You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sstemr.c 42 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static real c_b18 = .003f;
  488. /* > \brief \b SSTEMR */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download SSTEMR + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sstemr.
  495. f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sstemr.
  498. f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sstemr.
  501. f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE SSTEMR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, */
  507. /* M, W, Z, LDZ, NZC, ISUPPZ, TRYRAC, WORK, LWORK, */
  508. /* IWORK, LIWORK, INFO ) */
  509. /* CHARACTER JOBZ, RANGE */
  510. /* LOGICAL TRYRAC */
  511. /* INTEGER IL, INFO, IU, LDZ, NZC, LIWORK, LWORK, M, N */
  512. /* REAL VL, VU */
  513. /* INTEGER ISUPPZ( * ), IWORK( * ) */
  514. /* REAL D( * ), E( * ), W( * ), WORK( * ) */
  515. /* REAL Z( LDZ, * ) */
  516. /* > \par Purpose: */
  517. /* ============= */
  518. /* > */
  519. /* > \verbatim */
  520. /* > */
  521. /* > SSTEMR computes selected eigenvalues and, optionally, eigenvectors */
  522. /* > of a real symmetric tridiagonal matrix T. Any such unreduced matrix has */
  523. /* > a well defined set of pairwise different real eigenvalues, the corresponding */
  524. /* > real eigenvectors are pairwise orthogonal. */
  525. /* > */
  526. /* > The spectrum may be computed either completely or partially by specifying */
  527. /* > either an interval (VL,VU] or a range of indices IL:IU for the desired */
  528. /* > eigenvalues. */
  529. /* > */
  530. /* > Depending on the number of desired eigenvalues, these are computed either */
  531. /* > by bisection or the dqds algorithm. Numerically orthogonal eigenvectors are */
  532. /* > computed by the use of various suitable L D L^T factorizations near clusters */
  533. /* > of close eigenvalues (referred to as RRRs, Relatively Robust */
  534. /* > Representations). An informal sketch of the algorithm follows. */
  535. /* > */
  536. /* > For each unreduced block (submatrix) of T, */
  537. /* > (a) Compute T - sigma I = L D L^T, so that L and D */
  538. /* > define all the wanted eigenvalues to high relative accuracy. */
  539. /* > This means that small relative changes in the entries of D and L */
  540. /* > cause only small relative changes in the eigenvalues and */
  541. /* > eigenvectors. The standard (unfactored) representation of the */
  542. /* > tridiagonal matrix T does not have this property in general. */
  543. /* > (b) Compute the eigenvalues to suitable accuracy. */
  544. /* > If the eigenvectors are desired, the algorithm attains full */
  545. /* > accuracy of the computed eigenvalues only right before */
  546. /* > the corresponding vectors have to be computed, see steps c) and d). */
  547. /* > (c) For each cluster of close eigenvalues, select a new */
  548. /* > shift close to the cluster, find a new factorization, and refine */
  549. /* > the shifted eigenvalues to suitable accuracy. */
  550. /* > (d) For each eigenvalue with a large enough relative separation compute */
  551. /* > the corresponding eigenvector by forming a rank revealing twisted */
  552. /* > factorization. Go back to (c) for any clusters that remain. */
  553. /* > */
  554. /* > For more details, see: */
  555. /* > - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations */
  556. /* > to compute orthogonal eigenvectors of symmetric tridiagonal matrices," */
