You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlarot.c 21 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle_() continue;
  234. #define myceiling_(w) {ceil(w)}
  235. #define myhuge_(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #define F2C_proc_par_types 1
  240. /* Table of constant values */
  241. static integer c__4 = 4;
  242. static integer c__8 = 8;
  243. /* > \brief \b ZLAROT */
  244. /* =========== DOCUMENTATION =========== */
  245. /* Online html documentation available at */
  246. /* http://www.netlib.org/lapack/explore-html/ */
  247. /* Definition: */
  248. /* =========== */
  249. /* SUBROUTINE ZLAROT( LROWS, LLEFT, LRIGHT, NL, C, S, A, LDA, XLEFT, */
  250. /* XRIGHT ) */
  251. /* LOGICAL LLEFT, LRIGHT, LROWS */
  252. /* INTEGER LDA, NL */
  253. /* COMPLEX*16 C, S, XLEFT, XRIGHT */
  254. /* COMPLEX*16 A( * ) */
  255. /* > \par Purpose: */
  256. /* ============= */
  257. /* > */
  258. /* > \verbatim */
  259. /* > */
  260. /* > ZLAROT applies a (Givens) rotation to two adjacent rows or */
  261. /* > columns, where one element of the first and/or last column/row */
  262. /* > for use on matrices stored in some format other than GE, so */
  263. /* > that elements of the matrix may be used or modified for which */
  264. /* > no array element is provided. */
  265. /* > */
  266. /* > One example is a symmetric matrix in SB format (bandwidth=4), for */
  267. /* > which UPLO='L': Two adjacent rows will have the format: */
  268. /* > */
  269. /* > row j: C> C> C> C> C> . . . . */
  270. /* > row j+1: C> C> C> C> C> . . . . */
  271. /* > */
  272. /* > '*' indicates elements for which storage is provided, */
  273. /* > '.' indicates elements for which no storage is provided, but */
  274. /* > are not necessarily zero; their values are determined by */
  275. /* > symmetry. ' ' indicates elements which are necessarily zero, */
  276. /* > and have no storage provided. */
  277. /* > */
  278. /* > Those columns which have two '*'s can be handled by DROT. */
  279. /* > Those columns which have no '*'s can be ignored, since as long */
  280. /* > as the Givens rotations are carefully applied to preserve */
  281. /* > symmetry, their values are determined. */
  282. /* > Those columns which have one '*' have to be handled separately, */
  283. /* > by using separate variables "p" and "q": */
  284. /* > */
  285. /* > row j: C> C> C> C> C> p . . . */
  286. /* > row j+1: q C> C> C> C> C> . . . . */
  287. /* > */
  288. /* > The element p would have to be set correctly, then that column */
  289. /* > is rotated, setting p to its new value. The next call to */
  290. /* > ZLAROT would rotate columns j and j+1, using p, and restore */
  291. /* > symmetry. The element q would start out being zero, and be */
  292. /* > made non-zero by the rotation. Later, rotations would presumably */
  293. /* > be chosen to zero q out. */
  294. /* > */
  295. /* > Typical Calling Sequences: rotating the i-th and (i+1)-st rows. */
  296. /* > ------- ------- --------- */
  297. /* > */
  298. /* > General dense matrix: */
  299. /* > */
  300. /* > CALL ZLAROT(.TRUE.,.FALSE.,.FALSE., N, C,S, */
  301. /* > A(i,1),LDA, DUMMY, DUMMY) */
  302. /* > */
  303. /* > General banded matrix in GB format: */
  304. /* > */
  305. /* > j = MAX(1, i-KL ) */
  306. /* > NL = MIN( N, i+KU+1 ) + 1-j */
  307. /* > CALL ZLAROT( .TRUE., i-KL.GE.1, i+KU.LT.N, NL, C,S, */
  308. /* > A(KU+i+1-j,j),LDA-1, XLEFT, XRIGHT ) */
  309. /* > */
  310. /* > [ note that i+1-j is just MIN(i,KL+1) ] */
  311. /* > */
