You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlagge.c 23 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle_() continue;
  234. #define myceiling_(w) {ceil(w)}
  235. #define myhuge_(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #define F2C_proc_par_types 1
  240. /* Table of constant values */
  241. static doublecomplex c_b1 = {0.,0.};
  242. static doublecomplex c_b2 = {1.,0.};
  243. static integer c__3 = 3;
  244. static integer c__1 = 1;
  245. /* > \brief \b ZLAGGE */
  246. /* =========== DOCUMENTATION =========== */
  247. /* Online html documentation available at */
  248. /* http://www.netlib.org/lapack/explore-html/ */
  249. /* Definition: */
  250. /* =========== */
  251. /* SUBROUTINE ZLAGGE( M, N, KL, KU, D, A, LDA, ISEED, WORK, INFO ) */
  252. /* INTEGER INFO, KL, KU, LDA, M, N */
  253. /* INTEGER ISEED( 4 ) */
  254. /* DOUBLE PRECISION D( * ) */
  255. /* COMPLEX*16 A( LDA, * ), WORK( * ) */
  256. /* > \par Purpose: */
  257. /* ============= */
  258. /* > */
  259. /* > \verbatim */
  260. /* > */
  261. /* > ZLAGGE generates a complex general m by n matrix A, by pre- and post- */
  262. /* > multiplying a real diagonal matrix D with random unitary matrices: */
  263. /* > A = U*D*V. The lower and upper bandwidths may then be reduced to */
  264. /* > kl and ku by additional unitary transformations. */
  265. /* > \endverbatim */
  266. /* Arguments: */
  267. /* ========== */
  268. /* > \param[in] M */
  269. /* > \verbatim */
  270. /* > M is INTEGER */
  271. /* > The number of rows of the matrix A. M >= 0. */
  272. /* > \endverbatim */
  273. /* > */
  274. /* > \param[in] N */
  275. /* > \verbatim */
  276. /* > N is INTEGER */
  277. /* > The number of columns of the matrix A. N >= 0. */
  278. /* > \endverbatim */
  279. /* > */
  280. /* > \param[in] KL */
  281. /* > \verbatim */
  282. /* > KL is INTEGER */
  283. /* > The number of nonzero subdiagonals within the band of A. */
  284. /* > 0 <= KL <= M-1. */
  285. /* > \endverbatim */
  286. /* > */
  287. /* > \param[in] KU */
  288. /* > \verbatim */
  289. /* > KU is INTEGER */
  290. /* > The number of nonzero superdiagonals within the band of A. */
  291. /* > 0 <= KU <= N-1. */
  292. /* > \endverbatim */
  293. /* > */
  294. /* > \param[in] D */
  295. /* > \verbatim */
  296. /* > D is DOUBLE PRECISION array, dimension (f2cmin(M,N)) */
  297. /* > The diagonal elements of the diagonal matrix D. */
  298. /* > \endverbatim */
  299. /* > */
  300. /* > \param[out] A */
  301. /* > \verbatim */
  302. /* > A is COMPLEX*16 array, dimension (LDA,N) */
  303. /* > The generated m by n matrix A. */
  304. /* > \endverbatim */
  305. /* > */
  306. /* > \param[in] LDA */
  307. /* > \verbatim */
  308. /* > LDA is INTEGER */
  309. /* > The leading dimension of the array A. LDA >= M. */
