You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clasyf_aa.c 30 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static complex c_b6 = {-1.f,0.f};
  487. static integer c__1 = 1;
  488. static complex c_b8 = {1.f,0.f};
  489. static complex c_b19 = {0.f,0.f};
  490. /* > \brief \b CLASYF_AA */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download CLASYF_AA + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clasyf_
  497. aa.f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clasyf_
  500. aa.f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clasyf_
  503. aa.f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE CLASYF_AA( UPLO, J1, M, NB, A, LDA, IPIV, */
  509. /* H, LDH, WORK ) */
  510. /* CHARACTER UPLO */
  511. /* INTEGER J1, M, NB, LDA, LDH */
  512. /* INTEGER IPIV( * ) */
  513. /* COMPLEX A( LDA, * ), H( LDH, * ), WORK( * ) */
  514. /* > \par Purpose: */
  515. /* ============= */
  516. /* > */
  517. /* > \verbatim */
  518. /* > */
  519. /* > DLATRF_AA factorizes a panel of a complex symmetric matrix A using */
  520. /* > the Aasen's algorithm. The panel consists of a set of NB rows of A */
  521. /* > when UPLO is U, or a set of NB columns when UPLO is L. */
  522. /* > */
  523. /* > In order to factorize the panel, the Aasen's algorithm requires the */
  524. /* > last row, or column, of the previous panel. The first row, or column, */
  525. /* > of A is set to be the first row, or column, of an identity matrix, */
  526. /* > which is used to factorize the first panel. */
  527. /* > */
  528. /* > The resulting J-th row of U, or J-th column of L, is stored in the */
  529. /* > (J-1)-th row, or column, of A (without the unit diagonals), while */
  530. /* > the diagonal and subdiagonal of A are overwritten by those of T. */
  531. /* > */
  532. /* > \endverbatim */
  533. /* Arguments: */
  534. /* ========== */
  535. /* > \param[in] UPLO */
  536. /* > \verbatim */
  537. /* > UPLO is CHARACTER*1 */
  538. /* > = 'U': Upper triangle of A is stored; */
  539. /* > = 'L': Lower triangle of A is stored. */
  540. /* > \endverbatim */
  541. /* > */
  542. /* > \param[in] J1 */
  543. /* > \verbatim */
  544. /* > J1 is INTEGER */
  545. /* > The location of the first row, or column, of the panel */
  546. /* > within the submatrix of A, passed to this routine, e.g., */
  547. /* > when called by CSYTRF_AA, for the first panel, J1 is 1, */
  548. /* > while for the remaining panels, J1 is 2. */
  549. /* > \endverbatim */
  550. /* > */
  551. /* > \param[in] M */
  552. /* > \verbatim */
  553. /* > M is INTEGER */
  554. /* > The dimension of the submatrix. M >= 0. */
  555. /* > \endverbatim */
  556. /* > */
  557. /* > \param[in] NB */
  558. /* > \verbatim */
  559. /* > NB is INTEGER */
  560. /* > The dimension of the panel to be facotorized. */
  561. /* > \endverbatim */
  562. /* > */
  563. /* > \param[in,out] A */
  564. /* > \verbatim */
  565. /* > A is COMPLEX array, dimension (LDA,M) for */
  566. /* > the first panel, while dimension (LDA,M+1) for the */
  567. /* > remaining panels. */
  568. /* > */
  569. /* > On entry, A contains the last row, or column, of */
  570. /* > the previous panel, and the trailing submatrix of A */
  571. /* > to be factorized, except for the first panel, only */
  572. /* > the panel is passed. */
  573. /* > */
  574. /* > On exit, the leading panel is factorized. */
