You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgbbrd.c 35 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* -- translated by f2c (version 20000121).
  486. You must link the resulting object file with the libraries:
  487. -lf2c -lm (in that order)
  488. */
  489. /* Table of constant values */
  490. static complex c_b1 = {0.f,0.f};
  491. static complex c_b2 = {1.f,0.f};
  492. static integer c__1 = 1;
  493. /* > \brief \b CGBBRD */
  494. /* =========== DOCUMENTATION =========== */
  495. /* Online html documentation available at */
  496. /* http://www.netlib.org/lapack/explore-html/ */
  497. /* > \htmlonly */
  498. /* > Download CGBBRD + dependencies */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgbbrd.
  500. f"> */
  501. /* > [TGZ]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgbbrd.
  503. f"> */
  504. /* > [ZIP]</a> */
  505. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgbbrd.
  506. f"> */
  507. /* > [TXT]</a> */
  508. /* > \endhtmlonly */
  509. /* Definition: */
  510. /* =========== */
  511. /* SUBROUTINE CGBBRD( VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q, */
  512. /* LDQ, PT, LDPT, C, LDC, WORK, RWORK, INFO ) */
  513. /* CHARACTER VECT */
  514. /* INTEGER INFO, KL, KU, LDAB, LDC, LDPT, LDQ, M, N, NCC */
  515. /* REAL D( * ), E( * ), RWORK( * ) */
  516. /* COMPLEX AB( LDAB, * ), C( LDC, * ), PT( LDPT, * ), */
  517. /* $ Q( LDQ, * ), WORK( * ) */
  518. /* > \par Purpose: */
  519. /* ============= */
  520. /* > */
  521. /* > \verbatim */
  522. /* > */
  523. /* > CGBBRD reduces a complex general m-by-n band matrix A to real upper */
  524. /* > bidiagonal form B by a unitary transformation: Q**H * A * P = B. */
  525. /* > */
  526. /* > The routine computes B, and optionally forms Q or P**H, or computes */
  527. /* > Q**H*C for a given matrix C. */
  528. /* > \endverbatim */
  529. /* Arguments: */
  530. /* ========== */
  531. /* > \param[in] VECT */
  532. /* > \verbatim */
  533. /* > VECT is CHARACTER*1 */
  534. /* > Specifies whether or not the matrices Q and P**H are to be */
  535. /* > formed. */
  536. /* > = 'N': do not form Q or P**H; */
  537. /* > = 'Q': form Q only; */
  538. /* > = 'P': form P**H only; */
  539. /* > = 'B': form both. */
  540. /* > \endverbatim */
  541. /* > */
  542. /* > \param[in] M */
  543. /* > \verbatim */
  544. /* > M is INTEGER */
  545. /* > The number of rows of the matrix A. M >= 0. */
  546. /* > \endverbatim */
  547. /* > */
  548. /* > \param[in] N */
  549. /* > \verbatim */
  550. /* > N is INTEGER */
  551. /* > The number of columns of the matrix A. N >= 0. */
  552. /* > \endverbatim */
  553. /* > */
  554. /* > \param[in] NCC */
  555. /* > \verbatim */
  556. /* > NCC is INTEGER */
  557. /* > The number of columns of the matrix C. NCC >= 0. */
  558. /* > \endverbatim */
  559. /* > */
  560. /* > \param[in] KL */
  561. /* > \verbatim */
  562. /* > KL is INTEGER */
  563. /* > The number of subdiagonals of the matrix A. KL >= 0. */
  564. /* > \endverbatim */
  565. /* > */
  566. /* > \param[in] KU */
  567. /* > \verbatim */
  568. /* > KU is INTEGER */
  569. /* > The number of superdiagonals of the matrix A. KU >= 0. */