  557. /* > Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004. */
  558. /* > - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and */
  559. /* > Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25, */
  560. /* > 2004. Also LAPACK Working Note 154. */
  561. /* > - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric */
  562. /* > tridiagonal eigenvalue/eigenvector problem", */
  563. /* > Computer Science Division Technical Report No. UCB/CSD-97-971, */
  564. /* > UC Berkeley, May 1997. */
  565. /* > */
  566. /* > Further Details */
  567. /* > 1.SSTEMR works only on machines which follow IEEE-754 */
  568. /* > floating-point standard in their handling of infinities and NaNs. */
  569. /* > This permits the use of efficient inner loops avoiding a check for */
  570. /* > zero divisors. */
  571. /* > \endverbatim */
  572. /* Arguments: */
  573. /* ========== */
  574. /* > \param[in] JOBZ */
  575. /* > \verbatim */
  576. /* > JOBZ is CHARACTER*1 */
  577. /* > = 'N': Compute eigenvalues only; */
  578. /* > = 'V': Compute eigenvalues and eigenvectors. */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[in] RANGE */
  582. /* > \verbatim */
  583. /* > RANGE is CHARACTER*1 */
  584. /* > = 'A': all eigenvalues will be found. */
  585. /* > = 'V': all eigenvalues in the half-open interval (VL,VU] */
  586. /* > will be found. */
  587. /* > = 'I': the IL-th through IU-th eigenvalues will be found. */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[in] N */
  591. /* > \verbatim */
  592. /* > N is INTEGER */
  593. /* > The order of the matrix. N >= 0. */
  594. /* > \endverbatim */
  595. /* > */
  596. /* > \param[in,out] D */
  597. /* > \verbatim */
  598. /* > D is REAL array, dimension (N) */
  599. /* > On entry, the N diagonal elements of the tridiagonal matrix */
  600. /* > T. On exit, D is overwritten. */
  601. /* > \endverbatim */
  602. /* > */
  603. /* > \param[in,out] E */
  604. /* > \verbatim */
  605. /* > E is REAL array, dimension (N) */
  606. /* > On entry, the (N-1) subdiagonal elements of the tridiagonal */
  607. /* > matrix T in elements 1 to N-1 of E. E(N) need not be set on */
  608. /* > input, but is used internally as workspace. */
  609. /* > On exit, E is overwritten. */
  610. /* > \endverbatim */
  611. /* > */
  612. /* > \param[in] VL */
  613. /* > \verbatim */
  614. /* > VL is REAL */
  615. /* > */
  616. /* > If RANGE='V', the lower bound of the interval to */
  617. /* > be searched for eigenvalues. VL < VU. */
  618. /* > Not referenced if RANGE = 'A' or 'I'. */
  619. /* > \endverbatim */
  620. /* > */
  621. /* > \param[in] VU */
  622. /* > \verbatim */
  623. /* > VU is REAL */
  624. /* > */
  625. /* > If RANGE='V', the upper bound of the interval to */
  626. /* > be searched for eigenvalues. VL < VU. */
  627. /* > Not referenced if RANGE = 'A' or 'I'. */
  628. /* > \endverbatim */
  629. /* > */
  630. /* > \param[in] IL */
  631. /* > \verbatim */
  632. /* > IL is INTEGER */
  633. /* > */
  634. /* > If RANGE='I', the index of the */
  635. /* > smallest eigenvalue to be returned. */
  636. /* > 1 <= IL <= IU <= N, if N > 0. */
  637. /* > Not referenced if RANGE = 'A' or 'V'. */
  638. /* > \endverbatim */
  639. /* > */
  640. /* > \param[in] IU */
  641. /* > \verbatim */
  642. /* > IU is INTEGER */
  643. /* > */
  644. /* > If RANGE='I', the index of the */
  645. /* > largest eigenvalue to be returned. */
  646. /* > 1 <= IL <= IU <= N, if N > 0. */
  647. /* > Not referenced if RANGE = 'A' or 'V'. */