  575. /* > \endverbatim */
  576. /* > */
  577. /* > \param[in] LDA */
  578. /* > \verbatim */
  579. /* > LDA is INTEGER */
  580. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  581. /* > \endverbatim */
  582. /* > */
  583. /* > \param[out] IPIV */
  584. /* > \verbatim */
  585. /* > IPIV is INTEGER array, dimension (M) */
  586. /* > Details of the row and column interchanges, */
  587. /* > the row and column k were interchanged with the row and */
  588. /* > column IPIV(k). */
  589. /* > \endverbatim */
  590. /* > */
  591. /* > \param[in,out] H */
  592. /* > \verbatim */
  593. /* > H is COMPLEX workspace, dimension (LDH,NB). */
  594. /* > */
  595. /* > \endverbatim */
  596. /* > */
  597. /* > \param[in] LDH */
  598. /* > \verbatim */
  599. /* > LDH is INTEGER */
  600. /* > The leading dimension of the workspace H. LDH >= f2cmax(1,M). */
  601. /* > \endverbatim */
  602. /* > */
  603. /* > \param[out] WORK */
  604. /* > \verbatim */
  605. /* > WORK is COMPLEX workspace, dimension (M). */
  606. /* > \endverbatim */
  607. /* > */
  608. /* Authors: */
  609. /* ======== */
  610. /* > \author Univ. of Tennessee */
  611. /* > \author Univ. of California Berkeley */
  612. /* > \author Univ. of Colorado Denver */
  613. /* > \author NAG Ltd. */
  614. /* > \date November 2017 */
  615. /* > \ingroup complexSYcomputational */
  616. /* ===================================================================== */
  617. /* Subroutine */ void clasyf_aa_(char *uplo, integer *j1, integer *m, integer
  618. *nb, complex *a, integer *lda, integer *ipiv, complex *h__, integer *
  619. ldh, complex *work)
  620. {
  621. /* System generated locals */
  622. integer a_dim1, a_offset, h_dim1, h_offset, i__1, i__2;
  623. complex q__1;
  624. /* Local variables */
  625. integer j, k;
  626. complex alpha;
  627. extern /* Subroutine */ void cscal_(integer *, complex *, complex *,
  628. integer *);
  629. extern logical lsame_(char *, char *);
  630. extern /* Subroutine */ void cgemv_(char *, integer *, integer *, complex *
  631. , complex *, integer *, complex *, integer *, complex *, complex *
  632. , integer *), ccopy_(integer *, complex *, integer *,
  633. complex *, integer *), cswap_(integer *, complex *, integer *,
  634. complex *, integer *), caxpy_(integer *, complex *, complex *,
  635. integer *, complex *, integer *);
  636. integer i1, k1, i2, mj;
  637. extern integer icamax_(integer *, complex *, integer *);
  638. extern /* Subroutine */ void claset_(char *, integer *, integer *, complex
  639. *, complex *, complex *, integer *);
  640. complex piv;
  641. /* -- LAPACK computational routine (version 3.8.0) -- */
  642. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  643. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  644. /* November 2017 */
  645. /* ===================================================================== */
  646. /* Parameter adjustments */
  647. a_dim1 = *lda;
  648. a_offset = 1 + a_dim1 * 1;
  649. a -= a_offset;
  650. --ipiv;
  651. h_dim1 = *ldh;
  652. h_offset = 1 + h_dim1 * 1;
  653. h__ -= h_offset;
  654. --work;
  655. /* Function Body */
  656. j = 1;
  657. /* K1 is the first column of the panel to be factorized */
  658. /* i.e., K1 is 2 for the first block column, and 1 for the rest of the blocks */
  659. k1 = 2 - *j1 + 1;
  660. if (lsame_(uplo, "U")) {