  310. /* > \endverbatim */
  311. /* > */
  312. /* > \param[in,out] ISEED */
  313. /* > \verbatim */
  314. /* > ISEED is INTEGER array, dimension (4) */
  315. /* > On entry, the seed of the random number generator; the array */
  316. /* > elements must be between 0 and 4095, and ISEED(4) must be */
  317. /* > odd. */
  318. /* > On exit, the seed is updated. */
  319. /* > \endverbatim */
  320. /* > */
  321. /* > \param[out] WORK */
  322. /* > \verbatim */
  323. /* > WORK is COMPLEX*16 array, dimension (M+N) */
  324. /* > \endverbatim */
  325. /* > */
  326. /* > \param[out] INFO */
  327. /* > \verbatim */
  328. /* > INFO is INTEGER */
  329. /* > = 0: successful exit */
  330. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  331. /* > \endverbatim */
  332. /* Authors: */
  333. /* ======== */
  334. /* > \author Univ. of Tennessee */
  335. /* > \author Univ. of California Berkeley */
  336. /* > \author Univ. of Colorado Denver */
  337. /* > \author NAG Ltd. */
  338. /* > \date December 2016 */
  339. /* > \ingroup complex16_matgen */
  340. /* ===================================================================== */
  341. /* Subroutine */ void zlagge_(integer *m, integer *n, integer *kl, integer *ku,
  342. doublereal *d__, doublecomplex *a, integer *lda, integer *iseed,
  343. doublecomplex *work, integer *info)
  344. {
  345. /* System generated locals */
  346. integer a_dim1, a_offset, i__1, i__2, i__3;
  347. doublereal d__1;
  348. doublecomplex z__1;
  349. /* Local variables */
  350. integer i__, j;
  351. extern /* Subroutine */ void zgerc_(integer *, integer *, doublecomplex *,
  352. doublecomplex *, integer *, doublecomplex *, integer *,
  353. doublecomplex *, integer *), zscal_(integer *, doublecomplex *,
  354. doublecomplex *, integer *), zgemv_(char *, integer *, integer *,
  355. doublecomplex *, doublecomplex *, integer *, doublecomplex *,
  356. integer *, doublecomplex *, doublecomplex *, integer *);
  357. extern doublereal dznrm2_(integer *, doublecomplex *, integer *);
  358. doublecomplex wa, wb;
  359. doublereal wn;
  360. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  361. extern void zlacgv_(
  362. integer *, doublecomplex *, integer *), zlarnv_(integer *,
  363. integer *, integer *, doublecomplex *);
  364. doublecomplex tau;
  365. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  366. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  367. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  368. /* December 2016 */
  369. /* ===================================================================== */
  370. /* Test the input arguments */
  371. /* Parameter adjustments */
  372. --d__;
  373. a_dim1 = *lda;
  374. a_offset = 1 + a_dim1 * 1;
  375. a -= a_offset;
  376. --iseed;
  377. --work;
  378. /* Function Body */