  570. /* > \endverbatim */
  571. /* > */
  572. /* > \param[in,out] AB */
  573. /* > \verbatim */
  574. /* > AB is COMPLEX array, dimension (LDAB,N) */
  575. /* > On entry, the m-by-n band matrix A, stored in rows 1 to */
  576. /* > KL+KU+1. The j-th column of A is stored in the j-th column of */
  577. /* > the array AB as follows: */
  578. /* > AB(ku+1+i-j,j) = A(i,j) for f2cmax(1,j-ku)<=i<=f2cmin(m,j+kl). */
  579. /* > On exit, A is overwritten by values generated during the */
  580. /* > reduction. */
  581. /* > \endverbatim */
  582. /* > */
  583. /* > \param[in] LDAB */
  584. /* > \verbatim */
  585. /* > LDAB is INTEGER */
  586. /* > The leading dimension of the array A. LDAB >= KL+KU+1. */
  587. /* > \endverbatim */
  588. /* > */
  589. /* > \param[out] D */
  590. /* > \verbatim */
  591. /* > D is REAL array, dimension (f2cmin(M,N)) */
  592. /* > The diagonal elements of the bidiagonal matrix B. */
  593. /* > \endverbatim */
  594. /* > */
  595. /* > \param[out] E */
  596. /* > \verbatim */
  597. /* > E is REAL array, dimension (f2cmin(M,N)-1) */
  598. /* > The superdiagonal elements of the bidiagonal matrix B. */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[out] Q */
  602. /* > \verbatim */
  603. /* > Q is COMPLEX array, dimension (LDQ,M) */
  604. /* > If VECT = 'Q' or 'B', the m-by-m unitary matrix Q. */
  605. /* > If VECT = 'N' or 'P', the array Q is not referenced. */
  606. /* > \endverbatim */
  607. /* > */
  608. /* > \param[in] LDQ */
  609. /* > \verbatim */
  610. /* > LDQ is INTEGER */
  611. /* > The leading dimension of the array Q. */
  612. /* > LDQ >= f2cmax(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise. */
  613. /* > \endverbatim */
  614. /* > */
  615. /* > \param[out] PT */
  616. /* > \verbatim */
  617. /* > PT is COMPLEX array, dimension (LDPT,N) */
  618. /* > If VECT = 'P' or 'B', the n-by-n unitary matrix P'. */
  619. /* > If VECT = 'N' or 'Q', the array PT is not referenced. */
  620. /* > \endverbatim */
  621. /* > */
  622. /* > \param[in] LDPT */
  623. /* > \verbatim */
  624. /* > LDPT is INTEGER */
  625. /* > The leading dimension of the array PT. */
  626. /* > LDPT >= f2cmax(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise. */
  627. /* > \endverbatim */
  628. /* > */
  629. /* > \param[in,out] C */
  630. /* > \verbatim */
  631. /* > C is COMPLEX array, dimension (LDC,NCC) */
  632. /* > On entry, an m-by-ncc matrix C. */
  633. /* > On exit, C is overwritten by Q**H*C. */
  634. /* > C is not referenced if NCC = 0. */
  635. /* > \endverbatim */
  636. /* > */
  637. /* > \param[in] LDC */
  638. /* > \verbatim */
  639. /* > LDC is INTEGER */
  640. /* > The leading dimension of the array C. */
  641. /* > LDC >= f2cmax(1,M) if NCC > 0; LDC >= 1 if NCC = 0. */
  642. /* > \endverbatim */
  643. /* > */
  644. /* > \param[out] WORK */
  645. /* > \verbatim */
  646. /* > WORK is COMPLEX array, dimension (f2cmax(M,N)) */
  647. /* > \endverbatim */
  648. /* > */
  649. /* > \param[out] RWORK */
  650. /* > \verbatim */
  651. /* > RWORK is REAL array, dimension (f2cmax(M,N)) */
  652. /* > \endverbatim */
  653. /* > */
