You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlatm3.c 19 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle_() continue;
  234. #define myceiling_(w) {ceil(w)}
  235. #define myhuge_(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #define F2C_proc_par_types 1
  240. /* > \brief \b ZLATM3 */
  241. /* =========== DOCUMENTATION =========== */
  242. /* Online html documentation available at */
  243. /* http://www.netlib.org/lapack/explore-html/ */
  244. /* Definition: */
  245. /* =========== */
  246. /* COMPLEX*16 FUNCTION ZLATM3( M, N, I, J, ISUB, JSUB, KL, KU, */
  247. /* IDIST, ISEED, D, IGRADE, DL, DR, IPVTNG, IWORK, */
  248. /* SPARSE ) */
  249. /* INTEGER I, IDIST, IGRADE, IPVTNG, ISUB, J, JSUB, KL, */
  250. /* $ KU, M, N */
  251. /* DOUBLE PRECISION SPARSE */
  252. /* INTEGER ISEED( 4 ), IWORK( * ) */
  253. /* COMPLEX*16 D( * ), DL( * ), DR( * ) */
  254. /* > \par Purpose: */
  255. /* ============= */
  256. /* > */
  257. /* > \verbatim */
  258. /* > */
  259. /* > ZLATM3 returns the (ISUB,JSUB) entry of a random matrix of */
  260. /* > dimension (M, N) described by the other parameters. (ISUB,JSUB) */
  261. /* > is the final position of the (I,J) entry after pivoting */
  262. /* > according to IPVTNG and IWORK. ZLATM3 is called by the */
  263. /* > ZLATMR routine in order to build random test matrices. No error */
  264. /* > checking on parameters is done, because this routine is called in */
  265. /* > a tight loop by ZLATMR which has already checked the parameters. */
  266. /* > */
  267. /* > Use of ZLATM3 differs from CLATM2 in the order in which the random */
  268. /* > number generator is called to fill in random matrix entries. */
  269. /* > With ZLATM2, the generator is called to fill in the pivoted matrix */
  270. /* > columnwise. With ZLATM3, the generator is called to fill in the */
  271. /* > matrix columnwise, after which it is pivoted. Thus, ZLATM3 can */
  272. /* > be used to construct random matrices which differ only in their */
  273. /* > order of rows and/or columns. ZLATM2 is used to construct band */
  274. /* > matrices while avoiding calling the random number generator for */
  275. /* > entries outside the band (and therefore generating random numbers */
  276. /* > in different orders for different pivot orders). */
  277. /* > */
  278. /* > The matrix whose (ISUB,JSUB) entry is returned is constructed as */
  279. /* > follows (this routine only computes one entry): */
  280. /* > */
  281. /* > If ISUB is outside (1..M) or JSUB is outside (1..N), return zero */
  282. /* > (this is convenient for generating matrices in band format). */
  283. /* > */
  284. /* > Generate a matrix A with random entries of distribution IDIST. */
  285. /* > */
  286. /* > Set the diagonal to D. */
  287. /* > */
  288. /* > Grade the matrix, if desired, from the left (by DL) and/or */
  289. /* > from the right (by DR or DL) as specified by IGRADE. */
  290. /* > */
  291. /* > Permute, if desired, the rows and/or columns as specified by */
  292. /* > IPVTNG and IWORK. */
  293. /* > */
  294. /* > Band the matrix to have lower bandwidth KL and upper */
  295. /* > bandwidth KU. */
  296. /* > */
  297. /* > Set random entries to zero as specified by SPARSE. */
  298. /* > \endverbatim */