  379. *info = 0;
  380. if (*m < 0) {
  381. *info = -1;
  382. } else if (*n < 0) {
  383. *info = -2;
  384. } else if (*kl < 0 || *kl > *m - 1) {
  385. *info = -3;
  386. } else if (*ku < 0 || *ku > *n - 1) {
  387. *info = -4;
  388. } else if (*lda < f2cmax(1,*m)) {
  389. *info = -7;
  390. }
  391. if (*info < 0) {
  392. i__1 = -(*info);
  393. xerbla_("ZLAGGE", &i__1, 6);
  394. return;
  395. }
  396. /* initialize A to diagonal matrix */
  397. i__1 = *n;
  398. for (j = 1; j <= i__1; ++j) {
  399. i__2 = *m;
  400. for (i__ = 1; i__ <= i__2; ++i__) {
  401. i__3 = i__ + j * a_dim1;
  402. a[i__3].r = 0., a[i__3].i = 0.;
  403. /* L10: */
  404. }
  405. /* L20: */
  406. }
  407. i__1 = f2cmin(*m,*n);
  408. for (i__ = 1; i__ <= i__1; ++i__) {
  409. i__2 = i__ + i__ * a_dim1;
  410. i__3 = i__;
  411. a[i__2].r = d__[i__3], a[i__2].i = 0.;
  412. /* L30: */
  413. }
  414. /* Quick exit if the user wants a diagonal matrix */
  415. if (*kl == 0 && *ku == 0) {
  416. return;
  417. }
  418. /* pre- and post-multiply A by random unitary matrices */
  419. for (i__ = f2cmin(*m,*n); i__ >= 1; --i__) {
  420. if (i__ < *m) {
  421. /* generate random reflection */
  422. i__1 = *m - i__ + 1;
  423. zlarnv_(&c__3, &iseed[1], &i__1, &work[1]);
  424. i__1 = *m - i__ + 1;
  425. wn = dznrm2_(&i__1, &work[1], &c__1);
  426. d__1 = wn / z_abs(&work[1]);
  427. z__1.r = d__1 * work[1].r, z__1.i = d__1 * work[1].i;
  428. wa.r = z__1.r, wa.i = z__1.i;
  429. if (wn == 0.) {
  430. tau.r = 0., tau.i = 0.;
  431. } else {
  432. z__1.r = work[1].r + wa.r, z__1.i = work[1].i + wa.i;
  433. wb.r = z__1.r, wb.i = z__1.i;
  434. i__1 = *m - i__;
  435. z_div(&z__1, &c_b2, &wb);
  436. zscal_(&i__1, &z__1, &work[2], &c__1);
  437. work[1].r = 1., work[1].i = 0.;
  438. z_div(&z__1, &wb, &wa);
  439. d__1 = z__1.r;
  440. tau.r = d__1, tau.i = 0.;
  441. }
  442. /* multiply A(i:m,i:n) by random reflection from the left */
  443. i__1 = *m - i__ + 1;
  444. i__2 = *n - i__ + 1;
  445. zgemv_("Conjugate transpose", &i__1, &i__2, &c_b2, &a[i__ + i__ *
  446. a_dim1], lda, &work[1], &c__1, &c_b1, &work[*m + 1], &
  447. c__1);
  448. i__1 = *m - i__ + 1;
  449. i__2 = *n - i__ + 1;
  450. z__1.r = -tau.r, z__1.i = -tau.i;
  451. zgerc_(&i__1, &i__2, &z__1, &work[1], &c__1, &work[*m + 1], &c__1,
  452. &a[i__ + i__ * a_dim1], lda);
  453. }
  454. if (i__ < *n) {
  455. /* generate random reflection */
  456. i__1 = *n - i__ + 1;
  457. zlarnv_(&c__3, &iseed[1], &i__1, &work[1]);
  458. i__1 = *n - i__ + 1;
  459. wn = dznrm2_(&i__1, &work[1], &c__1);
  460. d__1 = wn / z_abs(&work[1]);
  461. z__1.r = d__1 * work[1].r, z__1.i = d__1 * work[1].i;
  462. wa.r = z__1.r, wa.i = z__1.i;
  463. if (wn == 0.) {
  464. tau.r = 0., tau.i = 0.;
  465. } else {
  466. z__1.r = work[1].r + wa.r, z__1.i = work[1].i + wa.i;