  661. /* ..................................................... */
  662. /* Factorize A as U**T*D*U using the upper triangle of A */
  663. /* ..................................................... */
  664. L10:
  665. if (j > f2cmin(*m,*nb)) {
  666. goto L20;
  667. }
  668. /* K is the column to be factorized */
  669. /* when being called from CSYTRF_AA, */
  670. /* > for the first block column, J1 is 1, hence J1+J-1 is J, */
  671. /* > for the rest of the columns, J1 is 2, and J1+J-1 is J+1, */
  672. k = *j1 + j - 1;
  673. if (j == *m) {
  674. /* Only need to compute T(J, J) */
  675. mj = 1;
  676. } else {
  677. mj = *m - j + 1;
  678. }
  679. /* H(J:M, J) := A(J, J:M) - H(J:M, 1:(J-1)) * L(J1:(J-1), J), */
  680. /* where H(J:M, J) has been initialized to be A(J, J:M) */
  681. if (k > 2) {
  682. /* K is the column to be factorized */
  683. /* > for the first block column, K is J, skipping the first two */
  684. /* columns */
  685. /* > for the rest of the columns, K is J+1, skipping only the */
  686. /* first column */
  687. i__1 = j - k1;
  688. cgemv_("No transpose", &mj, &i__1, &c_b6, &h__[j + k1 * h_dim1],
  689. ldh, &a[j * a_dim1 + 1], &c__1, &c_b8, &h__[j + j *
  690. h_dim1], &c__1);
  691. }
  692. /* Copy H(i:M, i) into WORK */
  693. ccopy_(&mj, &h__[j + j * h_dim1], &c__1, &work[1], &c__1);
  694. if (j > k1) {
  695. /* Compute WORK := WORK - L(J-1, J:M) * T(J-1,J), */
  696. /* where A(J-1, J) stores T(J-1, J) and A(J-2, J:M) stores U(J-1, J:M) */
  697. i__1 = k - 1 + j * a_dim1;
  698. q__1.r = -a[i__1].r, q__1.i = -a[i__1].i;
  699. alpha.r = q__1.r, alpha.i = q__1.i;
  700. caxpy_(&mj, &alpha, &a[k - 2 + j * a_dim1], lda, &work[1], &c__1);
  701. }
  702. /* Set A(J, J) = T(J, J) */
  703. i__1 = k + j * a_dim1;
  704. a[i__1].r = work[1].r, a[i__1].i = work[1].i;
  705. if (j < *m) {
  706. /* Compute WORK(2:M) = T(J, J) L(J, (J+1):M) */
  707. /* where A(J, J) stores T(J, J) and A(J-1, (J+1):M) stores U(J, (J+1):M) */
  708. if (k > 1) {
  709. i__1 = k + j * a_dim1;
  710. q__1.r = -a[i__1].r, q__1.i = -a[i__1].i;
  711. alpha.r = q__1.r, alpha.i = q__1.i;
  712. i__1 = *m - j;
  713. caxpy_(&i__1, &alpha, &a[k - 1 + (j + 1) * a_dim1], lda, &
  714. work[2], &c__1);
  715. }
  716. /* Find f2cmax(|WORK(2:M)|) */
  717. i__1 = *m - j;
  718. i2 = icamax_(&i__1, &work[2], &c__1) + 1;
  719. i__1 = i2;
  720. piv.r = work[i__1].r, piv.i = work[i__1].i;
  721. /* Apply symmetric pivot */
  722. if (i2 != 2 && (piv.r != 0.f || piv.i != 0.)) {
  723. /* Swap WORK(I1) and WORK(I2) */
  724. i1 = 2;
  725. i__1 = i2;
  726. i__2 = i1;
  727. work[i__1].r = work[i__2].r, work[i__1].i = work[i__2].i;
  728. i__1 = i1;
  729. work[i__1].r = piv.r, work[i__1].i = piv.i;
  730. /* Swap A(I1, I1+1:M) with A(I1+1:M, I2) */
  731. i1 = i1 + j - 1;
  732. i2 = i2 + j - 1;
  733. i__1 = i2 - i1 - 1;
  734. cswap_(&i__1, &a[*j1 + i1 - 1 + (i1 + 1) * a_dim1], lda, &a[*
  735. j1 + i1 + i2 * a_dim1], &c__1);
  736. /* Swap A(I1, I2+1:M) with A(I2, I2+1:M) */
  737. if (i2 < *m) {
  738. i__1 = *m - i2;
  739. cswap_(&i__1, &a[*j1 + i1 - 1 + (i2 + 1) * a_dim1], lda, &
  740. a[*j1 + i2 - 1 + (i2 + 1) * a_dim1], lda);
  741. }
  742. /* Swap A(I1, I1) with A(I2,I2) */
  743. i__1 = i1 + *j1 - 1 + i1 * a_dim1;
  744. piv.r = a[i__1].r, piv.i = a[i__1].i;
  745. i__1 = *j1 + i1 - 1 + i1 * a_dim1;
  746. i__2 = *j1 + i2 - 1 + i2 * a_dim1;
