You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slatm6.c 18 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #define F2C_proc_par_types 1
  240. /* Table of constant values */
  241. static integer c__1 = 1;
  242. static integer c__4 = 4;
  243. static integer c__12 = 12;
  244. static integer c__8 = 8;
  245. static integer c__40 = 40;
  246. static integer c__2 = 2;
  247. static integer c__3 = 3;
  248. static integer c__60 = 60;
  249. /* > \brief \b SLATM6 */
  250. /* =========== DOCUMENTATION =========== */
  251. /* Online html documentation available at */
  252. /* http://www.netlib.org/lapack/explore-html/ */
  253. /* Definition: */
  254. /* =========== */
  255. /* SUBROUTINE SLATM6( TYPE, N, A, LDA, B, X, LDX, Y, LDY, ALPHA, */
  256. /* BETA, WX, WY, S, DIF ) */
  257. /* INTEGER LDA, LDX, LDY, N, TYPE */
  258. /* REAL ALPHA, BETA, WX, WY */
  259. /* REAL A( LDA, * ), B( LDA, * ), DIF( * ), S( * ), */
  260. /* $ X( LDX, * ), Y( LDY, * ) */
  261. /* > \par Purpose: */
  262. /* ============= */
  263. /* > */
  264. /* > \verbatim */
  265. /* > */
  266. /* > SLATM6 generates test matrices for the generalized eigenvalue */
  267. /* > problem, their corresponding right and left eigenvector matrices, */
  268. /* > and also reciprocal condition numbers for all eigenvalues and */
  269. /* > the reciprocal condition numbers of eigenvectors corresponding to */
  270. /* > the 1th and 5th eigenvalues. */
  271. /* > */
  272. /* > Test Matrices */
  273. /* > ============= */
  274. /* > */
  275. /* > Two kinds of test matrix pairs */
  276. /* > */
  277. /* > (A, B) = inverse(YH) * (Da, Db) * inverse(X) */
  278. /* > */
  279. /* > are used in the tests: */
  280. /* > */
  281. /* > Type 1: */
  282. /* > Da = 1+a 0 0 0 0 Db = 1 0 0 0 0 */
  283. /* > 0 2+a 0 0 0 0 1 0 0 0 */
  284. /* > 0 0 3+a 0 0 0 0 1 0 0 */
  285. /* > 0 0 0 4+a 0 0 0 0 1 0 */
  286. /* > 0 0 0 0 5+a , 0 0 0 0 1 , and */
  287. /* > */
  288. /* > Type 2: */
  289. /* > Da = 1 -1 0 0 0 Db = 1 0 0 0 0 */
  290. /* > 1 1 0 0 0 0 1 0 0 0 */
  291. /* > 0 0 1 0 0 0 0 1 0 0 */
  292. /* > 0 0 0 1+a 1+b 0 0 0 1 0 */
  293. /* > 0 0 0 -1-b 1+a , 0 0 0 0 1 . */
  294. /* > */
  295. /* > In both cases the same inverse(YH) and inverse(X) are used to compute */
  296. /* > (A, B), giving the exact eigenvectors to (A,B) as (YH, X): */
  297. /* > */
  298. /* > YH: = 1 0 -y y -y X = 1 0 -x -x x */
  299. /* > 0 1 -y y -y 0 1 x -x -x */
  300. /* > 0 0 1 0 0 0 0 1 0 0 */
  301. /* > 0 0 0 1 0 0 0 0 1 0 */
  302. /* > 0 0 0 0 1, 0 0 0 0 1 , */
  303. /* > */
  304. /* > where a, b, x and y will have all values independently of each other. */
  305. /* > \endverbatim */
  306. /* Arguments: */
  307. /* ========== */
  308. /* > \param[in] TYPE */
  309. /* > \verbatim */
  310. /* > TYPE is INTEGER */
  311. /* > Specifies the problem type (see further details). */
  312. /* > \endverbatim */
  313. /* > */
  314. /* > \param[in] N */
  315. /* > \verbatim */
  316. /* > N is INTEGER */