  654. /* > \param[out] INFO */
  655. /* > \verbatim */
  656. /* > INFO is INTEGER */
  657. /* > = 0: successful exit. */
  658. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  659. /* > \endverbatim */
  660. /* Authors: */
  661. /* ======== */
  662. /* > \author Univ. of Tennessee */
  663. /* > \author Univ. of California Berkeley */
  664. /* > \author Univ. of Colorado Denver */
  665. /* > \author NAG Ltd. */
  666. /* > \date December 2016 */
  667. /* > \ingroup complexGBcomputational */
  668. /* ===================================================================== */
  669. /* Subroutine */ void cgbbrd_(char *vect, integer *m, integer *n, integer *ncc,
  670. integer *kl, integer *ku, complex *ab, integer *ldab, real *d__,
  671. real *e, complex *q, integer *ldq, complex *pt, integer *ldpt,
  672. complex *c__, integer *ldc, complex *work, real *rwork, integer *info)
  673. {
  674. /* System generated locals */
  675. integer ab_dim1, ab_offset, c_dim1, c_offset, pt_dim1, pt_offset, q_dim1,
  676. q_offset, i__1, i__2, i__3, i__4, i__5, i__6, i__7;
  677. complex q__1, q__2, q__3;
  678. /* Local variables */
  679. integer inca;
  680. real abst;
  681. extern /* Subroutine */ void crot_(integer *, complex *, integer *,
  682. complex *, integer *, real *, complex *);
  683. integer i__, j, l;
  684. complex t;
  685. extern /* Subroutine */ void cscal_(integer *, complex *, complex *,
  686. integer *);
  687. extern logical lsame_(char *, char *);
  688. logical wantb, wantc;
  689. integer minmn;
  690. logical wantq;
  691. integer j1, j2, kb;
  692. complex ra;
  693. real rc;
  694. integer kk;
  695. complex rb;
  696. integer ml, nr, mu;
  697. complex rs;
  698. extern /* Subroutine */ void claset_(char *, integer *, integer *, complex
  699. *, complex *, complex *, integer *), clartg_(complex *,
  700. complex *, real *, complex *, complex *);
  701. extern int xerbla_(char *, integer *, ftnlen);
  702. extern void clargv_(integer *, complex *, integer *, complex *,
  703. integer *, real *, integer *), clartv_(integer *, complex *,
  704. integer *, complex *, integer *, real *, complex *, integer *);
  705. integer kb1, ml0;
  706. logical wantpt;
  707. integer mu0, klm, kun, nrt, klu1;
  708. /* -- LAPACK computational routine (version 3.7.0) -- */
  709. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  710. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  711. /* December 2016 */
  712. /* ===================================================================== */
  713. /* Test the input parameters */
  714. /* Parameter adjustments */
  715. ab_dim1 = *ldab;
  716. ab_offset = 1 + ab_dim1 * 1;
  717. ab -= ab_offset;
  718. --d__;
  719. --e;
  720. q_dim1 = *ldq;
  721. q_offset = 1 + q_dim1 * 1;
  722. q -= q_offset;
  723. pt_dim1 = *ldpt;
  724. pt_offset = 1 + pt_dim1 * 1;
  725. pt -= pt_offset;
  726. c_dim1 = *ldc;
  727. c_offset = 1 + c_dim1 * 1;
  728. c__ -= c_offset;
  729. --work;
  730. --rwork;
  731. /* Function Body */
  732. wantb = lsame_(vect, "B");
  733. wantq = lsame_(vect, "Q") || wantb;
  734. wantpt = lsame_(vect, "P") || wantb;
  735. wantc = *ncc > 0;
  736. klu1 = *kl + *ku + 1;