  648. /* > \endverbatim */
  649. /* > */
  650. /* > \param[out] M */
  651. /* > \verbatim */
  652. /* > M is INTEGER */
  653. /* > The total number of eigenvalues found. 0 <= M <= N. */
  654. /* > If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
  655. /* > \endverbatim */
  656. /* > */
  657. /* > \param[out] W */
  658. /* > \verbatim */
  659. /* > W is REAL array, dimension (N) */
  660. /* > The first M elements contain the selected eigenvalues in */
  661. /* > ascending order. */
  662. /* > \endverbatim */
  663. /* > */
  664. /* > \param[out] Z */
  665. /* > \verbatim */
  666. /* > Z is REAL array, dimension (LDZ, f2cmax(1,M) ) */
  667. /* > If JOBZ = 'V', and if INFO = 0, then the first M columns of Z */
  668. /* > contain the orthonormal eigenvectors of the matrix T */
  669. /* > corresponding to the selected eigenvalues, with the i-th */
  670. /* > column of Z holding the eigenvector associated with W(i). */
  671. /* > If JOBZ = 'N', then Z is not referenced. */
  672. /* > Note: the user must ensure that at least f2cmax(1,M) columns are */
  673. /* > supplied in the array Z; if RANGE = 'V', the exact value of M */
  674. /* > is not known in advance and can be computed with a workspace */
  675. /* > query by setting NZC = -1, see below. */
  676. /* > \endverbatim */
  677. /* > */
  678. /* > \param[in] LDZ */
  679. /* > \verbatim */
  680. /* > LDZ is INTEGER */
  681. /* > The leading dimension of the array Z. LDZ >= 1, and if */
  682. /* > JOBZ = 'V', then LDZ >= f2cmax(1,N). */
  683. /* > \endverbatim */
  684. /* > */
  685. /* > \param[in] NZC */
  686. /* > \verbatim */
  687. /* > NZC is INTEGER */
  688. /* > The number of eigenvectors to be held in the array Z. */
  689. /* > If RANGE = 'A', then NZC >= f2cmax(1,N). */
  690. /* > If RANGE = 'V', then NZC >= the number of eigenvalues in (VL,VU]. */
  691. /* > If RANGE = 'I', then NZC >= IU-IL+1. */
  692. /* > If NZC = -1, then a workspace query is assumed; the */
  693. /* > routine calculates the number of columns of the array Z that */
  694. /* > are needed to hold the eigenvectors. */
  695. /* > This value is returned as the first entry of the Z array, and */
  696. /* > no error message related to NZC is issued by XERBLA. */
  697. /* > \endverbatim */
  698. /* > */
  699. /* > \param[out] ISUPPZ */
  700. /* > \verbatim */
  701. /* > ISUPPZ is INTEGER array, dimension ( 2*f2cmax(1,M) ) */
  702. /* > The support of the eigenvectors in Z, i.e., the indices */
  703. /* > indicating the nonzero elements in Z. The i-th computed eigenvector */
  704. /* > is nonzero only in elements ISUPPZ( 2*i-1 ) through */
  705. /* > ISUPPZ( 2*i ). This is relevant in the case when the matrix */
  706. /* > is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0. */
  707. /* > \endverbatim */
  708. /* > */
  709. /* > \param[in,out] TRYRAC */
  710. /* > \verbatim */
  711. /* > TRYRAC is LOGICAL */
  712. /* > If TRYRAC = .TRUE., indicates that the code should check whether */
  713. /* > the tridiagonal matrix defines its eigenvalues to high relative */
  714. /* > accuracy. If so, the code uses relative-accuracy preserving */
  715. /* > algorithms that might be (a bit) slower depending on the matrix. */
  716. /* > If the matrix does not define its eigenvalues to high relative */
  717. /* > accuracy, the code can uses possibly faster algorithms. */
  718. /* > If TRYRAC = .FALSE., the code is not required to guarantee */
  719. /* > relatively accurate eigenvalues and can use the fastest possible */