  317. /* > Size of the matrices A and B. */
  318. /* > \endverbatim */
  319. /* > */
  320. /* > \param[out] A */
  321. /* > \verbatim */
  322. /* > A is REAL array, dimension (LDA, N). */
  323. /* > On exit A N-by-N is initialized according to TYPE. */
  324. /* > \endverbatim */
  325. /* > */
  326. /* > \param[in] LDA */
  327. /* > \verbatim */
  328. /* > LDA is INTEGER */
  329. /* > The leading dimension of A and of B. */
  330. /* > \endverbatim */
  331. /* > */
  332. /* > \param[out] B */
  333. /* > \verbatim */
  334. /* > B is REAL array, dimension (LDA, N). */
  335. /* > On exit B N-by-N is initialized according to TYPE. */
  336. /* > \endverbatim */
  337. /* > */
  338. /* > \param[out] X */
  339. /* > \verbatim */
  340. /* > X is REAL array, dimension (LDX, N). */
  341. /* > On exit X is the N-by-N matrix of right eigenvectors. */
  342. /* > \endverbatim */
  343. /* > */
  344. /* > \param[in] LDX */
  345. /* > \verbatim */
  346. /* > LDX is INTEGER */
  347. /* > The leading dimension of X. */
  348. /* > \endverbatim */
  349. /* > */
  350. /* > \param[out] Y */
  351. /* > \verbatim */
  352. /* > Y is REAL array, dimension (LDY, N). */
  353. /* > On exit Y is the N-by-N matrix of left eigenvectors. */
  354. /* > \endverbatim */
  355. /* > */
  356. /* > \param[in] LDY */
  357. /* > \verbatim */
  358. /* > LDY is INTEGER */
  359. /* > The leading dimension of Y. */
  360. /* > \endverbatim */
  361. /* > */
  362. /* > \param[in] ALPHA */
  363. /* > \verbatim */
  364. /* > ALPHA is REAL */
  365. /* > \endverbatim */
  366. /* > */
  367. /* > \param[in] BETA */
  368. /* > \verbatim */
  369. /* > BETA is REAL */
  370. /* > */
  371. /* > Weighting constants for matrix A. */
  372. /* > \endverbatim */
  373. /* > */
  374. /* > \param[in] WX */
  375. /* > \verbatim */
  376. /* > WX is REAL */
  377. /* > Constant for right eigenvector matrix. */
  378. /* > \endverbatim */
  379. /* > */
  380. /* > \param[in] WY */
  381. /* > \verbatim */
  382. /* > WY is REAL */
  383. /* > Constant for left eigenvector matrix. */
  384. /* > \endverbatim */
  385. /* > */
  386. /* > \param[out] S */
  387. /* > \verbatim */
  388. /* > S is REAL array, dimension (N) */
  389. /* > S(i) is the reciprocal condition number for eigenvalue i. */
  390. /* > \endverbatim */
  391. /* > */
  392. /* > \param[out] DIF */
  393. /* > \verbatim */
  394. /* > DIF is REAL array, dimension (N) */
  395. /* > DIF(i) is the reciprocal condition number for eigenvector i. */
  396. /* > \endverbatim */
  397. /* Authors: */
  398. /* ======== */
  399. /* > \author Univ. of Tennessee */
  400. /* > \author Univ. of California Berkeley */
  401. /* > \author Univ. of Colorado Denver */
  402. /* > \author NAG Ltd. */
  403. /* > \date December 2016 */
  404. /* > \ingroup real_matgen */
  405. /* ===================================================================== */
  406. /* Subroutine */ void slatm6_(integer *type__, integer *n, real *a, integer *