  737. *info = 0;
  738. if (! wantq && ! wantpt && ! lsame_(vect, "N")) {
  739. *info = -1;
  740. } else if (*m < 0) {
  741. *info = -2;
  742. } else if (*n < 0) {
  743. *info = -3;
  744. } else if (*ncc < 0) {
  745. *info = -4;
  746. } else if (*kl < 0) {
  747. *info = -5;
  748. } else if (*ku < 0) {
  749. *info = -6;
  750. } else if (*ldab < klu1) {
  751. *info = -8;
  752. } else if (*ldq < 1 || wantq && *ldq < f2cmax(1,*m)) {
  753. *info = -12;
  754. } else if (*ldpt < 1 || wantpt && *ldpt < f2cmax(1,*n)) {
  755. *info = -14;
  756. } else if (*ldc < 1 || wantc && *ldc < f2cmax(1,*m)) {
  757. *info = -16;
  758. }
  759. if (*info != 0) {
  760. i__1 = -(*info);
  761. xerbla_("CGBBRD", &i__1, (ftnlen)6);
  762. return;
  763. }
  764. /* Initialize Q and P**H to the unit matrix, if needed */
  765. if (wantq) {
  766. claset_("Full", m, m, &c_b1, &c_b2, &q[q_offset], ldq);
  767. }
  768. if (wantpt) {
  769. claset_("Full", n, n, &c_b1, &c_b2, &pt[pt_offset], ldpt);
  770. }
  771. /* Quick return if possible. */
  772. if (*m == 0 || *n == 0) {
  773. return;
  774. }
  775. minmn = f2cmin(*m,*n);
  776. if (*kl + *ku > 1) {
  777. /* Reduce to upper bidiagonal form if KU > 0; if KU = 0, reduce */
  778. /* first to lower bidiagonal form and then transform to upper */
  779. /* bidiagonal */
  780. if (*ku > 0) {
  781. ml0 = 1;
  782. mu0 = 2;
  783. } else {
  784. ml0 = 2;
  785. mu0 = 1;
  786. }
  787. /* Wherever possible, plane rotations are generated and applied in */
  788. /* vector operations of length NR over the index set J1:J2:KLU1. */
  789. /* The complex sines of the plane rotations are stored in WORK, */
  790. /* and the real cosines in RWORK. */
  791. /* Computing MIN */
  792. i__1 = *m - 1;
  793. klm = f2cmin(i__1,*kl);
  794. /* Computing MIN */
  795. i__1 = *n - 1;
  796. kun = f2cmin(i__1,*ku);
  797. kb = klm + kun;
  798. kb1 = kb + 1;
  799. inca = kb1 * *ldab;
  800. nr = 0;
  801. j1 = klm + 2;
  802. j2 = 1 - kun;
  803. i__1 = minmn;
  804. for (i__ = 1; i__ <= i__1; ++i__) {
  805. /* Reduce i-th column and i-th row of matrix to bidiagonal form */
  806. ml = klm + 1;
  807. mu = kun + 1;
  808. i__2 = kb;
  809. for (kk = 1; kk <= i__2; ++kk) {
  810. j1 += kb;
  811. j2 += kb;
  812. /* generate plane rotations to annihilate nonzero elements */
  813. /* which have been created below the band */
  814. if (nr > 0) {
  815. clargv_(&nr, &ab[klu1 + (j1 - klm - 1) * ab_dim1], &inca,
  816. &work[j1], &kb1, &rwork[j1], &kb1);
  817. }
  818. /* apply plane rotations from the left */
  819. i__3 = kb;
  820. for (l = 1; l <= i__3; ++l) {
  821. if (j2 - klm + l - 1 > *n) {
  822. nrt = nr - 1;
  823. } else {
  824. nrt = nr;
  825. }
  826. if (nrt > 0) {
  827. clartv_(&nrt, &ab[klu1 - l + (j1 - klm + l - 1) *
  828. ab_dim1], &inca, &ab[klu1 - l + 1 + (j1 - klm
  829. + l - 1) * ab_dim1], &inca, &rwork[j1], &work[
  830. j1], &kb1);
  831. }
  832. /* L10: */
  833. }
  834. if (ml > ml0) {
  835. if (ml <= *m - i__ + 1) {
  836. /* generate plane rotation to annihilate a(i+ml-1,i) */
  837. /* within the band, and apply rotation from the left */
  838. clartg_(&ab[*ku + ml - 1 + i__ * ab_dim1], &ab[*ku +