  467. wb.r = z__1.r, wb.i = z__1.i;
  468. i__1 = *n - i__;
  469. z_div(&z__1, &c_b2, &wb);
  470. zscal_(&i__1, &z__1, &work[2], &c__1);
  471. work[1].r = 1., work[1].i = 0.;
  472. z_div(&z__1, &wb, &wa);
  473. d__1 = z__1.r;
  474. tau.r = d__1, tau.i = 0.;
  475. }
  476. /* multiply A(i:m,i:n) by random reflection from the right */
  477. i__1 = *m - i__ + 1;
  478. i__2 = *n - i__ + 1;
  479. zgemv_("No transpose", &i__1, &i__2, &c_b2, &a[i__ + i__ * a_dim1]
  480. , lda, &work[1], &c__1, &c_b1, &work[*n + 1], &c__1);
  481. i__1 = *m - i__ + 1;
  482. i__2 = *n - i__ + 1;
  483. z__1.r = -tau.r, z__1.i = -tau.i;
  484. zgerc_(&i__1, &i__2, &z__1, &work[*n + 1], &c__1, &work[1], &c__1,
  485. &a[i__ + i__ * a_dim1], lda);
  486. }
  487. /* L40: */
  488. }
  489. /* Reduce number of subdiagonals to KL and number of superdiagonals */
  490. /* to KU */
  491. /* Computing MAX */
  492. i__2 = *m - 1 - *kl, i__3 = *n - 1 - *ku;
  493. i__1 = f2cmax(i__2,i__3);
  494. for (i__ = 1; i__ <= i__1; ++i__) {
  495. if (*kl <= *ku) {
  496. /* annihilate subdiagonal elements first (necessary if KL = 0) */
  497. /* Computing MIN */
  498. i__2 = *m - 1 - *kl;
  499. if (i__ <= f2cmin(i__2,*n)) {
  500. /* generate reflection to annihilate A(kl+i+1:m,i) */
  501. i__2 = *m - *kl - i__ + 1;
  502. wn = dznrm2_(&i__2, &a[*kl + i__ + i__ * a_dim1], &c__1);
  503. d__1 = wn / z_abs(&a[*kl + i__ + i__ * a_dim1]);
  504. i__2 = *kl + i__ + i__ * a_dim1;
  505. z__1.r = d__1 * a[i__2].r, z__1.i = d__1 * a[i__2].i;
  506. wa.r = z__1.r, wa.i = z__1.i;
  507. if (wn == 0.) {
  508. tau.r = 0., tau.i = 0.;
  509. } else {
  510. i__2 = *kl + i__ + i__ * a_dim1;
  511. z__1.r = a[i__2].r + wa.r, z__1.i = a[i__2].i + wa.i;
  512. wb.r = z__1.r, wb.i = z__1.i;
  513. i__2 = *m - *kl - i__;
  514. z_div(&z__1, &c_b2, &wb);
  515. zscal_(&i__2, &z__1, &a[*kl + i__ + 1 + i__ * a_dim1], &
  516. c__1);
  517. i__2 = *kl + i__ + i__ * a_dim1;
  518. a[i__2].r = 1., a[i__2].i = 0.;
  519. z_div(&z__1, &wb, &wa);
  520. d__1 = z__1.r;
  521. tau.r = d__1, tau.i = 0.;
  522. }
  523. /* apply reflection to A(kl+i:m,i+1:n) from the left */
  524. i__2 = *m - *kl - i__ + 1;
  525. i__3 = *n - i__;
  526. zgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[*kl +
  527. i__ + (i__ + 1) * a_dim1], lda, &a[*kl + i__ + i__ *
  528. a_dim1], &c__1, &c_b1, &work[1], &c__1);
  529. i__2 = *m - *kl - i__ + 1;
  530. i__3 = *n - i__;
  531. z__1.r = -tau.r, z__1.i = -tau.i;
  532. zgerc_(&i__2, &i__3, &z__1, &a[*kl + i__ + i__ * a_dim1], &
  533. c__1, &work[1], &c__1, &a[*kl + i__ + (i__ + 1) *
  534. a_dim1], lda);
  535. i__2 = *kl + i__ + i__ * a_dim1;
  536. z__1.r = -wa.r, z__1.i = -wa.i;
  537. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  538. }
  539. /* Computing MIN */
  540. i__2 = *n - 1 - *ku;