  312. /* > Symmetric banded matrix in SY format, bandwidth K, */
  313. /* > lower triangle only: */
  314. /* > */
  315. /* > j = MAX(1, i-K ) */
  316. /* > NL = MIN( K+1, i ) + 1 */
  317. /* > CALL ZLAROT( .TRUE., i-K.GE.1, .TRUE., NL, C,S, */
  318. /* > A(i,j), LDA, XLEFT, XRIGHT ) */
  319. /* > */
  320. /* > Same, but upper triangle only: */
  321. /* > */
  322. /* > NL = MIN( K+1, N-i ) + 1 */
  323. /* > CALL ZLAROT( .TRUE., .TRUE., i+K.LT.N, NL, C,S, */
  324. /* > A(i,i), LDA, XLEFT, XRIGHT ) */
  325. /* > */
  326. /* > Symmetric banded matrix in SB format, bandwidth K, */
  327. /* > lower triangle only: */
  328. /* > */
  329. /* > [ same as for SY, except:] */
  330. /* > . . . . */
  331. /* > A(i+1-j,j), LDA-1, XLEFT, XRIGHT ) */
  332. /* > */
  333. /* > [ note that i+1-j is just MIN(i,K+1) ] */
  334. /* > */
  335. /* > Same, but upper triangle only: */
  336. /* > . . . */
  337. /* > A(K+1,i), LDA-1, XLEFT, XRIGHT ) */
  338. /* > */
  339. /* > Rotating columns is just the transpose of rotating rows, except */
  340. /* > for GB and SB: (rotating columns i and i+1) */
  341. /* > */
  342. /* > GB: */
  343. /* > j = MAX(1, i-KU ) */
  344. /* > NL = MIN( N, i+KL+1 ) + 1-j */
  345. /* > CALL ZLAROT( .TRUE., i-KU.GE.1, i+KL.LT.N, NL, C,S, */
  346. /* > A(KU+j+1-i,i),LDA-1, XTOP, XBOTTM ) */
  347. /* > */
  348. /* > [note that KU+j+1-i is just MAX(1,KU+2-i)] */
  349. /* > */
  350. /* > SB: (upper triangle) */
  351. /* > */
  352. /* > . . . . . . */
  353. /* > A(K+j+1-i,i),LDA-1, XTOP, XBOTTM ) */
  354. /* > */
  355. /* > SB: (lower triangle) */
  356. /* > */
  357. /* > . . . . . . */
  358. /* > A(1,i),LDA-1, XTOP, XBOTTM ) */
  359. /* > \endverbatim */
  360. /* Arguments: */
  361. /* ========== */
  362. /* > \verbatim */
  363. /* > LROWS - LOGICAL */
  364. /* > If .TRUE., then ZLAROT will rotate two rows. If .FALSE., */
  365. /* > then it will rotate two columns. */
  366. /* > Not modified. */
  367. /* > */
  368. /* > LLEFT - LOGICAL */
  369. /* > If .TRUE., then XLEFT will be used instead of the */
  370. /* > corresponding element of A for the first element in the */
  371. /* > second row (if LROWS=.FALSE.) or column (if LROWS=.TRUE.) */
  372. /* > If .FALSE., then the corresponding element of A will be */
  373. /* > used. */
  374. /* > Not modified. */
  375. /* > */
  376. /* > LRIGHT - LOGICAL */
  377. /* > If .TRUE., then XRIGHT will be used instead of the */
  378. /* > corresponding element of A for the last element in the */
  379. /* > first row (if LROWS=.FALSE.) or column (if LROWS=.TRUE.) If */
  380. /* > .FALSE., then the corresponding element of A will be used. */
  381. /* > Not modified. */
  382. /* > */
  383. /* > NL - INTEGER */
  384. /* > The length of the rows (if LROWS=.TRUE.) or columns (if */
  385. /* > LROWS=.FALSE.) to be rotated. If XLEFT and/or XRIGHT are */
  386. /* > used, the columns/rows they are in should be included in */
  387. /* > NL, e.g., if LLEFT = LRIGHT = .TRUE., then NL must be at */
  388. /* > least 2. The number of rows/columns to be rotated */
  389. /* > exclusive of those involving XLEFT and/or XRIGHT may */
  390. /* > not be negative, i.e., NL minus how many of LLEFT and */
  391. /* > LRIGHT are .TRUE. must be at least zero; if not, XERBLA */
  392. /* > will be called. */
  393. /* > Not modified. */
  394. /* > */
  395. /* > C, S - COMPLEX*16 */
  396. /* > Specify the Givens rotation to be applied. If LROWS is */
  397. /* > true, then the matrix ( c s ) */
  398. /* > ( _ _ ) */
  399. /* > (-s c ) is applied from the left; */