  747. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  748. i__1 = *j1 + i2 - 1 + i2 * a_dim1;
  749. a[i__1].r = piv.r, a[i__1].i = piv.i;
  750. /* Swap H(I1, 1:J1) with H(I2, 1:J1) */
  751. i__1 = i1 - 1;
  752. cswap_(&i__1, &h__[i1 + h_dim1], ldh, &h__[i2 + h_dim1], ldh);
  753. ipiv[i1] = i2;
  754. if (i1 > k1 - 1) {
  755. /* Swap L(1:I1-1, I1) with L(1:I1-1, I2), */
  756. /* skipping the first column */
  757. i__1 = i1 - k1 + 1;
  758. cswap_(&i__1, &a[i1 * a_dim1 + 1], &c__1, &a[i2 * a_dim1
  759. + 1], &c__1);
  760. }
  761. } else {
  762. ipiv[j + 1] = j + 1;
  763. }
  764. /* Set A(J, J+1) = T(J, J+1) */
  765. i__1 = k + (j + 1) * a_dim1;
  766. a[i__1].r = work[2].r, a[i__1].i = work[2].i;
  767. if (j < *nb) {
  768. /* Copy A(J+1:M, J+1) into H(J:M, J), */
  769. i__1 = *m - j;
  770. ccopy_(&i__1, &a[k + 1 + (j + 1) * a_dim1], lda, &h__[j + 1 +
  771. (j + 1) * h_dim1], &c__1);
  772. }
  773. /* Compute L(J+2, J+1) = WORK( 3:M ) / T(J, J+1), */
  774. /* where A(J, J+1) = T(J, J+1) and A(J+2:M, J) = L(J+2:M, J+1) */
  775. if (j < *m - 1) {
  776. i__1 = k + (j + 1) * a_dim1;
  777. if (a[i__1].r != 0.f || a[i__1].i != 0.f) {
  778. c_div(&q__1, &c_b8, &a[k + (j + 1) * a_dim1]);
  779. alpha.r = q__1.r, alpha.i = q__1.i;
  780. i__1 = *m - j - 1;
  781. ccopy_(&i__1, &work[3], &c__1, &a[k + (j + 2) * a_dim1],
  782. lda);
  783. i__1 = *m - j - 1;
  784. cscal_(&i__1, &alpha, &a[k + (j + 2) * a_dim1], lda);
  785. } else {
  786. i__1 = *m - j - 1;
  787. claset_("Full", &c__1, &i__1, &c_b19, &c_b19, &a[k + (j +
  788. 2) * a_dim1], lda);
  789. }
  790. }
  791. }
  792. ++j;
  793. goto L10;
  794. L20:
  795. ;
  796. } else {
  797. /* ..................................................... */
  798. /* Factorize A as L*D*L**T using the lower triangle of A */
  799. /* ..................................................... */
  800. L30:
  801. if (j > f2cmin(*m,*nb)) {
  802. goto L40;
  803. }
  804. /* K is the column to be factorized */
  805. /* when being called from CSYTRF_AA, */
  806. /* > for the first block column, J1 is 1, hence J1+J-1 is J, */
  807. /* > for the rest of the columns, J1 is 2, and J1+J-1 is J+1, */
  808. k = *j1 + j - 1;
  809. if (j == *m) {
  810. /* Only need to compute T(J, J) */
  811. mj = 1;
  812. } else {
  813. mj = *m - j + 1;
  814. }
  815. /* H(J:M, J) := A(J:M, J) - H(J:M, 1:(J-1)) * L(J, J1:(J-1))^T, */
  816. /* where H(J:M, J) has been initialized to be A(J:M, J) */
  817. if (k > 2) {
  818. /* K is the column to be factorized */
  819. /* > for the first block column, K is J, skipping the first two */
  820. /* columns */
  821. /* > for the rest of the columns, K is J+1, skipping only the */
  822. /* first column */
  823. i__1 = j - k1;
  824. cgemv_("No transpose", &mj, &i__1, &c_b6, &h__[j + k1 * h_dim1],
  825. ldh, &a[j + a_dim1], lda, &c_b8, &h__[j + j * h_dim1], &
  826. c__1);
  827. }
  828. /* Copy H(J:M, J) into WORK */
  829. ccopy_(&mj, &h__[j + j * h_dim1], &c__1, &work[1], &c__1);
  830. if (j > k1) {
  831. /* Compute WORK := WORK - L(J:M, J-1) * T(J-1,J), */
  832. /* where A(J-1, J) = T(J-1, J) and A(J, J-2) = L(J, J-1) */
  833. i__1 = j + (k - 1) * a_dim1;
  834. q__1.r = -a[i__1].r, q__1.i = -a[i__1].i;
  835. alpha.r = q__1.r, alpha.i = q__1.i;
  836. caxpy_(&mj, &alpha, &a[j + (k - 2) * a_dim1], &c__1, &work[1], &
  837. c__1);
  838. }
  839. /* Set A(J, J) = T(J, J) */
