You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zsteqr.c 30 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle_() continue;
  235. #define myceiling_(w) {ceil(w)}
  236. #define myhuge_(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static doublecomplex c_b1 = {0.,0.};
  487. static doublecomplex c_b2 = {1.,0.};
  488. static integer c__0 = 0;
  489. static integer c__1 = 1;
  490. static integer c__2 = 2;
  491. static doublereal c_b41 = 1.;
  492. /* > \brief \b ZSTEQR */
  493. /* =========== DOCUMENTATION =========== */
  494. /* Online html documentation available at */
  495. /* http://www.netlib.org/lapack/explore-html/ */
  496. /* > \htmlonly */
  497. /* > Download ZSTEQR + dependencies */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsteqr.
  499. f"> */
  500. /* > [TGZ]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsteqr.
  502. f"> */
  503. /* > [ZIP]</a> */
  504. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsteqr.
  505. f"> */
  506. /* > [TXT]</a> */
  507. /* > \endhtmlonly */
  508. /* Definition: */
  509. /* =========== */
  510. /* SUBROUTINE ZSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO ) */
  511. /* CHARACTER COMPZ */
  512. /* INTEGER INFO, LDZ, N */
  513. /* DOUBLE PRECISION D( * ), E( * ), WORK( * ) */
  514. /* COMPLEX*16 Z( LDZ, * ) */
  515. /* > \par Purpose: */
  516. /* ============= */
  517. /* > */
  518. /* > \verbatim */
  519. /* > */
  520. /* > ZSTEQR computes all eigenvalues and, optionally, eigenvectors of a */
  521. /* > symmetric tridiagonal matrix using the implicit QL or QR method. */
  522. /* > The eigenvectors of a full or band complex Hermitian matrix can also */
  523. /* > be found if ZHETRD or ZHPTRD or ZHBTRD has been used to reduce this */
  524. /* > matrix to tridiagonal form. */
  525. /* > \endverbatim */
  526. /* Arguments: */
  527. /* ========== */
  528. /* > \param[in] COMPZ */
  529. /* > \verbatim */
  530. /* > COMPZ is CHARACTER*1 */
  531. /* > = 'N': Compute eigenvalues only. */
  532. /* > = 'V': Compute eigenvalues and eigenvectors of the original */
  533. /* > Hermitian matrix. On entry, Z must contain the */
  534. /* > unitary matrix used to reduce the original matrix */
  535. /* > to tridiagonal form. */
  536. /* > = 'I': Compute eigenvalues and eigenvectors of the */
  537. /* > tridiagonal matrix. Z is initialized to the identity */
  538. /* > matrix. */
  539. /* > \endverbatim */
  540. /* > */
  541. /* > \param[in] N */
  542. /* > \verbatim */
  543. /* > N is INTEGER */
  544. /* > The order of the matrix. N >= 0. */
  545. /* > \endverbatim */
  546. /* > */
  547. /* > \param[in,out] D */
  548. /* > \verbatim */
  549. /* > D is DOUBLE PRECISION array, dimension (N) */
  550. /* > On entry, the diagonal elements of the tridiagonal matrix. */
  551. /* > On exit, if INFO = 0, the eigenvalues in ascending order. */
  552. /* > \endverbatim */
  553. /* > */
  554. /* > \param[in,out] E */
  555. /* > \verbatim */
  556. /* > E is DOUBLE PRECISION array, dimension (N-1) */
  557. /* > On entry, the (n-1) subdiagonal elements of the tridiagonal */
  558. /* > matrix. */
  559. /* > On exit, E has been destroyed. */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in,out] Z */
  563. /* > \verbatim */
  564. /* > Z is COMPLEX*16 array, dimension (LDZ, N) */
  565. /* > On entry, if COMPZ = 'V', then Z contains the unitary */
  566. /* > matrix used in the reduction to tridiagonal form. */
  567. /* > On exit, if INFO = 0, then if COMPZ = 'V', Z contains the */