  839. ml + i__ * ab_dim1], &rwork[i__ + ml - 1], &
  840. work[i__ + ml - 1], &ra);
  841. i__3 = *ku + ml - 1 + i__ * ab_dim1;
  842. ab[i__3].r = ra.r, ab[i__3].i = ra.i;
  843. if (i__ < *n) {
  844. /* Computing MIN */
  845. i__4 = *ku + ml - 2, i__5 = *n - i__;
  846. i__3 = f2cmin(i__4,i__5);
  847. i__6 = *ldab - 1;
  848. i__7 = *ldab - 1;
  849. crot_(&i__3, &ab[*ku + ml - 2 + (i__ + 1) *
  850. ab_dim1], &i__6, &ab[*ku + ml - 1 + (i__
  851. + 1) * ab_dim1], &i__7, &rwork[i__ + ml -
  852. 1], &work[i__ + ml - 1]);
  853. }
  854. }
  855. ++nr;
  856. j1 -= kb1;
  857. }
  858. if (wantq) {
  859. /* accumulate product of plane rotations in Q */
  860. i__3 = j2;
  861. i__4 = kb1;
  862. for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4)
  863. {
  864. r_cnjg(&q__1, &work[j]);
  865. crot_(m, &q[(j - 1) * q_dim1 + 1], &c__1, &q[j *
  866. q_dim1 + 1], &c__1, &rwork[j], &q__1);
  867. /* L20: */
  868. }
  869. }
  870. if (wantc) {
  871. /* apply plane rotations to C */
  872. i__4 = j2;
  873. i__3 = kb1;
  874. for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3)
  875. {
  876. crot_(ncc, &c__[j - 1 + c_dim1], ldc, &c__[j + c_dim1]
  877. , ldc, &rwork[j], &work[j]);
  878. /* L30: */
  879. }
  880. }
  881. if (j2 + kun > *n) {
  882. /* adjust J2 to keep within the bounds of the matrix */
  883. --nr;
  884. j2 -= kb1;
  885. }
  886. i__3 = j2;
  887. i__4 = kb1;
  888. for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
  889. /* create nonzero element a(j-1,j+ku) above the band */
  890. /* and store it in WORK(n+1:2*n) */
  891. i__5 = j + kun;
  892. i__6 = j;
  893. i__7 = (j + kun) * ab_dim1 + 1;
  894. q__1.r = work[i__6].r * ab[i__7].r - work[i__6].i * ab[
  895. i__7].i, q__1.i = work[i__6].r * ab[i__7].i +
  896. work[i__6].i * ab[i__7].r;
  897. work[i__5].r = q__1.r, work[i__5].i = q__1.i;
  898. i__5 = (j + kun) * ab_dim1 + 1;
  899. i__6 = j;
  900. i__7 = (j + kun) * ab_dim1 + 1;
  901. q__1.r = rwork[i__6] * ab[i__7].r, q__1.i = rwork[i__6] *
  902. ab[i__7].i;
  903. ab[i__5].r = q__1.r, ab[i__5].i = q__1.i;
  904. /* L40: */
  905. }
  906. /* generate plane rotations to annihilate nonzero elements */
  907. /* which have been generated above the band */
  908. if (nr > 0) {
  909. clargv_(&nr, &ab[(j1 + kun - 1) * ab_dim1 + 1], &inca, &
  910. work[j1 + kun], &kb1, &rwork[j1 + kun], &kb1);
  911. }
  912. /* apply plane rotations from the right */
  913. i__4 = kb;
  914. for (l = 1; l <= i__4; ++l) {
  915. if (j2 + l - 1 > *m) {
  916. nrt = nr - 1;
  917. } else {
  918. nrt = nr;
  919. }
  920. if (nrt > 0) {
  921. clartv_(&nrt, &ab[l + 1 + (j1 + kun - 1) * ab_dim1], &
  922. inca, &ab[l + (j1 + kun) * ab_dim1], &inca, &
  923. rwork[j1 + kun], &work[j1 + kun], &kb1);
  924. }
  925. /* L50: */
  926. }
  927. if (ml == ml0 && mu > mu0) {
  928. if (mu <= *n - i__ + 1) {
  929. /* generate plane rotation to annihilate a(i,i+mu-1) */
  930. /* within the band, and apply rotation from the right */
  931. clartg_(&ab[*ku - mu + 3 + (i__ + mu - 2) * ab_dim1],
  932. &ab[*ku - mu + 2 + (i__ + mu - 1) * ab_dim1],
  933. &rwork[i__ + mu - 1], &work[i__ + mu - 1], &
  934. ra);
