integer *);
  668. real sfmax;
  669. integer iflow, kount;
  670. extern /* Subroutine */ void saxpy_(integer *, real *, real *, integer *,
  671. real *, integer *);
  672. integer jc;
  673. real ta, tb, tc;
  674. integer ir, it;
  675. real ew;
  676. integer nr;
  677. real pgamma;
  678. extern integer icamax_(integer *, complex *, integer *);
  679. extern real slamch_(char *);
  680. extern /* Subroutine */ void csscal_(integer *, real *, complex *, integer
  681. *);
  682. extern int xerbla_(char *, integer *, ftnlen);
  683. integer lsfmin, lsfmax, ip1, jp1, lm1;
  684. real cab, rab, ewc, cor, sum;
  685. integer nrp2, icab;
  686. /* -- LAPACK computational routine (version 3.7.0) -- */
  687. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  688. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  689. /* December 2016 */
  690. /* ===================================================================== */
  691. /* Test the input parameters */
  692. /* Parameter adjustments */
  693. a_dim1 = *lda;
  694. a_offset = 1 + a_dim1 * 1;
  695. a -= a_offset;
  696. b_dim1 = *ldb;
  697. b_offset = 1 + b_dim1 * 1;
  698. b -= b_offset;
  699. --lscale;
  700. --rscale;
  701. --work;
  702. /* Function Body */
  703. *info = 0;
  704. if (! lsame_(job, "N") && ! lsame_(job, "P") && ! lsame_(job, "S")
  705. && ! lsame_(job, "B")) {
  706. *info = -1;
  707. } else if (*n < 0) {
  708. *info = -2;
  709. } else if (*lda < f2cmax(1,*n)) {
  710. *info = -4;
  711. } else if (*ldb < f2cmax(1,*n)) {
  712. *info = -6;
  713. }
  714. if (*info != 0) {
  715. i__1 = -(*info);
  716. xerbla_("CGGBAL", &i__1, (ftnlen)6);
  717. return;
  718. }
  719. /* Quick return if possible */
  720. if (*n == 0) {
  721. *ilo = 1;
  722. *ihi = *n;
  723. return;
  724. }
  725. if (*n == 1) {
  726. *ilo = 1;
  727. *ihi = *n;
  728. lscale[1] = 1.f;
  729. rscale[1] = 1.f;
  730. return;
  731. }
  732. if (lsame_(job, "N")) {
  733. *ilo = 1;
  734. *ihi = *n;
  735. i__1 = *n;
  736. for (i__ = 1; i__ <= i__1; ++i__) {
  737. lscale[i__] = 1.f;
  738. rscale[i__] = 1.f;
  739. /* L10: */
  740. }
  741. return;
  742. }
  743. k = 1;
  744. l = *n;
  745. if (lsame_(job, "S")) {
  746. goto L190;
  747. }
  748. goto L30;
  749. /* Permute the matrices A and B to isolate the eigenvalues. */
  750. /* Find row with one nonzero in columns 1 through L */
  751. L20:
  752. l = lm1;
  753. if (l != 1) {
  754. goto L30;
  755. }
  756. rscale[1] = 1.f;
  757. lscale[1] = 1.f;
  758. goto L190;
  759. L30:
  760. lm1 = l - 1;
  761. for (i__ = l; i__ >= 1; --i__) {
  762. i__1 = lm1;
  763. for (j = 1; j <= i__1; ++j) {
  764. jp1 = j + 1;
  765. i__2 = i__ + j * a_dim1;
  766. i__3 = i__ + j * b_dim1;
  767. if (a[i__2].r != 0.f || a[i__2].i != 0.f || (b[i__3].r != 0.f ||
  768. b[i__3].i != 0.f)) {
  769. goto L50;
  770. }
  771. /* L40: */
  772. }
  773. j = l;
  774. goto L70;
  775. L50:
  776. i__1 = l;
  777. for (j = jp1; j <= i__1; ++j) {
  778. i__2 = i__ + j * a_dim1;
  779. i__3 = i__ + j * b_dim1;
  780. if (a[i__2].r != 0.f || a[i__2].i != 0.f || (b[i__3].r != 0.f ||
  781. b[i__3].i != 0.f)) {
  782. goto L80;