  407. lda, real *b, real *x, integer *ldx, real *y, integer *ldy, real *
  408. alpha, real *beta, real *wx, real *wy, real *s, real *dif)
  409. {
  410. /* System generated locals */
  411. integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset, y_dim1,
  412. y_offset, i__1, i__2;
  413. /* Local variables */
  414. integer info;
  415. real work[100];
  416. integer i__, j;
  417. real z__[144] /* was [12][12] */;
  418. extern /* Subroutine */ void slakf2_(integer *, integer *, real *, integer
  419. *, real *, real *, real *, real *, integer *), sgesvd_(char *,
  420. char *, integer *, integer *, real *, integer *, real *, real *,
  421. integer *, real *, integer *, real *, integer *, integer *), slacpy_(char *, integer *, integer *, real *,
  422. integer *, real *, integer *);
  423. /* -- LAPACK computational routine (version 3.7.0) -- */
  424. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  425. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  426. /* December 2016 */
  427. /* ===================================================================== */
  428. /* Generate test problem ... */
  429. /* (Da, Db) ... */
  430. /* Parameter adjustments */
  431. b_dim1 = *lda;
  432. b_offset = 1 + b_dim1 * 1;
  433. b -= b_offset;
  434. a_dim1 = *lda;
  435. a_offset = 1 + a_dim1 * 1;
  436. a -= a_offset;
  437. x_dim1 = *ldx;
  438. x_offset = 1 + x_dim1 * 1;
  439. x -= x_offset;
  440. y_dim1 = *ldy;
  441. y_offset = 1 + y_dim1 * 1;
  442. y -= y_offset;
  443. --s;
  444. --dif;
  445. /* Function Body */
  446. i__1 = *n;
  447. for (i__ = 1; i__ <= i__1; ++i__) {
  448. i__2 = *n;
  449. for (j = 1; j <= i__2; ++j) {
  450. if (i__ == j) {
  451. a[i__ + i__ * a_dim1] = (real) i__ + *alpha;
  452. b[i__ + i__ * b_dim1] = 1.f;
  453. } else {
  454. a[i__ + j * a_dim1] = 0.f;
  455. b[i__ + j * b_dim1] = 0.f;
  456. }
  457. /* L10: */
  458. }
  459. /* L20: */
  460. }
  461. /* Form X and Y */
  462. slacpy_("F", n, n, &b[b_offset], lda, &y[y_offset], ldy);
  463. y[y_dim1 + 3] = -(*wy);
  464. y[y_dim1 + 4] = *wy;
  465. y[y_dim1 + 5] = -(*wy);
  466. y[(y_dim1 << 1) + 3] = -(*wy);
  467. y[(y_dim1 << 1) + 4] = *wy;
  468. y[(y_dim1 << 1) + 5] = -(*wy);
  469. slacpy_("F", n, n, &b[b_offset], lda, &x[x_offset], ldx);
  470. x[x_dim1 * 3 + 1] = -(*wx);
  471. x[(x_dim1 << 2) + 1] = -(*wx);
  472. x[x_dim1 * 5 + 1] = *wx;
  473. x[x_dim1 * 3 + 2] = *wx;
  474. x[(x_dim1 << 2) + 2] = -(*wx);
  475. x[x_dim1 * 5 + 2] = -(*wx);
  476. /* Form (A, B) */
  477. b[b_dim1 * 3 + 1] = *wx + *wy;
  478. b[b_dim1 * 3 + 2] = -(*wx) + *wy;
  479. b[(b_dim1 << 2) + 1] = *wx - *wy;
  480. b[(b_dim1 << 2) + 2] = *wx - *wy;
  481. b[b_dim1 * 5 + 1] = -(*wx) + *wy;
  482. b[b_dim1 * 5 + 2] = *wx + *wy;
  483. if (*type__ == 1) {
  484. a[a_dim1 * 3 + 1] = *wx * a[a_dim1 + 1] + *wy * a[a_dim1 * 3 + 3];
  485. a[a_dim1 * 3 + 2] = -(*wx) * a[(a_dim1 << 1) + 2] + *wy * a[a_dim1 *
  486. 3 + 3];
  487. a[(a_dim1 << 2) + 1] = *wx * a[a_dim1 + 1] - *wy * a[(a_dim1 << 2) +
  488. 4];