  935. i__4 = *ku - mu + 3 + (i__ + mu - 2) * ab_dim1;
  936. ab[i__4].r = ra.r, ab[i__4].i = ra.i;
  937. /* Computing MIN */
  938. i__3 = *kl + mu - 2, i__5 = *m - i__;
  939. i__4 = f2cmin(i__3,i__5);
  940. crot_(&i__4, &ab[*ku - mu + 4 + (i__ + mu - 2) *
  941. ab_dim1], &c__1, &ab[*ku - mu + 3 + (i__ + mu
  942. - 1) * ab_dim1], &c__1, &rwork[i__ + mu - 1],
  943. &work[i__ + mu - 1]);
  944. }
  945. ++nr;
  946. j1 -= kb1;
  947. }
  948. if (wantpt) {
  949. /* accumulate product of plane rotations in P**H */
  950. i__4 = j2;
  951. i__3 = kb1;
  952. for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3)
  953. {
  954. r_cnjg(&q__1, &work[j + kun]);
  955. crot_(n, &pt[j + kun - 1 + pt_dim1], ldpt, &pt[j +
  956. kun + pt_dim1], ldpt, &rwork[j + kun], &q__1);
  957. /* L60: */
  958. }
  959. }
  960. if (j2 + kb > *m) {
  961. /* adjust J2 to keep within the bounds of the matrix */
  962. --nr;
  963. j2 -= kb1;
  964. }
  965. i__3 = j2;
  966. i__4 = kb1;
  967. for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
  968. /* create nonzero element a(j+kl+ku,j+ku-1) below the */
  969. /* band and store it in WORK(1:n) */
  970. i__5 = j + kb;
  971. i__6 = j + kun;
  972. i__7 = klu1 + (j + kun) * ab_dim1;
  973. q__1.r = work[i__6].r * ab[i__7].r - work[i__6].i * ab[
  974. i__7].i, q__1.i = work[i__6].r * ab[i__7].i +
  975. work[i__6].i * ab[i__7].r;
  976. work[i__5].r = q__1.r, work[i__5].i = q__1.i;
  977. i__5 = klu1 + (j + kun) * ab_dim1;
  978. i__6 = j + kun;
  979. i__7 = klu1 + (j + kun) * ab_dim1;
  980. q__1.r = rwork[i__6] * ab[i__7].r, q__1.i = rwork[i__6] *
  981. ab[i__7].i;
  982. ab[i__5].r = q__1.r, ab[i__5].i = q__1.i;
  983. /* L70: */
  984. }
  985. if (ml > ml0) {
  986. --ml;
  987. } else {
  988. --mu;
  989. }
  990. /* L80: */
  991. }
  992. /* L90: */
  993. }
  994. }
  995. if (*ku == 0 && *kl > 0) {
  996. /* A has been reduced to complex lower bidiagonal form */
  997. /* Transform lower bidiagonal form to upper bidiagonal by applying */
  998. /* plane rotations from the left, overwriting superdiagonal */
  999. /* elements on subdiagonal elements */
  1000. /* Computing MIN */
  1001. i__2 = *m - 1;
  1002. i__1 = f2cmin(i__2,*n);
  1003. for (i__ = 1; i__ <= i__1; ++i__) {
  1004. clartg_(&ab[i__ * ab_dim1 + 1], &ab[i__ * ab_dim1 + 2], &rc, &rs,
  1005. &ra);
  1006. i__2 = i__ * ab_dim1 + 1;
  1007. ab[i__2].r = ra.r, ab[i__2].i = ra.i;
  1008. if (i__ < *n) {
  1009. i__2 = i__ * ab_dim1 + 2;
  1010. i__4 = (i__ + 1) * ab_dim1 + 1;
  1011. q__1.r = rs.r * ab[i__4].r - rs.i * ab[i__4].i, q__1.i = rs.r
  1012. * ab[i__4].i + rs.i * ab[i__4].r;
  1013. ab[i__2].r = q__1.r, ab[i__2].i = q__1.i;
  1014. i__2 = (i__ + 1) * ab_dim1 + 1;
  1015. i__4 = (i__ + 1) * ab_dim1 + 1;
  1016. q__1.r = rc * ab[i__4].r, q__1.i = rc * ab[i__4].i;
  1017. ab[i__2].r = q__1.r, ab[i__2].i = q__1.i;
  1018. }
  1019. if (wantq) {
  1020. r_cnjg(&q__1, &rs);
  1021. crot_(m, &q[i__ * q_dim1 + 1], &c__1, &q[(i__ + 1) * q_dim1 +
  1022. 1], &c__1, &rc, &q__1);
  1023. }
  1024. if (wantc) {
  1025. crot_(ncc, &c__[i__ + c_dim1], ldc, &c__[i__ + 1 + c_dim1],
  1026. ldc, &rc, &rs);
  1027. }
  1028. /* L100: */
  1029. }