  783. }
  784. /* L60: */
  785. }
  786. j = jp1 - 1;
  787. L70:
  788. m = l;
  789. iflow = 1;
  790. goto L160;
  791. L80:
  792. ;
  793. }
  794. goto L100;
  795. /* Find column with one nonzero in rows K through N */
  796. L90:
  797. ++k;
  798. L100:
  799. i__1 = l;
  800. for (j = k; j <= i__1; ++j) {
  801. i__2 = lm1;
  802. for (i__ = k; i__ <= i__2; ++i__) {
  803. ip1 = i__ + 1;
  804. i__3 = i__ + j * a_dim1;
  805. i__4 = i__ + j * b_dim1;
  806. if (a[i__3].r != 0.f || a[i__3].i != 0.f || (b[i__4].r != 0.f ||
  807. b[i__4].i != 0.f)) {
  808. goto L120;
  809. }
  810. /* L110: */
  811. }
  812. i__ = l;
  813. goto L140;
  814. L120:
  815. i__2 = l;
  816. for (i__ = ip1; i__ <= i__2; ++i__) {
  817. i__3 = i__ + j * a_dim1;
  818. i__4 = i__ + j * b_dim1;
  819. if (a[i__3].r != 0.f || a[i__3].i != 0.f || (b[i__4].r != 0.f ||
  820. b[i__4].i != 0.f)) {
  821. goto L150;
  822. }
  823. /* L130: */
  824. }
  825. i__ = ip1 - 1;
  826. L140:
  827. m = k;
  828. iflow = 2;
  829. goto L160;
  830. L150:
  831. ;
  832. }
  833. goto L190;
  834. /* Permute rows M and I */
  835. L160:
  836. lscale[m] = (real) i__;
  837. if (i__ == m) {
  838. goto L170;
  839. }
  840. i__1 = *n - k + 1;
  841. cswap_(&i__1, &a[i__ + k * a_dim1], lda, &a[m + k * a_dim1], lda);
  842. i__1 = *n - k + 1;
  843. cswap_(&i__1, &b[i__ + k * b_dim1], ldb, &b[m + k * b_dim1], ldb);
  844. /* Permute columns M and J */
  845. L170:
  846. rscale[m] = (real) j;
  847. if (j == m) {
  848. goto L180;
  849. }
  850. cswap_(&l, &a[j * a_dim1 + 1], &c__1, &a[m * a_dim1 + 1], &c__1);
  851. cswap_(&l, &b[j * b_dim1 + 1], &c__1, &b[m * b_dim1 + 1], &c__1);
  852. L180:
  853. switch (iflow) {
  854. case 1: goto L20;
  855. case 2: goto L90;
  856. }
  857. L190:
  858. *ilo = k;
  859. *ihi = l;
  860. if (lsame_(job, "P")) {
  861. i__1 = *ihi;
  862. for (i__ = *ilo; i__ <= i__1; ++i__) {
  863. lscale[i__] = 1.f;
  864. rscale[i__] = 1.f;
  865. /* L195: */
  866. }
  867. return;
  868. }
  869. if (*ilo == *ihi) {
  870. return;
  871. }
  872. /* Balance the submatrix in rows ILO to IHI. */
  873. nr = *ihi - *ilo + 1;
  874. i__1 = *ihi;
  875. for (i__ = *ilo; i__ <= i__1; ++i__) {
  876. rscale[i__] = 0.f;
  877. lscale[i__] = 0.f;
  878. work[i__] = 0.f;
  879. work[i__ + *n] = 0.f;
  880. work[i__ + (*n << 1)] = 0.f;
  881. work[i__ + *n * 3] = 0.f;
  882. work[i__ + (*n << 2)] = 0.f;
  883. work[i__ + *n * 5] = 0.f;
  884. /* L200: */
  885. }
  886. /* Compute right side vector in resulting linear equations */
  887. basl = r_lg10(&c_b36);
  888. i__1 = *ihi;
  889. for (i__ = *ilo; i__ <= i__1; ++i__) {
  890. i__2 = *ihi;
  891. for (j = *ilo; j <= i__2; ++j) {
  892. i__3 = i__ + j * a_dim1;
  893. if (a[i__3].r == 0.f && a[i__3].i == 0.f) {
  894. ta = 0.f;
  895. goto L210;
  896. }
  897. i__3 = i__ + j * a_dim1;
  898. r__3 = (r__1 = a[i__3].r, abs(r__1)) + (r__2 = r_imag(&a[i__ + j *
  899. a_dim1]), abs(r__2));
  900. ta = r_lg10(&r__3) / basl;
  901. L210:
  902. i__3 = i__ + j * b_dim1;
  903. if (b[i__3].r == 0.f && b[i__3].i == 0.f) {
  904. tb = 0.f;
  905. goto L220;
  906. }
  907. i__3 = i__ + j * b_dim1;