  299. /* Arguments: */
  300. /* ========== */
  301. /* > \param[in] M */
  302. /* > \verbatim */
  303. /* > M is INTEGER */
  304. /* > Number of rows of matrix. Not modified. */
  305. /* > \endverbatim */
  306. /* > */
  307. /* > \param[in] N */
  308. /* > \verbatim */
  309. /* > N is INTEGER */
  310. /* > Number of columns of matrix. Not modified. */
  311. /* > \endverbatim */
  312. /* > */
  313. /* > \param[in] I */
  314. /* > \verbatim */
  315. /* > I is INTEGER */
  316. /* > Row of unpivoted entry to be returned. Not modified. */
  317. /* > \endverbatim */
  318. /* > */
  319. /* > \param[in] J */
  320. /* > \verbatim */
  321. /* > J is INTEGER */
  322. /* > Column of unpivoted entry to be returned. Not modified. */
  323. /* > \endverbatim */
  324. /* > */
  325. /* > \param[in,out] ISUB */
  326. /* > \verbatim */
  327. /* > ISUB is INTEGER */
  328. /* > Row of pivoted entry to be returned. Changed on exit. */
  329. /* > \endverbatim */
  330. /* > */
  331. /* > \param[in,out] JSUB */
  332. /* > \verbatim */
  333. /* > JSUB is INTEGER */
  334. /* > Column of pivoted entry to be returned. Changed on exit. */
  335. /* > \endverbatim */
  336. /* > */
  337. /* > \param[in] KL */
  338. /* > \verbatim */
  339. /* > KL is INTEGER */
  340. /* > Lower bandwidth. Not modified. */
  341. /* > \endverbatim */
  342. /* > */
  343. /* > \param[in] KU */
  344. /* > \verbatim */
  345. /* > KU is INTEGER */
  346. /* > Upper bandwidth. Not modified. */
  347. /* > \endverbatim */
  348. /* > */
  349. /* > \param[in] IDIST */
  350. /* > \verbatim */
  351. /* > IDIST is INTEGER */
  352. /* > On entry, IDIST specifies the type of distribution to be */
  353. /* > used to generate a random matrix . */
  354. /* > 1 => real and imaginary parts each UNIFORM( 0, 1 ) */
  355. /* > 2 => real and imaginary parts each UNIFORM( -1, 1 ) */
  356. /* > 3 => real and imaginary parts each NORMAL( 0, 1 ) */
  357. /* > 4 => complex number uniform in DISK( 0 , 1 ) */
  358. /* > Not modified. */
  359. /* > \endverbatim */
  360. /* > */
  361. /* > \param[in,out] ISEED */
  362. /* > \verbatim */
  363. /* > ISEED is INTEGER array of dimension ( 4 ) */
  364. /* > Seed for random number generator. */
  365. /* > Changed on exit. */
  366. /* > \endverbatim */
  367. /* > */
  368. /* > \param[in] D */
  369. /* > \verbatim */
  370. /* > D is COMPLEX*16 array of dimension ( MIN( I , J ) ) */
  371. /* > Diagonal entries of matrix. Not modified. */
  372. /* > \endverbatim */
  373. /* > */
  374. /* > \param[in] IGRADE */
  375. /* > \verbatim */
  376. /* > IGRADE is INTEGER */
  377. /* > Specifies grading of matrix as follows: */
  378. /* > 0 => no grading */
  379. /* > 1 => matrix premultiplied by diag( DL ) */
  380. /* > 2 => matrix postmultiplied by diag( DR ) */
  381. /* > 3 => matrix premultiplied by diag( DL ) and */
  382. /* > postmultiplied by diag( DR ) */
  383. /* > 4 => matrix premultiplied by diag( DL ) and */
  384. /* > postmultiplied by inv( diag( DL ) ) */
  385. /* > 5 => matrix premultiplied by diag( DL ) and */
  386. /* > postmultiplied by diag( CONJG(DL) ) */
  387. /* > 6 => matrix premultiplied by diag( DL ) and */
  388. /* > postmultiplied by diag( DL ) */
  389. /* > Not modified. */
  390. /* > \endverbatim */