  1030. } else {
  1031. /* A has been reduced to complex upper bidiagonal form or is */
  1032. /* diagonal */
  1033. if (*ku > 0 && *m < *n) {
  1034. /* Annihilate a(m,m+1) by applying plane rotations from the */
  1035. /* right */
  1036. i__1 = *ku + (*m + 1) * ab_dim1;
  1037. rb.r = ab[i__1].r, rb.i = ab[i__1].i;
  1038. for (i__ = *m; i__ >= 1; --i__) {
  1039. clartg_(&ab[*ku + 1 + i__ * ab_dim1], &rb, &rc, &rs, &ra);
  1040. i__1 = *ku + 1 + i__ * ab_dim1;
  1041. ab[i__1].r = ra.r, ab[i__1].i = ra.i;
  1042. if (i__ > 1) {
  1043. r_cnjg(&q__3, &rs);
  1044. q__2.r = -q__3.r, q__2.i = -q__3.i;
  1045. i__1 = *ku + i__ * ab_dim1;
  1046. q__1.r = q__2.r * ab[i__1].r - q__2.i * ab[i__1].i,
  1047. q__1.i = q__2.r * ab[i__1].i + q__2.i * ab[i__1]
  1048. .r;
  1049. rb.r = q__1.r, rb.i = q__1.i;
  1050. i__1 = *ku + i__ * ab_dim1;
  1051. i__2 = *ku + i__ * ab_dim1;
  1052. q__1.r = rc * ab[i__2].r, q__1.i = rc * ab[i__2].i;
  1053. ab[i__1].r = q__1.r, ab[i__1].i = q__1.i;
  1054. }
  1055. if (wantpt) {
  1056. r_cnjg(&q__1, &rs);
  1057. crot_(n, &pt[i__ + pt_dim1], ldpt, &pt[*m + 1 + pt_dim1],
  1058. ldpt, &rc, &q__1);
  1059. }
  1060. /* L110: */
  1061. }
  1062. }
  1063. }
  1064. /* Make diagonal and superdiagonal elements real, storing them in D */
  1065. /* and E */
  1066. i__1 = *ku + 1 + ab_dim1;
  1067. t.r = ab[i__1].r, t.i = ab[i__1].i;
  1068. i__1 = minmn;
  1069. for (i__ = 1; i__ <= i__1; ++i__) {
  1070. abst = c_abs(&t);
  1071. d__[i__] = abst;
  1072. if (abst != 0.f) {
  1073. q__1.r = t.r / abst, q__1.i = t.i / abst;
  1074. t.r = q__1.r, t.i = q__1.i;
  1075. } else {
  1076. t.r = 1.f, t.i = 0.f;
  1077. }
  1078. if (wantq) {
  1079. cscal_(m, &t, &q[i__ * q_dim1 + 1], &c__1);
  1080. }
  1081. if (wantc) {
  1082. r_cnjg(&q__1, &t);
  1083. cscal_(ncc, &q__1, &c__[i__ + c_dim1], ldc);
  1084. }
  1085. if (i__ < minmn) {
  1086. if (*ku == 0 && *kl == 0) {
  1087. e[i__] = 0.f;
  1088. i__2 = (i__ + 1) * ab_dim1 + 1;
  1089. t.r = ab[i__2].r, t.i = ab[i__2].i;
  1090. } else {
  1091. if (*ku == 0) {
  1092. i__2 = i__ * ab_dim1 + 2;
  1093. r_cnjg(&q__2, &t);
  1094. q__1.r = ab[i__2].r * q__2.r - ab[i__2].i * q__2.i,
  1095. q__1.i = ab[i__2].r * q__2.i + ab[i__2].i *
  1096. q__2.r;
  1097. t.r = q__1.r, t.i = q__1.i;
  1098. } else {
  1099. i__2 = *ku + (i__ + 1) * ab_dim1;
  1100. r_cnjg(&q__2, &t);
  1101. q__1.r = ab[i__2].r * q__2.r - ab[i__2].i * q__2.i,
  1102. q__1.i = ab[i__2].r * q__2.i + ab[i__2].i *
  1103. q__2.r;
  1104. t.r = q__1.r, t.i = q__1.i;
  1105. }
  1106. abst = c_abs(&t);
  1107. e[i__] = abst;
  1108. if (abst != 0.f) {
  1109. q__1.r = t.r / abst, q__1.i = t.i / abst;
  1110. t.r = q__1.r, t.i = q__1.i;
  1111. } else {
  1112. t.r = 1.f, t.i = 0.f;
  1113. }
  1114. if (wantpt) {
  1115. cscal_(n, &t, &pt[i__ + 1 + pt_dim1], ldpt);
  1116. }
  1117. i__2 = *ku + 1 + (i__ + 1) * ab_dim1;
  1118. r_cnjg(&q__2, &t);
  1119. q__1.r = ab[i__2].r * q__2.r - ab[i__2].i * q__2.i, q__1.i =
  1120. ab[i__2].r * q__2.i + ab[i__2].i * q__2.r;
  1121. t.r = q__1.r, t.i = q__1.i;
  1122. }
  1123. }
  1124. /* L120: */
  1125. }
  1126. return;
  1127. /* End of CGBBRD */
  1128. } /* cgbbrd_ */