  720. /* > techniques. */
  721. /* > On exit, a .TRUE. TRYRAC will be set to .FALSE. if the matrix */
  722. /* > does not define its eigenvalues to high relative accuracy. */
  723. /* > \endverbatim */
  724. /* > */
  725. /* > \param[out] WORK */
  726. /* > \verbatim */
  727. /* > WORK is REAL array, dimension (LWORK) */
  728. /* > On exit, if INFO = 0, WORK(1) returns the optimal */
  729. /* > (and minimal) LWORK. */
  730. /* > \endverbatim */
  731. /* > */
  732. /* > \param[in] LWORK */
  733. /* > \verbatim */
  734. /* > LWORK is INTEGER */
  735. /* > The dimension of the array WORK. LWORK >= f2cmax(1,18*N) */
  736. /* > if JOBZ = 'V', and LWORK >= f2cmax(1,12*N) if JOBZ = 'N'. */
  737. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  738. /* > only calculates the optimal size of the WORK array, returns */
  739. /* > this value as the first entry of the WORK array, and no error */
  740. /* > message related to LWORK is issued by XERBLA. */
  741. /* > \endverbatim */
  742. /* > */
  743. /* > \param[out] IWORK */
  744. /* > \verbatim */
  745. /* > IWORK is INTEGER array, dimension (LIWORK) */
  746. /* > On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
  747. /* > \endverbatim */
  748. /* > */
  749. /* > \param[in] LIWORK */
  750. /* > \verbatim */
  751. /* > LIWORK is INTEGER */
  752. /* > The dimension of the array IWORK. LIWORK >= f2cmax(1,10*N) */
  753. /* > if the eigenvectors are desired, and LIWORK >= f2cmax(1,8*N) */
  754. /* > if only the eigenvalues are to be computed. */
  755. /* > If LIWORK = -1, then a workspace query is assumed; the */
  756. /* > routine only calculates the optimal size of the IWORK array, */
  757. /* > returns this value as the first entry of the IWORK array, and */
  758. /* > no error message related to LIWORK is issued by XERBLA. */
  759. /* > \endverbatim */
  760. /* > */
  761. /* > \param[out] INFO */
  762. /* > \verbatim */
  763. /* > INFO is INTEGER */
  764. /* > On exit, INFO */
  765. /* > = 0: successful exit */
  766. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  767. /* > > 0: if INFO = 1X, internal error in SLARRE, */
  768. /* > if INFO = 2X, internal error in SLARRV. */
  769. /* > Here, the digit X = ABS( IINFO ) < 10, where IINFO is */
  770. /* > the nonzero error code returned by SLARRE or */
  771. /* > SLARRV, respectively. */
  772. /* > \endverbatim */
  773. /* Authors: */
  774. /* ======== */
  775. /* > \author Univ. of Tennessee */
  776. /* > \author Univ. of California Berkeley */
  777. /* > \author Univ. of Colorado Denver */
  778. /* > \author NAG Ltd. */
  779. /* > \date June 2016 */
  780. /* > \ingroup realOTHERcomputational */
  781. /* > \par Contributors: */
  782. /* ================== */
  783. /* > */
  784. /* > Beresford Parlett, University of California, Berkeley, USA \n */
  785. /* > Jim Demmel, University of California, Berkeley, USA \n */
  786. /* > Inderjit Dhillon, University of Texas, Austin, USA \n */
  787. /* > Osni Marques, LBNL/NERSC, USA \n */
  788. /* > Christof Voemel, University of California, Berkeley, USA */
  789. /* ===================================================================== */
  790. /* Subroutine */ int sstemr_(char *jobz, char *range, integer *n, real *d__,
  791. real *e, real *vl, real *vu, integer *il, integer *iu, integer *m,
  792. real *w, real *z__, integer *ldz, integer *nzc, integer *isuppz,
  793. logical *tryrac, real *work, integer *lwork, integer *iwork, integer *
  794. liwork, integer *info)