  400. /* > if false, then the transpose (not conjugated) thereof is */
  401. /* > applied from the right. Note that in contrast to the */
  402. /* > output of ZROTG or to most versions of ZROT, both C and S */
  403. /* > are complex. For a Givens rotation, |C|**2 + |S|**2 should */
  404. /* > be 1, but this is not checked. */
  405. /* > Not modified. */
  406. /* > */
  407. /* > A - COMPLEX*16 array. */
  408. /* > The array containing the rows/columns to be rotated. The */
  409. /* > first element of A should be the upper left element to */
  410. /* > be rotated. */
  411. /* > Read and modified. */
  412. /* > */
  413. /* > LDA - INTEGER */
  414. /* > The "effective" leading dimension of A. If A contains */
  415. /* > a matrix stored in GE, HE, or SY format, then this is just */
  416. /* > the leading dimension of A as dimensioned in the calling */
  417. /* > routine. If A contains a matrix stored in band (GB, HB, or */
  418. /* > SB) format, then this should be *one less* than the leading */
  419. /* > dimension used in the calling routine. Thus, if A were */
  420. /* > dimensioned A(LDA,*) in ZLAROT, then A(1,j) would be the */
  421. /* > j-th element in the first of the two rows to be rotated, */
  422. /* > and A(2,j) would be the j-th in the second, regardless of */
  423. /* > how the array may be stored in the calling routine. [A */
  424. /* > cannot, however, actually be dimensioned thus, since for */
  425. /* > band format, the row number may exceed LDA, which is not */
  426. /* > legal FORTRAN.] */
  427. /* > If LROWS=.TRUE., then LDA must be at least 1, otherwise */
  428. /* > it must be at least NL minus the number of .TRUE. values */
  429. /* > in XLEFT and XRIGHT. */
  430. /* > Not modified. */
  431. /* > */
  432. /* > XLEFT - COMPLEX*16 */
  433. /* > If LLEFT is .TRUE., then XLEFT will be used and modified */
  434. /* > instead of A(2,1) (if LROWS=.TRUE.) or A(1,2) */
  435. /* > (if LROWS=.FALSE.). */
  436. /* > Read and modified. */
  437. /* > */
  438. /* > XRIGHT - COMPLEX*16 */
  439. /* > If LRIGHT is .TRUE., then XRIGHT will be used and modified */
  440. /* > instead of A(1,NL) (if LROWS=.TRUE.) or A(NL,1) */
  441. /* > (if LROWS=.FALSE.). */
  442. /* > Read and modified. */
  443. /* > \endverbatim */
  444. /* Authors: */
  445. /* ======== */
  446. /* > \author Univ. of Tennessee */
  447. /* > \author Univ. of California Berkeley */
  448. /* > \author Univ. of Colorado Denver */
  449. /* > \author NAG Ltd. */
  450. /* > \date December 2016 */
  451. /* > \ingroup complex16_matgen */
  452. /* ===================================================================== */
  453. /* Subroutine */ void zlarot_(logical *lrows, logical *lleft, logical *lright,
  454. integer *nl, doublecomplex *c__, doublecomplex *s, doublecomplex *a,
  455. integer *lda, doublecomplex *xleft, doublecomplex *xright)
  456. {
  457. /* System generated locals */
  458. integer i__1, i__2, i__3, i__4;
  459. doublecomplex z__1, z__2, z__3, z__4, z__5, z__6;
  460. /* Local variables */
  461. integer iinc, j, inext;
  462. doublecomplex tempx;
  463. integer ix, iy, nt;
  464. doublecomplex xt[2], yt[2];
  465. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  466. integer iyt;
  467. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  468. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  469. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  470. /* December 2016 */
  471. /* ===================================================================== */
  472. /* Set up indices, arrays for ends */
  473. /* Parameter adjustments */