  840. i__1 = j + k * a_dim1;
  841. a[i__1].r = work[1].r, a[i__1].i = work[1].i;
  842. if (j < *m) {
  843. /* Compute WORK(2:M) = T(J, J) L((J+1):M, J) */
  844. /* where A(J, J) = T(J, J) and A((J+1):M, J-1) = L((J+1):M, J) */
  845. if (k > 1) {
  846. i__1 = j + k * a_dim1;
  847. q__1.r = -a[i__1].r, q__1.i = -a[i__1].i;
  848. alpha.r = q__1.r, alpha.i = q__1.i;
  849. i__1 = *m - j;
  850. caxpy_(&i__1, &alpha, &a[j + 1 + (k - 1) * a_dim1], &c__1, &
  851. work[2], &c__1);
  852. }
  853. /* Find f2cmax(|WORK(2:M)|) */
  854. i__1 = *m - j;
  855. i2 = icamax_(&i__1, &work[2], &c__1) + 1;
  856. i__1 = i2;
  857. piv.r = work[i__1].r, piv.i = work[i__1].i;
  858. /* Apply symmetric pivot */
  859. if (i2 != 2 && (piv.r != 0.f || piv.i != 0.)) {
  860. /* Swap WORK(I1) and WORK(I2) */
  861. i1 = 2;
  862. i__1 = i2;
  863. i__2 = i1;
  864. work[i__1].r = work[i__2].r, work[i__1].i = work[i__2].i;
  865. i__1 = i1;
  866. work[i__1].r = piv.r, work[i__1].i = piv.i;
  867. /* Swap A(I1+1:M, I1) with A(I2, I1+1:M) */
  868. i1 = i1 + j - 1;
  869. i2 = i2 + j - 1;
  870. i__1 = i2 - i1 - 1;
  871. cswap_(&i__1, &a[i1 + 1 + (*j1 + i1 - 1) * a_dim1], &c__1, &a[
  872. i2 + (*j1 + i1) * a_dim1], lda);
  873. /* Swap A(I2+1:M, I1) with A(I2+1:M, I2) */
  874. if (i2 < *m) {
  875. i__1 = *m - i2;
  876. cswap_(&i__1, &a[i2 + 1 + (*j1 + i1 - 1) * a_dim1], &c__1,
  877. &a[i2 + 1 + (*j1 + i2 - 1) * a_dim1], &c__1);
  878. }
  879. /* Swap A(I1, I1) with A(I2, I2) */
  880. i__1 = i1 + (*j1 + i1 - 1) * a_dim1;
  881. piv.r = a[i__1].r, piv.i = a[i__1].i;
  882. i__1 = i1 + (*j1 + i1 - 1) * a_dim1;
  883. i__2 = i2 + (*j1 + i2 - 1) * a_dim1;
  884. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  885. i__1 = i2 + (*j1 + i2 - 1) * a_dim1;
  886. a[i__1].r = piv.r, a[i__1].i = piv.i;
  887. /* Swap H(I1, I1:J1) with H(I2, I2:J1) */
  888. i__1 = i1 - 1;
  889. cswap_(&i__1, &h__[i1 + h_dim1], ldh, &h__[i2 + h_dim1], ldh);
  890. ipiv[i1] = i2;
  891. if (i1 > k1 - 1) {
  892. /* Swap L(1:I1-1, I1) with L(1:I1-1, I2), */
  893. /* skipping the first column */
  894. i__1 = i1 - k1 + 1;
  895. cswap_(&i__1, &a[i1 + a_dim1], lda, &a[i2 + a_dim1], lda);
  896. }
  897. } else {
  898. ipiv[j + 1] = j + 1;
  899. }
  900. /* Set A(J+1, J) = T(J+1, J) */
  901. i__1 = j + 1 + k * a_dim1;
  902. a[i__1].r = work[2].r, a[i__1].i = work[2].i;
  903. if (j < *nb) {
  904. /* Copy A(J+1:M, J+1) into H(J+1:M, J), */
  905. i__1 = *m - j;
  906. ccopy_(&i__1, &a[j + 1 + (k + 1) * a_dim1], &c__1, &h__[j + 1
  907. + (j + 1) * h_dim1], &c__1);
  908. }
  909. /* Compute L(J+2, J+1) = WORK( 3:M ) / T(J, J+1), */
  910. /* where A(J, J+1) = T(J, J+1) and A(J+2:M, J) = L(J+2:M, J+1) */
  911. if (j < *m - 1) {
  912. i__1 = j + 1 + k * a_dim1;
  913. if (a[i__1].r != 0.f || a[i__1].i != 0.f) {
  914. c_div(&q__1, &c_b8, &a[j + 1 + k * a_dim1]);
  915. alpha.r = q__1.r, alpha.i = q__1.i;
  916. i__1 = *m - j - 1;
  917. ccopy_(&i__1, &work[3], &c__1, &a[j + 2 + k * a_dim1], &
  918. c__1);
  919. i__1 = *m - j - 1;
  920. cscal_(&i__1, &alpha, &a[j + 2 + k * a_dim1], &c__1);
  921. } else {
  922. i__1 = *m - j - 1;
  923. claset_("Full", &i__1, &c__1, &c_b19, &c_b19, &a[j + 2 +
  924. k * a_dim1], lda);
  925. }
  926. }
  927. }
  928. ++j;
  929. goto L30;
  930. L40:
  931. ;
  932. }
  933. return;
  934. /* End of CLASYF_AA */
  935. } /* clasyf_aa__ */