  908. r__3 = (r__1 = b[i__3].r, abs(r__1)) + (r__2 = r_imag(&b[i__ + j *
  909. b_dim1]), abs(r__2));
  910. tb = r_lg10(&r__3) / basl;
  911. L220:
  912. work[i__ + (*n << 2)] = work[i__ + (*n << 2)] - ta - tb;
  913. work[j + *n * 5] = work[j + *n * 5] - ta - tb;
  914. /* L230: */
  915. }
  916. /* L240: */
  917. }
  918. coef = 1.f / (real) (nr << 1);
  919. coef2 = coef * coef;
  920. coef5 = coef2 * .5f;
  921. nrp2 = nr + 2;
  922. beta = 0.f;
  923. it = 1;
  924. /* Start generalized conjugate gradient iteration */
  925. L250:
  926. gamma = sdot_(&nr, &work[*ilo + (*n << 2)], &c__1, &work[*ilo + (*n << 2)]
  927. , &c__1) + sdot_(&nr, &work[*ilo + *n * 5], &c__1, &work[*ilo + *
  928. n * 5], &c__1);
  929. ew = 0.f;
  930. ewc = 0.f;
  931. i__1 = *ihi;
  932. for (i__ = *ilo; i__ <= i__1; ++i__) {
  933. ew += work[i__ + (*n << 2)];
  934. ewc += work[i__ + *n * 5];
  935. /* L260: */
  936. }
  937. /* Computing 2nd power */
  938. r__1 = ew;
  939. /* Computing 2nd power */
  940. r__2 = ewc;
  941. /* Computing 2nd power */
  942. r__3 = ew - ewc;
  943. gamma = coef * gamma - coef2 * (r__1 * r__1 + r__2 * r__2) - coef5 * (
  944. r__3 * r__3);
  945. if (gamma == 0.f) {
  946. goto L350;
  947. }
  948. if (it != 1) {
  949. beta = gamma / pgamma;
  950. }
  951. t = coef5 * (ewc - ew * 3.f);
  952. tc = coef5 * (ew - ewc * 3.f);
  953. sscal_(&nr, &beta, &work[*ilo], &c__1);
  954. sscal_(&nr, &beta, &work[*ilo + *n], &c__1);
  955. saxpy_(&nr, &coef, &work[*ilo + (*n << 2)], &c__1, &work[*ilo + *n], &
  956. c__1);
  957. saxpy_(&nr, &coef, &work[*ilo + *n * 5], &c__1, &work[*ilo], &c__1);
  958. i__1 = *ihi;
  959. for (i__ = *ilo; i__ <= i__1; ++i__) {
  960. work[i__] += tc;
  961. work[i__ + *n] += t;
  962. /* L270: */
  963. }
  964. /* Apply matrix to vector */
  965. i__1 = *ihi;
  966. for (i__ = *ilo; i__ <= i__1; ++i__) {
  967. kount = 0;
  968. sum = 0.f;
  969. i__2 = *ihi;
  970. for (j = *ilo; j <= i__2; ++j) {
  971. i__3 = i__ + j * a_dim1;
  972. if (a[i__3].r == 0.f && a[i__3].i == 0.f) {
  973. goto L280;
  974. }
  975. ++kount;
  976. sum += work[j];
  977. L280:
  978. i__3 = i__ + j * b_dim1;
  979. if (b[i__3].r == 0.f && b[i__3].i == 0.f) {
  980. goto L290;
  981. }
  982. ++kount;
  983. sum += work[j];
  984. L290:
  985. ;
  986. }
  987. work[i__ + (*n << 1)] = (real) kount * work[i__ + *n] + sum;
  988. /* L300: */
  989. }
  990. i__1 = *ihi;
  991. for (j = *ilo; j <= i__1; ++j) {
  992. kount = 0;
  993. sum = 0.f;
  994. i__2 = *ihi;
  995. for (i__ = *ilo; i__ <= i__2; ++i__) {
  996. i__3 = i__ + j * a_dim1;
  997. if (a[i__3].r == 0.f && a[i__3].i == 0.f) {
  998. goto L310;
  999. }
  1000. ++kount;
  1001. sum += work[i__ + *n];
  1002. L310:
  1003. i__3 = i__ + j * b_dim1;
  1004. if (b[i__3].r == 0.f && b[i__3].i == 0.f) {
  1005. goto L320;
  1006. }
  1007. ++kount;
  1008. sum += work[i__ + *n];
  1009. L320:
  1010. ;
  1011. }
  1012. work[j + *n * 3] = (real) kount * work[j] + sum;
  1013. /* L330: */
  1014. }
  1015. sum = sdot_(&nr, &work[*ilo + *n], &c__1, &work[*ilo + (*n << 1)], &c__1)
  1016. + sdot_(&nr, &work[*ilo], &c__1, &work[*ilo + *n * 3], &c__1);