  568. /* > orthonormal eigenvectors of the original Hermitian matrix, */
  569. /* > and if COMPZ = 'I', Z contains the orthonormal eigenvectors */
  570. /* > of the symmetric tridiagonal matrix. */
  571. /* > If COMPZ = 'N', then Z is not referenced. */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[in] LDZ */
  575. /* > \verbatim */
  576. /* > LDZ is INTEGER */
  577. /* > The leading dimension of the array Z. LDZ >= 1, and if */
  578. /* > eigenvectors are desired, then LDZ >= f2cmax(1,N). */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[out] WORK */
  582. /* > \verbatim */
  583. /* > WORK is DOUBLE PRECISION array, dimension (f2cmax(1,2*N-2)) */
  584. /* > If COMPZ = 'N', then WORK is not referenced. */
  585. /* > \endverbatim */
  586. /* > */
  587. /* > \param[out] INFO */
  588. /* > \verbatim */
  589. /* > INFO is INTEGER */
  590. /* > = 0: successful exit */
  591. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  592. /* > > 0: the algorithm has failed to find all the eigenvalues in */
  593. /* > a total of 30*N iterations; if INFO = i, then i */
  594. /* > elements of E have not converged to zero; on exit, D */
  595. /* > and E contain the elements of a symmetric tridiagonal */
  596. /* > matrix which is unitarily similar to the original */
  597. /* > matrix. */
  598. /* > \endverbatim */
  599. /* Authors: */
  600. /* ======== */
  601. /* > \author Univ. of Tennessee */
  602. /* > \author Univ. of California Berkeley */
  603. /* > \author Univ. of Colorado Denver */
  604. /* > \author NAG Ltd. */
  605. /* > \date December 2016 */
  606. /* > \ingroup complex16OTHERcomputational */
  607. /* ===================================================================== */
  608. /* Subroutine */ void zsteqr_(char *compz, integer *n, doublereal *d__,
  609. doublereal *e, doublecomplex *z__, integer *ldz, doublereal *work,
  610. integer *info)
  611. {
  612. /* System generated locals */
  613. integer z_dim1, z_offset, i__1, i__2;
  614. doublereal d__1, d__2;
  615. /* Local variables */
  616. integer lend, jtot;
  617. extern /* Subroutine */ void dlae2_(doublereal *, doublereal *, doublereal
  618. *, doublereal *, doublereal *);
  619. doublereal b, c__, f, g;
  620. integer i__, j, k, l, m;
  621. doublereal p, r__, s;
  622. extern logical lsame_(char *, char *);
  623. doublereal anorm;
  624. extern /* Subroutine */ void zlasr_(char *, char *, char *, integer *,
  625. integer *, doublereal *, doublereal *, doublecomplex *, integer *);
  626. integer l1;
  627. extern /* Subroutine */ void zswap_(integer *, doublecomplex *, integer *,
  628. doublecomplex *, integer *), dlaev2_(doublereal *, doublereal *,
  629. doublereal *, doublereal *, doublereal *, doublereal *,
  630. doublereal *);
  631. integer lendm1, lendp1;
  632. extern doublereal dlapy2_(doublereal *, doublereal *);
  633. integer ii;
  634. extern doublereal dlamch_(char *);
  635. integer mm, iscale;
  636. extern /* Subroutine */ void dlascl_(char *, integer *, integer *,
  637. doublereal *, doublereal *, integer *, integer *, doublereal *,
  638. integer *, integer *);
  639. doublereal safmin;
  640. extern /* Subroutine */ void dlartg_(doublereal *, doublereal *,
  641. doublereal *, doublereal *, doublereal *);
  642. doublereal safmax;
  643. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  644. extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
  645. extern /* Subroutine */ void dlasrt_(char *, integer *, doublereal *,
  646. integer *);
  647. integer lendsv;
  648. doublereal ssfmin;
  649. integer nmaxit, icompz;