  541. if (i__ <= f2cmin(i__2,*m)) {
  542. /* generate reflection to annihilate A(i,ku+i+1:n) */
  543. i__2 = *n - *ku - i__ + 1;
  544. wn = dznrm2_(&i__2, &a[i__ + (*ku + i__) * a_dim1], lda);
  545. d__1 = wn / z_abs(&a[i__ + (*ku + i__) * a_dim1]);
  546. i__2 = i__ + (*ku + i__) * a_dim1;
  547. z__1.r = d__1 * a[i__2].r, z__1.i = d__1 * a[i__2].i;
  548. wa.r = z__1.r, wa.i = z__1.i;
  549. if (wn == 0.) {
  550. tau.r = 0., tau.i = 0.;
  551. } else {
  552. i__2 = i__ + (*ku + i__) * a_dim1;
  553. z__1.r = a[i__2].r + wa.r, z__1.i = a[i__2].i + wa.i;
  554. wb.r = z__1.r, wb.i = z__1.i;
  555. i__2 = *n - *ku - i__;
  556. z_div(&z__1, &c_b2, &wb);
  557. zscal_(&i__2, &z__1, &a[i__ + (*ku + i__ + 1) * a_dim1],
  558. lda);
  559. i__2 = i__ + (*ku + i__) * a_dim1;
  560. a[i__2].r = 1., a[i__2].i = 0.;
  561. z_div(&z__1, &wb, &wa);
  562. d__1 = z__1.r;
  563. tau.r = d__1, tau.i = 0.;
  564. }
  565. /* apply reflection to A(i+1:m,ku+i:n) from the right */
  566. i__2 = *n - *ku - i__ + 1;
  567. zlacgv_(&i__2, &a[i__ + (*ku + i__) * a_dim1], lda);
  568. i__2 = *m - i__;
  569. i__3 = *n - *ku - i__ + 1;
  570. zgemv_("No transpose", &i__2, &i__3, &c_b2, &a[i__ + 1 + (*ku
  571. + i__) * a_dim1], lda, &a[i__ + (*ku + i__) * a_dim1],
  572. lda, &c_b1, &work[1], &c__1);
  573. i__2 = *m - i__;
  574. i__3 = *n - *ku - i__ + 1;
  575. z__1.r = -tau.r, z__1.i = -tau.i;
  576. zgerc_(&i__2, &i__3, &z__1, &work[1], &c__1, &a[i__ + (*ku +
  577. i__) * a_dim1], lda, &a[i__ + 1 + (*ku + i__) *
  578. a_dim1], lda);
  579. i__2 = i__ + (*ku + i__) * a_dim1;
  580. z__1.r = -wa.r, z__1.i = -wa.i;
  581. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  582. }
  583. } else {
  584. /* annihilate superdiagonal elements first (necessary if */
  585. /* KU = 0) */
  586. /* Computing MIN */
  587. i__2 = *n - 1 - *ku;
  588. if (i__ <= f2cmin(i__2,*m)) {
  589. /* generate reflection to annihilate A(i,ku+i+1:n) */
  590. i__2 = *n - *ku - i__ + 1;
  591. wn = dznrm2_(&i__2, &a[i__ + (*ku + i__) * a_dim1], lda);
  592. d__1 = wn / z_abs(&a[i__ + (*ku + i__) * a_dim1]);
  593. i__2 = i__ + (*ku + i__) * a_dim1;
  594. z__1.r = d__1 * a[i__2].r, z__1.i = d__1 * a[i__2].i;
  595. wa.r = z__1.r, wa.i = z__1.i;
  596. if (wn == 0.) {
  597. tau.r = 0., tau.i = 0.;
  598. } else {
  599. i__2 = i__ + (*ku + i__) * a_dim1;
  600. z__1.r = a[i__2].r + wa.r, z__1.i = a[i__2].i + wa.i;
  601. wb.r = z__1.r, wb.i = z__1.i;
  602. i__2 = *n - *ku - i__;
  603. z_div(&z__1, &c_b2, &wb);
  604. zscal_(&i__2, &z__1, &a[i__ + (*ku + i__ + 1) * a_dim1],
  605. lda);
  606. i__2 = i__ + (*ku + i__) * a_dim1;
  607. a[i__2].r = 1., a[i__2].i = 0.;
  608. z_div(&z__1, &wb, &wa);
  609. d__1 = z__1.r;
  610. tau.r = d__1, tau.i = 0.;
  611. }
  612. /* apply reflection to A(i+1:m,ku+i:n) from the right */
  613. i__2 = *n - *ku - i__ + 1;