  391. /* > */
  392. /* > \param[in] DL */
  393. /* > \verbatim */
  394. /* > DL is COMPLEX*16 array ( I or J, as appropriate ) */
  395. /* > Left scale factors for grading matrix. Not modified. */
  396. /* > \endverbatim */
  397. /* > */
  398. /* > \param[in] DR */
  399. /* > \verbatim */
  400. /* > DR is COMPLEX*16 array ( I or J, as appropriate ) */
  401. /* > Right scale factors for grading matrix. Not modified. */
  402. /* > \endverbatim */
  403. /* > */
  404. /* > \param[in] IPVTNG */
  405. /* > \verbatim */
  406. /* > IPVTNG is INTEGER */
  407. /* > On entry specifies pivoting permutations as follows: */
  408. /* > 0 => none. */
  409. /* > 1 => row pivoting. */
  410. /* > 2 => column pivoting. */
  411. /* > 3 => full pivoting, i.e., on both sides. */
  412. /* > Not modified. */
  413. /* > \endverbatim */
  414. /* > */
  415. /* > \param[in] IWORK */
  416. /* > \verbatim */
  417. /* > IWORK is INTEGER array ( I or J, as appropriate ) */
  418. /* > This array specifies the permutation used. The */
  419. /* > row (or column) originally in position K is in */
  420. /* > position IWORK( K ) after pivoting. */
  421. /* > This differs from IWORK for ZLATM2. Not modified. */
  422. /* > \endverbatim */
  423. /* > */
  424. /* > \param[in] SPARSE */
  425. /* > \verbatim */
  426. /* > SPARSE is DOUBLE PRECISION between 0. and 1. */
  427. /* > On entry specifies the sparsity of the matrix */
  428. /* > if sparse matrix is to be generated. */
  429. /* > SPARSE should lie between 0 and 1. */
  430. /* > A uniform ( 0, 1 ) random number x is generated and */
  431. /* > compared to SPARSE; if x is larger the matrix entry */
  432. /* > is unchanged and if x is smaller the entry is set */
  433. /* > to zero. Thus on the average a fraction SPARSE of the */
  434. /* > entries will be set to zero. */
  435. /* > Not modified. */
  436. /* > \endverbatim */
  437. /* Authors: */
  438. /* ======== */
  439. /* > \author Univ. of Tennessee */
  440. /* > \author Univ. of California Berkeley */
  441. /* > \author Univ. of Colorado Denver */
  442. /* > \author NAG Ltd. */
  443. /* > \date June 2016 */
  444. /* > \ingroup complex16_matgen */
  445. /* ===================================================================== */
  446. /* Double Complex */ VOID zlatm3_(doublecomplex * ret_val, integer *m,
  447. integer *n, integer *i__, integer *j, integer *isub, integer *jsub,
  448. integer *kl, integer *ku, integer *idist, integer *iseed,
  449. doublecomplex *d__, integer *igrade, doublecomplex *dl, doublecomplex
  450. *dr, integer *ipvtng, integer *iwork, doublereal *sparse)
  451. {
  452. /* System generated locals */
  453. integer i__1, i__2;
  454. doublecomplex z__1, z__2, z__3;
  455. /* Local variables */
  456. doublecomplex ctemp;
  457. extern doublereal dlaran_(integer *);
  458. //extern /* Double Complex */ VOID zlarnd_(doublecomplex *, integer *,
  459. extern doublecomplex zlarnd_(integer *,
  460. integer *);
  461. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  462. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  463. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  464. /* June 2016 */
  465. /* ===================================================================== */