  474. --a;
  475. /* Function Body */
  476. if (*lrows) {
  477. iinc = *lda;
  478. inext = 1;
  479. } else {
  480. iinc = 1;
  481. inext = *lda;
  482. }
  483. if (*lleft) {
  484. nt = 1;
  485. ix = iinc + 1;
  486. iy = *lda + 2;
  487. xt[0].r = a[1].r, xt[0].i = a[1].i;
  488. yt[0].r = xleft->r, yt[0].i = xleft->i;
  489. } else {
  490. nt = 0;
  491. ix = 1;
  492. iy = inext + 1;
  493. }
  494. if (*lright) {
  495. iyt = inext + 1 + (*nl - 1) * iinc;
  496. ++nt;
  497. i__1 = nt - 1;
  498. xt[i__1].r = xright->r, xt[i__1].i = xright->i;
  499. i__1 = nt - 1;
  500. i__2 = iyt;
  501. yt[i__1].r = a[i__2].r, yt[i__1].i = a[i__2].i;
  502. }
  503. /* Check for errors */
  504. if (*nl < nt) {
  505. xerbla_("ZLAROT", &c__4, 6);
  506. return;
  507. }
  508. if (*lda <= 0 || ! (*lrows) && *lda < *nl - nt) {
  509. xerbla_("ZLAROT", &c__8, 6);
  510. return;
  511. }
  512. /* Rotate */
  513. /* ZROT( NL-NT, A(IX),IINC, A(IY),IINC, C, S ) with complex C, S */
  514. i__1 = *nl - nt - 1;
  515. for (j = 0; j <= i__1; ++j) {
  516. i__2 = ix + j * iinc;
  517. z__2.r = c__->r * a[i__2].r - c__->i * a[i__2].i, z__2.i = c__->r * a[
  518. i__2].i + c__->i * a[i__2].r;
  519. i__3 = iy + j * iinc;
  520. z__3.r = s->r * a[i__3].r - s->i * a[i__3].i, z__3.i = s->r * a[i__3]
  521. .i + s->i * a[i__3].r;
  522. z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
  523. tempx.r = z__1.r, tempx.i = z__1.i;
  524. i__2 = iy + j * iinc;
  525. d_cnjg(&z__4, s);
  526. z__3.r = -z__4.r, z__3.i = -z__4.i;
  527. i__3 = ix + j * iinc;
  528. z__2.r = z__3.r * a[i__3].r - z__3.i * a[i__3].i, z__2.i = z__3.r * a[
  529. i__3].i + z__3.i * a[i__3].r;
  530. d_cnjg(&z__6, c__);
  531. i__4 = iy + j * iinc;
  532. z__5.r = z__6.r * a[i__4].r - z__6.i * a[i__4].i, z__5.i = z__6.r * a[
  533. i__4].i + z__6.i * a[i__4].r;
  534. z__1.r = z__2.r + z__5.r, z__1.i = z__2.i + z__5.i;
  535. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  536. i__2 = ix + j * iinc;
  537. a[i__2].r = tempx.r, a[i__2].i = tempx.i;
  538. /* L10: */
  539. }
  540. /* ZROT( NT, XT,1, YT,1, C, S ) with complex C, S */
  541. i__1 = nt;
  542. for (j = 1; j <= i__1; ++j) {
  543. i__2 = j - 1;
  544. z__2.r = c__->r * xt[i__2].r - c__->i * xt[i__2].i, z__2.i = c__->r *
  545. xt[i__2].i + c__->i * xt[i__2].r;
  546. i__3 = j - 1;
  547. z__3.r = s->r * yt[i__3].r - s->i * yt[i__3].i, z__3.i = s->r * yt[
  548. i__3].i + s->i * yt[i__3].r;
  549. z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
  550. tempx.r = z__1.r, tempx.i = z__1.i;
  551. i__2 = j - 1;
  552. d_cnjg(&z__4, s);
  553. z__3.r = -z__4.r, z__3.i = -z__4.i;
  554. i__3 = j - 1;
  555. z__2.r = z__3.r * xt[i__3].r - z__3.i * xt[i__3].i, z__2.i = z__3.r *
  556. xt[i__3].i + z__3.i * xt[i__3].r;
  557. d_cnjg(&z__6, c__);
  558. i__4 = j - 1;
  559. z__5.r = z__6.r * yt[i__4].r - z__6.i * yt[i__4].i, z__5.i = z__6.r *
  560. yt[i__4].i + z__6.i * yt[i__4].r;
  561. z__1.r = z__2.r + z__5.r, z__1.i = z__2.i + z__5.i;
  562. yt[i__2].r = z__1.r, yt[i__2].i = z__1.i;
  563. i__2 = j - 1;
  564. xt[i__2].r = tempx.r, xt[i__2].i = tempx.i;
  565. /* L20: */
  566. }
  567. /* Stuff values back into XLEFT, XRIGHT, etc. */
  568. if (*lleft) {
  569. a[1].r = xt[0].r, a[1].i = xt[0].i;
  570. xleft->r = yt[0].r, xleft->i = yt[0].i;
  571. }
  572. if (*lright) {
  573. i__1 = nt - 1;
  574. xright->r = xt[i__1].r, xright->i = xt[i__1].i;
  575. i__1 = iyt;
  576. i__2 = nt - 1;
  577. a[i__1].r = yt[i__2].r, a[i__1].i = yt[i__2].i;
  578. }
  579. return;
  580. /* End of ZLAROT */
  581. } /* zlarot_ */