  1017. alpha = gamma / sum;
  1018. /* Determine correction to current iteration */
  1019. cmax = 0.f;
  1020. i__1 = *ihi;
  1021. for (i__ = *ilo; i__ <= i__1; ++i__) {
  1022. cor = alpha * work[i__ + *n];
  1023. if (abs(cor) > cmax) {
  1024. cmax = abs(cor);
  1025. }
  1026. lscale[i__] += cor;
  1027. cor = alpha * work[i__];
  1028. if (abs(cor) > cmax) {
  1029. cmax = abs(cor);
  1030. }
  1031. rscale[i__] += cor;
  1032. /* L340: */
  1033. }
  1034. if (cmax < .5f) {
  1035. goto L350;
  1036. }
  1037. r__1 = -alpha;
  1038. saxpy_(&nr, &r__1, &work[*ilo + (*n << 1)], &c__1, &work[*ilo + (*n << 2)]
  1039. , &c__1);
  1040. r__1 = -alpha;
  1041. saxpy_(&nr, &r__1, &work[*ilo + *n * 3], &c__1, &work[*ilo + *n * 5], &
  1042. c__1);
  1043. pgamma = gamma;
  1044. ++it;
  1045. if (it <= nrp2) {
  1046. goto L250;
  1047. }
  1048. /* End generalized conjugate gradient iteration */
  1049. L350:
  1050. sfmin = slamch_("S");
  1051. sfmax = 1.f / sfmin;
  1052. lsfmin = (integer) (r_lg10(&sfmin) / basl + 1.f);
  1053. lsfmax = (integer) (r_lg10(&sfmax) / basl);
  1054. i__1 = *ihi;
  1055. for (i__ = *ilo; i__ <= i__1; ++i__) {
  1056. i__2 = *n - *ilo + 1;
  1057. irab = icamax_(&i__2, &a[i__ + *ilo * a_dim1], lda);
  1058. rab = c_abs(&a[i__ + (irab + *ilo - 1) * a_dim1]);
  1059. i__2 = *n - *ilo + 1;
  1060. irab = icamax_(&i__2, &b[i__ + *ilo * b_dim1], ldb);
  1061. /* Computing MAX */
  1062. r__1 = rab, r__2 = c_abs(&b[i__ + (irab + *ilo - 1) * b_dim1]);
  1063. rab = f2cmax(r__1,r__2);
  1064. r__1 = rab + sfmin;
  1065. lrab = (integer) (r_lg10(&r__1) / basl + 1.f);
  1066. ir = lscale[i__] + r_sign(&c_b72, &lscale[i__]);
  1067. /* Computing MIN */
  1068. i__2 = f2cmax(ir,lsfmin), i__2 = f2cmin(i__2,lsfmax), i__3 = lsfmax - lrab;
  1069. ir = f2cmin(i__2,i__3);
  1070. lscale[i__] = pow_ri(&c_b36, &ir);
  1071. icab = icamax_(ihi, &a[i__ * a_dim1 + 1], &c__1);
  1072. cab = c_abs(&a[icab + i__ * a_dim1]);
  1073. icab = icamax_(ihi, &b[i__ * b_dim1 + 1], &c__1);
  1074. /* Computing MAX */
  1075. r__1 = cab, r__2 = c_abs(&b[icab + i__ * b_dim1]);
  1076. cab = f2cmax(r__1,r__2);
  1077. r__1 = cab + sfmin;
  1078. lcab = (integer) (r_lg10(&r__1) / basl + 1.f);
  1079. jc = rscale[i__] + r_sign(&c_b72, &rscale[i__]);
  1080. /* Computing MIN */
  1081. i__2 = f2cmax(jc,lsfmin), i__2 = f2cmin(i__2,lsfmax), i__3 = lsfmax - lcab;
  1082. jc = f2cmin(i__2,i__3);
  1083. rscale[i__] = pow_ri(&c_b36, &jc);
  1084. /* L360: */
  1085. }
  1086. /* Row scaling of matrices A and B */
  1087. i__1 = *ihi;
  1088. for (i__ = *ilo; i__ <= i__1; ++i__) {
  1089. i__2 = *n - *ilo + 1;
  1090. csscal_(&i__2, &lscale[i__], &a[i__ + *ilo * a_dim1], lda);
  1091. i__2 = *n - *ilo + 1;
  1092. csscal_(&i__2, &lscale[i__], &b[i__ + *ilo * b_dim1], ldb);
  1093. /* L370: */
  1094. }
  1095. /* Column scaling of matrices A and B */
  1096. i__1 = *ihi;
  1097. for (j = *ilo; j <= i__1; ++j) {
  1098. csscal_(ihi, &rscale[j], &a[j * a_dim1 + 1], &c__1);
  1099. csscal_(ihi, &rscale[j], &b[j * b_dim1 + 1], &c__1);
  1100. /* L380: */
  1101. }
  1102. return;
  1103. /* End of CGGBAL */
  1104. } /* cggbal_ */