  466. /* ----------------------------------------------------------------------- */
  467. /* Check for I and J in range */
  468. /* Parameter adjustments */
  469. --iwork;
  470. --dr;
  471. --dl;
  472. --d__;
  473. --iseed;
  474. /* Function Body */
  475. if (*i__ < 1 || *i__ > *m || *j < 1 || *j > *n) {
  476. *isub = *i__;
  477. *jsub = *j;
  478. ret_val->r = 0., ret_val->i = 0.;
  479. return ;
  480. }
  481. /* Compute subscripts depending on IPVTNG */
  482. if (*ipvtng == 0) {
  483. *isub = *i__;
  484. *jsub = *j;
  485. } else if (*ipvtng == 1) {
  486. *isub = iwork[*i__];
  487. *jsub = *j;
  488. } else if (*ipvtng == 2) {
  489. *isub = *i__;
  490. *jsub = iwork[*j];
  491. } else if (*ipvtng == 3) {
  492. *isub = iwork[*i__];
  493. *jsub = iwork[*j];
  494. }
  495. /* Check for banding */
  496. if (*jsub > *isub + *ku || *jsub < *isub - *kl) {
  497. ret_val->r = 0., ret_val->i = 0.;
  498. return ;
  499. }
  500. /* Check for sparsity */
  501. if (*sparse > 0.) {
  502. if (dlaran_(&iseed[1]) < *sparse) {
  503. ret_val->r = 0., ret_val->i = 0.;
  504. return ;
  505. }
  506. }
  507. /* Compute entry and grade it according to IGRADE */
  508. if (*i__ == *j) {
  509. i__1 = *i__;
  510. ctemp.r = d__[i__1].r, ctemp.i = d__[i__1].i;
  511. } else {
  512. //zlarnd_(&z__1, idist, &iseed[1]);
  513. z__1=zlarnd_(idist, &iseed[1]);
  514. ctemp.r = z__1.r, ctemp.i = z__1.i;
  515. }
  516. if (*igrade == 1) {
  517. i__1 = *i__;
  518. z__1.r = ctemp.r * dl[i__1].r - ctemp.i * dl[i__1].i, z__1.i =
  519. ctemp.r * dl[i__1].i + ctemp.i * dl[i__1].r;
  520. ctemp.r = z__1.r, ctemp.i = z__1.i;
  521. } else if (*igrade == 2) {
  522. i__1 = *j;
  523. z__1.r = ctemp.r * dr[i__1].r - ctemp.i * dr[i__1].i, z__1.i =
  524. ctemp.r * dr[i__1].i + ctemp.i * dr[i__1].r;
  525. ctemp.r = z__1.r, ctemp.i = z__1.i;
  526. } else if (*igrade == 3) {
  527. i__1 = *i__;
  528. z__2.r = ctemp.r * dl[i__1].r - ctemp.i * dl[i__1].i, z__2.i =
  529. ctemp.r * dl[i__1].i + ctemp.i * dl[i__1].r;
  530. i__2 = *j;
  531. z__1.r = z__2.r * dr[i__2].r - z__2.i * dr[i__2].i, z__1.i = z__2.r *
  532. dr[i__2].i + z__2.i * dr[i__2].r;
  533. ctemp.r = z__1.r, ctemp.i = z__1.i;
  534. } else if (*igrade == 4 && *i__ != *j) {
  535. i__1 = *i__;
  536. z__2.r = ctemp.r * dl[i__1].r - ctemp.i * dl[i__1].i, z__2.i =
  537. ctemp.r * dl[i__1].i + ctemp.i * dl[i__1].r;
  538. z_div(&z__1, &z__2, &dl[*j]);
  539. ctemp.r = z__1.r, ctemp.i = z__1.i;
  540. } else if (*igrade == 5) {
  541. i__1 = *i__;
  542. z__2.r = ctemp.r * dl[i__1].r - ctemp.i * dl[i__1].i, z__2.i =
  543. ctemp.r * dl[i__1].i + ctemp.i * dl[i__1].r;
  544. d_cnjg(&z__3, &dl[*j]);
  545. z__1.r = z__2.r * z__3.r - z__2.i * z__3.i, z__1.i = z__2.r * z__3.i
  546. + z__2.i * z__3.r;
  547. ctemp.r = z__1.r, ctemp.i = z__1.i;
  548. } else if (*igrade == 6) {
  549. i__1 = *i__;
  550. z__2.r = ctemp.r * dl[i__1].r - ctemp.i * dl[i__1].i, z__2.i =
  551. ctemp.r * dl[i__1].i + ctemp.i * dl[i__1].r;
  552. i__2 = *j;
  553. z__1.r = z__2.r * dl[i__2].r - z__2.i * dl[i__2].i, z__1.i = z__2.r *
  554. dl[i__2].i + z__2.i * dl[i__2].r;
  555. ctemp.r = z__1.r, ctemp.i = z__1.i;
  556. }
  557. ret_val->r = ctemp.r, ret_val->i = ctemp.i;
  558. return ;
  559. /* End of ZLATM3 */
  560. } /* zlatm3_ */