  795. {
  796. /* System generated locals */
  797. integer z_dim1, z_offset, i__1, i__2;
  798. real r__1, r__2;
  799. /* Local variables */
  800. integer indd, iend, jblk, wend;
  801. real rmin, rmax;
  802. integer itmp;
  803. real tnrm;
  804. integer inde2;
  805. extern /* Subroutine */ int slae2_(real *, real *, real *, real *, real *)
  806. ;
  807. integer itmp2;
  808. real rtol1, rtol2;
  809. integer i__, j;
  810. real scale;
  811. integer indgp;
  812. extern logical lsame_(char *, char *);
  813. integer iinfo;
  814. extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
  815. integer iindw, ilast, lwmin;
  816. extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
  817. integer *), sswap_(integer *, real *, integer *, real *, integer *
  818. );
  819. logical wantz;
  820. real r1, r2;
  821. extern /* Subroutine */ int slaev2_(real *, real *, real *, real *, real *
  822. , real *, real *);
  823. integer jj;
  824. real cs;
  825. integer in;
  826. logical alleig, indeig;
  827. integer ibegin, iindbl;
  828. real sn, wl;
  829. logical valeig;
  830. extern real slamch_(char *);
  831. integer wbegin;
  832. real safmin, wu;
  833. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  834. real bignum;
  835. integer inderr, iindwk, indgrs, offset;
  836. extern /* Subroutine */ int slarrc_(char *, integer *, real *, real *,
  837. real *, real *, real *, integer *, integer *, integer *, integer *
  838. ), slarre_(char *, integer *, real *, real *, integer *,
  839. integer *, real *, real *, real *, real *, real *, real *,
  840. integer *, integer *, integer *, real *, real *, real *, integer *
  841. , integer *, real *, real *, real *, integer *, integer *)
  842. ;
  843. real thresh;
  844. integer iinspl, indwrk, ifirst, liwmin, nzcmin;
  845. real pivmin;
  846. extern real slanst_(char *, integer *, real *, real *);
  847. extern /* Subroutine */ int slarrj_(integer *, real *, real *, integer *,
  848. integer *, real *, integer *, real *, real *, real *, integer *,
  849. real *, real *, integer *), slarrr_(integer *, real *, real *,
  850. integer *);
  851. integer nsplit;
  852. extern /* Subroutine */ int slarrv_(integer *, real *, real *, real *,
  853. real *, real *, integer *, integer *, integer *, integer *, real *
  854. , real *, real *, real *, real *, real *, integer *, integer *,
  855. real *, real *, integer *, integer *, real *, integer *, integer *
  856. );
  857. real smlnum;
  858. extern /* Subroutine */ int slasrt_(char *, integer *, real *, integer *);
  859. logical lquery, zquery;
  860. integer iil, iiu;
  861. real eps, tmp;
  862. /* -- LAPACK computational routine (version 3.7.1) -- */
  863. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  864. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  865. /* June 2016 */
  866. /* ===================================================================== */
  867. /* Test the input parameters. */
  868. /* Parameter adjustments */
  869. --d__;
  870. --e;
  871. --w;
  872. z_dim1 = *ldz;
  873. z_offset = 1 + z_dim1 * 1;
  874. z__ -= z_offset;
  875. --isuppz;
  876. --work;
  877. --iwork;
  878. /* Function Body */
  879. wantz = lsame_(jobz, "V");
  880. alleig = lsame_(range, "A");
  881. valeig = lsame_(range, "V");
  882. indeig = lsame_(range, "I");
  883. lquery = *lwork == -1 || *liwork == -1;
  884. zquery = *nzc == -1;
  885. /* SSTEMR needs WORK of size 6*N, IWORK of size 3*N. */
  886. /* In addition, SLARRE needs WORK of size 6*N, IWORK of size 5*N. */