  650. doublereal ssfmax;
  651. extern /* Subroutine */ void zlaset_(char *, integer *, integer *,
  652. doublecomplex *, doublecomplex *, doublecomplex *, integer *);
  653. integer lm1, mm1, nm1;
  654. doublereal rt1, rt2, eps;
  655. integer lsv;
  656. doublereal tst, eps2;
  657. /* -- LAPACK computational routine (version 3.7.0) -- */
  658. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  659. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  660. /* December 2016 */
  661. /* ===================================================================== */
  662. /* Test the input parameters. */
  663. /* Parameter adjustments */
  664. --d__;
  665. --e;
  666. z_dim1 = *ldz;
  667. z_offset = 1 + z_dim1 * 1;
  668. z__ -= z_offset;
  669. --work;
  670. /* Function Body */
  671. *info = 0;
  672. if (lsame_(compz, "N")) {
  673. icompz = 0;
  674. } else if (lsame_(compz, "V")) {
  675. icompz = 1;
  676. } else if (lsame_(compz, "I")) {
  677. icompz = 2;
  678. } else {
  679. icompz = -1;
  680. }
  681. if (icompz < 0) {
  682. *info = -1;
  683. } else if (*n < 0) {
  684. *info = -2;
  685. } else if (*ldz < 1 || icompz > 0 && *ldz < f2cmax(1,*n)) {
  686. *info = -6;
  687. }
  688. if (*info != 0) {
  689. i__1 = -(*info);
  690. xerbla_("ZSTEQR", &i__1, (ftnlen)6);
  691. return;
  692. }
  693. /* Quick return if possible */
  694. if (*n == 0) {
  695. return;
  696. }
  697. if (*n == 1) {
  698. if (icompz == 2) {
  699. i__1 = z_dim1 + 1;
  700. z__[i__1].r = 1., z__[i__1].i = 0.;
  701. }
  702. return;
  703. }
  704. /* Determine the unit roundoff and over/underflow thresholds. */
  705. eps = dlamch_("E");
  706. /* Computing 2nd power */
  707. d__1 = eps;
  708. eps2 = d__1 * d__1;
  709. safmin = dlamch_("S");
  710. safmax = 1. / safmin;
  711. ssfmax = sqrt(safmax) / 3.;
  712. ssfmin = sqrt(safmin) / eps2;
  713. /* Compute the eigenvalues and eigenvectors of the tridiagonal */
  714. /* matrix. */
  715. if (icompz == 2) {
  716. zlaset_("Full", n, n, &c_b1, &c_b2, &z__[z_offset], ldz);
  717. }
  718. nmaxit = *n * 30;
  719. jtot = 0;
  720. /* Determine where the matrix splits and choose QL or QR iteration */
  721. /* for each block, according to whether top or bottom diagonal */
  722. /* element is smaller. */
  723. l1 = 1;
  724. nm1 = *n - 1;
  725. L10:
  726. if (l1 > *n) {
  727. goto L160;
  728. }
  729. if (l1 > 1) {
  730. e[l1 - 1] = 0.;
  731. }
  732. if (l1 <= nm1) {
  733. i__1 = nm1;
  734. for (m = l1; m <= i__1; ++m) {
  735. tst = (d__1 = e[m], abs(d__1));
  736. if (tst == 0.) {
  737. goto L30;
  738. }
  739. if (tst <= sqrt((d__1 = d__[m], abs(d__1))) * sqrt((d__2 = d__[m
  740. + 1], abs(d__2))) * eps) {
  741. e[m] = 0.;
  742. goto L30;
  743. }
  744. /* L20: */
  745. }
  746. }
  747. m = *n;
  748. L30:
  749. l = l1;
  750. lsv = l;
  751. lend = m;
  752. lendsv = lend;
  753. l1 = m + 1;
  754. if (lend == l) {
  755. goto L10;
  756. }
  757. /* Scale submatrix in rows and columns L to LEND */
  758. i__1 = lend - l + 1;
  759. anorm = dlanst_("I", &i__1, &d__[l], &e[l]);
  760. iscale = 0;
  761. if (anorm == 0.) {
  762. goto L10;
  763. }
  764. if (anorm > ssfmax) {
  765. iscale = 1;
  766. i__1 = lend - l + 1;
  767. dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &d__[l], n,
  768. info);
  769. i__1 = lend - l;
  770. dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &e[l], n,
  771. info);
  772. } else if (anorm < ssfmin) {
  773. iscale = 2;
  774. i__1 = lend - l + 1;
  775. dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &d__[l], n,
  776. info);