  614. zlacgv_(&i__2, &a[i__ + (*ku + i__) * a_dim1], lda);
  615. i__2 = *m - i__;
  616. i__3 = *n - *ku - i__ + 1;
  617. zgemv_("No transpose", &i__2, &i__3, &c_b2, &a[i__ + 1 + (*ku
  618. + i__) * a_dim1], lda, &a[i__ + (*ku + i__) * a_dim1],
  619. lda, &c_b1, &work[1], &c__1);
  620. i__2 = *m - i__;
  621. i__3 = *n - *ku - i__ + 1;
  622. z__1.r = -tau.r, z__1.i = -tau.i;
  623. zgerc_(&i__2, &i__3, &z__1, &work[1], &c__1, &a[i__ + (*ku +
  624. i__) * a_dim1], lda, &a[i__ + 1 + (*ku + i__) *
  625. a_dim1], lda);
  626. i__2 = i__ + (*ku + i__) * a_dim1;
  627. z__1.r = -wa.r, z__1.i = -wa.i;
  628. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  629. }
  630. /* Computing MIN */
  631. i__2 = *m - 1 - *kl;
  632. if (i__ <= f2cmin(i__2,*n)) {
  633. /* generate reflection to annihilate A(kl+i+1:m,i) */
  634. i__2 = *m - *kl - i__ + 1;
  635. wn = dznrm2_(&i__2, &a[*kl + i__ + i__ * a_dim1], &c__1);
  636. d__1 = wn / z_abs(&a[*kl + i__ + i__ * a_dim1]);
  637. i__2 = *kl + i__ + i__ * a_dim1;
  638. z__1.r = d__1 * a[i__2].r, z__1.i = d__1 * a[i__2].i;
  639. wa.r = z__1.r, wa.i = z__1.i;
  640. if (wn == 0.) {
  641. tau.r = 0., tau.i = 0.;
  642. } else {
  643. i__2 = *kl + i__ + i__ * a_dim1;
  644. z__1.r = a[i__2].r + wa.r, z__1.i = a[i__2].i + wa.i;
  645. wb.r = z__1.r, wb.i = z__1.i;
  646. i__2 = *m - *kl - i__;
  647. z_div(&z__1, &c_b2, &wb);
  648. zscal_(&i__2, &z__1, &a[*kl + i__ + 1 + i__ * a_dim1], &
  649. c__1);
  650. i__2 = *kl + i__ + i__ * a_dim1;
  651. a[i__2].r = 1., a[i__2].i = 0.;
  652. z_div(&z__1, &wb, &wa);
  653. d__1 = z__1.r;
  654. tau.r = d__1, tau.i = 0.;
  655. }
  656. /* apply reflection to A(kl+i:m,i+1:n) from the left */
  657. i__2 = *m - *kl - i__ + 1;
  658. i__3 = *n - i__;
  659. zgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[*kl +
  660. i__ + (i__ + 1) * a_dim1], lda, &a[*kl + i__ + i__ *
  661. a_dim1], &c__1, &c_b1, &work[1], &c__1);
  662. i__2 = *m - *kl - i__ + 1;
  663. i__3 = *n - i__;
  664. z__1.r = -tau.r, z__1.i = -tau.i;
  665. zgerc_(&i__2, &i__3, &z__1, &a[*kl + i__ + i__ * a_dim1], &
  666. c__1, &work[1], &c__1, &a[*kl + i__ + (i__ + 1) *
  667. a_dim1], lda);
  668. i__2 = *kl + i__ + i__ * a_dim1;
  669. z__1.r = -wa.r, z__1.i = -wa.i;
  670. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  671. }
  672. }
  673. if (i__ <= *n) {
  674. i__2 = *m;
  675. for (j = *kl + i__ + 1; j <= i__2; ++j) {
  676. i__3 = j + i__ * a_dim1;
  677. a[i__3].r = 0., a[i__3].i = 0.;
  678. /* L50: */
  679. }
  680. }
  681. if (i__ <= *m) {
  682. i__2 = *n;
  683. for (j = *ku + i__ + 1; j <= i__2; ++j) {
  684. i__3 = i__ + j * a_dim1;
  685. a[i__3].r = 0., a[i__3].i = 0.;
  686. /* L60: */
  687. }
  688. }
  689. /* L70: */
  690. }
  691. return;
  692. /* End of ZLAGGE */
  693. } /* zlagge_ */