  489. a[(a_dim1 << 2) + 2] = *wx * a[(a_dim1 << 1) + 2] - *wy * a[(a_dim1 <<
  490. 2) + 4];
  491. a[a_dim1 * 5 + 1] = -(*wx) * a[a_dim1 + 1] + *wy * a[a_dim1 * 5 + 5];
  492. a[a_dim1 * 5 + 2] = *wx * a[(a_dim1 << 1) + 2] + *wy * a[a_dim1 * 5 +
  493. 5];
  494. } else if (*type__ == 2) {
  495. a[a_dim1 * 3 + 1] = *wx * 2.f + *wy;
  496. a[a_dim1 * 3 + 2] = *wy;
  497. a[(a_dim1 << 2) + 1] = -(*wy) * (*alpha + 2.f + *beta);
  498. a[(a_dim1 << 2) + 2] = *wx * 2.f - *wy * (*alpha + 2.f + *beta);
  499. a[a_dim1 * 5 + 1] = *wx * -2.f + *wy * (*alpha - *beta);
  500. a[a_dim1 * 5 + 2] = *wy * (*alpha - *beta);
  501. a[a_dim1 + 1] = 1.f;
  502. a[(a_dim1 << 1) + 1] = -1.f;
  503. a[a_dim1 + 2] = 1.f;
  504. a[(a_dim1 << 1) + 2] = a[a_dim1 + 1];
  505. a[a_dim1 * 3 + 3] = 1.f;
  506. a[(a_dim1 << 2) + 4] = *alpha + 1.f;
  507. a[a_dim1 * 5 + 4] = *beta + 1.f;
  508. a[(a_dim1 << 2) + 5] = -a[a_dim1 * 5 + 4];
  509. a[a_dim1 * 5 + 5] = a[(a_dim1 << 2) + 4];
  510. }
  511. /* Compute condition numbers */
  512. if (*type__ == 1) {
  513. s[1] = 1.f / sqrt((*wy * 3.f * *wy + 1.f) / (a[a_dim1 + 1] * a[a_dim1
  514. + 1] + 1.f));
  515. s[2] = 1.f / sqrt((*wy * 3.f * *wy + 1.f) / (a[(a_dim1 << 1) + 2] * a[
  516. (a_dim1 << 1) + 2] + 1.f));
  517. s[3] = 1.f / sqrt((*wx * 2.f * *wx + 1.f) / (a[a_dim1 * 3 + 3] * a[
  518. a_dim1 * 3 + 3] + 1.f));
  519. s[4] = 1.f / sqrt((*wx * 2.f * *wx + 1.f) / (a[(a_dim1 << 2) + 4] * a[
  520. (a_dim1 << 2) + 4] + 1.f));
  521. s[5] = 1.f / sqrt((*wx * 2.f * *wx + 1.f) / (a[a_dim1 * 5 + 5] * a[
  522. a_dim1 * 5 + 5] + 1.f));
  523. slakf2_(&c__1, &c__4, &a[a_offset], lda, &a[(a_dim1 << 1) + 2], &b[
  524. b_offset], &b[(b_dim1 << 1) + 2], z__, &c__12);
  525. sgesvd_("N", "N", &c__8, &c__8, z__, &c__12, work, &work[8], &c__1, &
  526. work[9], &c__1, &work[10], &c__40, &info);
  527. dif[1] = work[7];
  528. slakf2_(&c__4, &c__1, &a[a_offset], lda, &a[a_dim1 * 5 + 5], &b[
  529. b_offset], &b[b_dim1 * 5 + 5], z__, &c__12);
  530. sgesvd_("N", "N", &c__8, &c__8, z__, &c__12, work, &work[8], &c__1, &
  531. work[9], &c__1, &work[10], &c__40, &info);
  532. dif[5] = work[7];
  533. } else if (*type__ == 2) {
  534. s[1] = 1.f / sqrt(*wy * *wy + .33333333333333331f);
  535. s[2] = s[1];
  536. s[3] = 1.f / sqrt(*wx * *wx + .5f);
  537. s[4] = 1.f / sqrt((*wx * 2.f * *wx + 1.f) / ((*alpha + 1.f) * (*alpha
  538. + 1.f) + 1.f + (*beta + 1.f) * (*beta + 1.f)));
  539. s[5] = s[4];
  540. slakf2_(&c__2, &c__3, &a[a_offset], lda, &a[a_dim1 * 3 + 3], &b[
  541. b_offset], &b[b_dim1 * 3 + 3], z__, &c__12);
  542. sgesvd_("N", "N", &c__12, &c__12, z__, &c__12, work, &work[12], &c__1,
  543. &work[13], &c__1, &work[14], &c__60, &info);
  544. dif[1] = work[11];
  545. slakf2_(&c__3, &c__2, &a[a_offset], lda, &a[(a_dim1 << 2) + 4], &b[
  546. b_offset], &b[(b_dim1 << 2) + 4], z__, &c__12);
  547. sgesvd_("N", "N", &c__12, &c__12, z__, &c__12, work, &work[12], &c__1,
  548. &work[13], &c__1, &work[14], &c__60, &info);
  549. dif[5] = work[11];
  550. }
  551. return;
  552. /* End of SLATM6 */
  553. } /* slatm6_ */