  777. i__1 = lend - l;
  778. dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &e[l], n,
  779. info);
  780. }
  781. /* Choose between QL and QR iteration */
  782. if ((d__1 = d__[lend], abs(d__1)) < (d__2 = d__[l], abs(d__2))) {
  783. lend = lsv;
  784. l = lendsv;
  785. }
  786. if (lend > l) {
  787. /* QL Iteration */
  788. /* Look for small subdiagonal element. */
  789. L40:
  790. if (l != lend) {
  791. lendm1 = lend - 1;
  792. i__1 = lendm1;
  793. for (m = l; m <= i__1; ++m) {
  794. /* Computing 2nd power */
  795. d__2 = (d__1 = e[m], abs(d__1));
  796. tst = d__2 * d__2;
  797. if (tst <= eps2 * (d__1 = d__[m], abs(d__1)) * (d__2 = d__[m
  798. + 1], abs(d__2)) + safmin) {
  799. goto L60;
  800. }
  801. /* L50: */
  802. }
  803. }
  804. m = lend;
  805. L60:
  806. if (m < lend) {
  807. e[m] = 0.;
  808. }
  809. p = d__[l];
  810. if (m == l) {
  811. goto L80;
  812. }
  813. /* If remaining matrix is 2-by-2, use DLAE2 or SLAEV2 */
  814. /* to compute its eigensystem. */
  815. if (m == l + 1) {
  816. if (icompz > 0) {
  817. dlaev2_(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2, &c__, &s);
  818. work[l] = c__;
  819. work[*n - 1 + l] = s;
  820. zlasr_("R", "V", "B", n, &c__2, &work[l], &work[*n - 1 + l], &
  821. z__[l * z_dim1 + 1], ldz);
  822. } else {
  823. dlae2_(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2);
  824. }
  825. d__[l] = rt1;
  826. d__[l + 1] = rt2;
  827. e[l] = 0.;
  828. l += 2;
  829. if (l <= lend) {
  830. goto L40;
  831. }
  832. goto L140;
  833. }
  834. if (jtot == nmaxit) {
  835. goto L140;
  836. }
  837. ++jtot;
  838. /* Form shift. */
  839. g = (d__[l + 1] - p) / (e[l] * 2.);
  840. r__ = dlapy2_(&g, &c_b41);
  841. g = d__[m] - p + e[l] / (g + d_sign(&r__, &g));
  842. s = 1.;
  843. c__ = 1.;
  844. p = 0.;
  845. /* Inner loop */
  846. mm1 = m - 1;
  847. i__1 = l;
  848. for (i__ = mm1; i__ >= i__1; --i__) {
  849. f = s * e[i__];
  850. b = c__ * e[i__];
  851. dlartg_(&g, &f, &c__, &s, &r__);
  852. if (i__ != m - 1) {
  853. e[i__ + 1] = r__;
  854. }
  855. g = d__[i__ + 1] - p;
  856. r__ = (d__[i__] - g) * s + c__ * 2. * b;
  857. p = s * r__;
  858. d__[i__ + 1] = g + p;
  859. g = c__ * r__ - b;
  860. /* If eigenvectors are desired, then save rotations. */
  861. if (icompz > 0) {
  862. work[i__] = c__;
  863. work[*n - 1 + i__] = -s;
  864. }
  865. /* L70: */
  866. }
  867. /* If eigenvectors are desired, then apply saved rotations. */
  868. if (icompz > 0) {
  869. mm = m - l + 1;
  870. zlasr_("R", "V", "B", n, &mm, &work[l], &work[*n - 1 + l], &z__[l
  871. * z_dim1 + 1], ldz);
  872. }
  873. d__[l] -= p;
  874. e[l] = g;
  875. goto L40;
  876. /* Eigenvalue found. */
  877. L80:
  878. d__[l] = p;
  879. ++l;
  880. if (l <= lend) {
  881. goto L40;
  882. }
  883. goto L140;
  884. } else {
  885. /* QR Iteration */
  886. /* Look for small superdiagonal element. */
  887. L90:
  888. if (l != lend) {
  889. lendp1 = lend + 1;
  890. i__1 = lendp1;
  891. for (m = l; m >= i__1; --m) {
  892. /* Computing 2nd power */
  893. d__2 = (d__1 = e[m - 1], abs(d__1));
  894. tst = d__2 * d__2;
  895. if (tst <= eps2 * (d__1 = d__[m], abs(d__1)) * (d__2 = d__[m
  896. - 1], abs(d__2)) + safmin) {
  897. goto L110;
  898. }
  899. /* L100: */
  900. }
  901. }
  902. m = lend;
  903. L110:
  904. if (m > lend) {
  905. e[m - 1] = 0.;
  906. }
  907. p = d__[l];
  908. if (m == l) {
  909. goto L130;
  910. }
  911. /* If remaining matrix is 2-by-2, use DLAE2 or SLAEV2 */
  912. /* to compute its eigensystem. */
  913. if (m == l - 1) {
  914. if (icompz > 0) {
  915. dlaev2_(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2, &c__, &s)
  916. ;
  917. work[m] = c__;
  918. work[*n - 1 + m] = s;
  919. zlasr_("R", "V", "F", n, &c__2, &work[m], &work[*n - 1 + m], &
  920. z__[(l - 1) * z_dim1 + 1], ldz);
  921. } else {
  922. dlae2_(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2);
  923. }
  924. d__[l - 1] = rt1;
  925. d__[l] = rt2;
  926. e[l - 1] = 0.;
  927. l += -2;
  928. if (l >= lend) {
  929. goto L90;
  930. }
  931. goto L140;
  932. }
  933. if (jtot == nmaxit) {
  934. goto L140;
  935. }
  936. ++jtot;
  937. /* Form shift. */
  938. g = (d__[l - 1] - p) / (e[l - 1] * 2.);
  939. r__ = dlapy2_(&g, &c_b41);
  940. g = d__[m] - p + e[l - 1] / (g + d_sign(&r__, &g));
  941. s = 1.;
  942. c__ = 1.;
  943. p = 0.;
  944. /* Inner loop */
  945. lm1 = l - 1;
  946. i__1 = lm1;
  947. for (i__ = m; i__ <= i__1; ++i__) {
  948. f = s * e[i__];
  949. b = c__ * e[i__];
  950. dlartg_(&g, &f, &c__, &s, &r__);
  951. if (i__ != m) {
  952. e[i__ - 1] = r__;
  953. }
  954. g = d__[i__] - p;
  955. r__ = (d__[i__ + 1] - g) * s + c__ * 2. * b;
  956. p = s * r__;
  957. d__[i__] = g + p;
  958. g = c__ * r__ - b;
  959. /* If eigenvectors are desired, then save rotations. */
  960. if (icompz > 0) {
  961. work[i__] = c__;
  962. work[*n - 1 + i__] = s;
  963. }
  964. /* L120: */
  965. }
  966. /* If eigenvectors are desired, then apply saved rotations. */
  967. if (icompz > 0) {
  968. mm = l - m + 1;
  969. zlasr_("R", "V", "F", n, &mm, &work[m], &work[*n - 1 + m], &z__[m
  970. * z_dim1 + 1], ldz);
  971. }
  972. d__[l] -= p;
  973. e[lm1] = g;
  974. goto L90;
  975. /* Eigenvalue found. */
  976. L130:
  977. d__[l] = p;
  978. --l;
  979. if (l >= lend) {
  980. goto L90;
  981. }
  982. goto L140;
  983. }
  984. /* Undo scaling if necessary */
  985. L140:
  986. if (iscale == 1) {
  987. i__1 = lendsv - lsv + 1;
  988. dlascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &d__[lsv],
  989. n, info);
  990. i__1 = lendsv - lsv;
  991. dlascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &e[lsv], n,
  992. info);
  993. } else if (iscale == 2) {
  994. i__1 = lendsv - lsv + 1;
  995. dlascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &d__[lsv],
  996. n, info);
  997. i__1 = lendsv - lsv;
  998. dlascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &e[lsv], n,
  999. info);
  1000. }
  1001. /* Check for no convergence to an eigenvalue after a total */
  1002. /* of N*MAXIT iterations. */
  1003. if (jtot == nmaxit) {
  1004. i__1 = *n - 1;
  1005. for (i__ = 1; i__ <= i__1; ++i__) {
  1006. if (e[i__] != 0.) {
  1007. ++(*info);
  1008. }
  1009. /* L150: */
  1010. }
  1011. return;
  1012. }
  1013. goto L10;
  1014. /* Order eigenvalues and eigenvectors. */
  1015. L160:
  1016. if (icompz == 0) {
  1017. /* Use Quick Sort */
  1018. dlasrt_("I", n, &d__[1], info);
  1019. } else {
  1020. /* Use Selection Sort to minimize swaps of eigenvectors */
  1021. i__1 = *n;
  1022. for (ii = 2; ii <= i__1; ++ii) {
  1023. i__ = ii - 1;
  1024. k = i__;
  1025. p = d__[i__];
  1026. i__2 = *n;
  1027. for (j = ii; j <= i__2; ++j) {
  1028. if (d__[j] < p) {
  1029. k = j;
  1030. p = d__[j];
  1031. }
  1032. /* L170: */
  1033. }
  1034. if (k != i__) {
  1035. d__[k] = d__[i__];
  1036. d__[i__] = p;
  1037. zswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[k * z_dim1 + 1],
  1038. &c__1);
  1039. }
  1040. /* L180: */
  1041. }
  1042. }
  1043. return;
  1044. /* End of ZSTEQR */
  1045. } /* zsteqr_ */