  887. /* Furthermore, SLARRV needs WORK of size 12*N, IWORK of size 7*N. */
  888. if (wantz) {
  889. lwmin = *n * 18;
  890. liwmin = *n * 10;
  891. } else {
  892. /* need less workspace if only the eigenvalues are wanted */
  893. lwmin = *n * 12;
  894. liwmin = *n << 3;
  895. }
  896. wl = 0.f;
  897. wu = 0.f;
  898. iil = 0;
  899. iiu = 0;
  900. nsplit = 0;
  901. if (valeig) {
  902. /* We do not reference VL, VU in the cases RANGE = 'I','A' */
  903. /* The interval (WL, WU] contains all the wanted eigenvalues. */
  904. /* It is either given by the user or computed in SLARRE. */
  905. wl = *vl;
  906. wu = *vu;
  907. } else if (indeig) {
  908. /* We do not reference IL, IU in the cases RANGE = 'V','A' */
  909. iil = *il;
  910. iiu = *iu;
  911. }
  912. *info = 0;
  913. if (! (wantz || lsame_(jobz, "N"))) {
  914. *info = -1;
  915. } else if (! (alleig || valeig || indeig)) {
  916. *info = -2;
  917. } else if (*n < 0) {
  918. *info = -3;
  919. } else if (valeig && *n > 0 && wu <= wl) {
  920. *info = -7;
  921. } else if (indeig && (iil < 1 || iil > *n)) {
  922. *info = -8;
  923. } else if (indeig && (iiu < iil || iiu > *n)) {
  924. *info = -9;
  925. } else if (*ldz < 1 || wantz && *ldz < *n) {
  926. *info = -13;
  927. } else if (*lwork < lwmin && ! lquery) {
  928. *info = -17;
  929. } else if (*liwork < liwmin && ! lquery) {
  930. *info = -19;
  931. }
  932. /* Get machine constants. */
  933. safmin = slamch_("Safe minimum");
  934. eps = slamch_("Precision");
  935. smlnum = safmin / eps;
  936. bignum = 1.f / smlnum;
  937. rmin = sqrt(smlnum);
  938. /* Computing MIN */
  939. r__1 = sqrt(bignum), r__2 = 1.f / sqrt(sqrt(safmin));
  940. rmax = f2cmin(r__1,r__2);
  941. if (*info == 0) {
  942. work[1] = (real) lwmin;
  943. iwork[1] = liwmin;
  944. if (wantz && alleig) {
  945. nzcmin = *n;
  946. } else if (wantz && valeig) {
  947. slarrc_("T", n, vl, vu, &d__[1], &e[1], &safmin, &nzcmin, &itmp, &
  948. itmp2, info);
  949. } else if (wantz && indeig) {
  950. nzcmin = iiu - iil + 1;
  951. } else {
  952. /* WANTZ .EQ. FALSE. */
  953. nzcmin = 0;
  954. }
  955. if (zquery && *info == 0) {
  956. z__[z_dim1 + 1] = (real) nzcmin;
  957. } else if (*nzc < nzcmin && ! zquery) {
  958. *info = -14;
  959. }
  960. }
  961. if (*info != 0) {
  962. i__1 = -(*info);
  963. xerbla_("SSTEMR", &i__1, (ftnlen)6);
  964. return 0;
  965. } else if (lquery || zquery) {
  966. return 0;
  967. }
  968. /* Handle N = 0, 1, and 2 cases immediately */
  969. *m = 0;
  970. if (*n == 0) {
  971. return 0;
  972. }
  973. if (*n == 1) {
  974. if (alleig || indeig) {
  975. *m = 1;
  976. w[1] = d__[1];
  977. } else {
  978. if (wl < d__[1] && wu >= d__[1]) {
  979. *m = 1;
  980. w[1] = d__[1];
  981. }
  982. }
  983. if (wantz && ! zquery) {
  984. z__[z_dim1 + 1] = 1.f;
  985. isuppz[1] = 1;
  986. isuppz[2] = 1;
  987. }
  988. return 0;
  989. }
  990. if (*n == 2) {
  991. if (! wantz) {
  992. slae2_(&d__[1], &e[1], &d__[2], &r1, &r2);
  993. } else if (wantz && ! zquery) {
  994. slaev2_(&d__[1], &e[1], &d__[2], &r1, &r2, &cs, &sn);
  995. }
  996. if (alleig || valeig && r2 > wl && r2 <= wu || indeig && iil == 1) {
  997. ++(*m);
  998. w[*m] = r2;
  999. if (wantz && ! zquery) {
  1000. z__[*m * z_dim1 + 1] = -sn;
  1001. z__[*m * z_dim1 + 2] = cs;
  1002. /* Note: At most one of SN and CS can be zero. */
  1003. if (sn != 0.f) {
  1004. if (cs != 0.f) {
  1005. isuppz[(*m << 1) - 1] = 1;
  1006. isuppz[*m * 2] = 2;
  1007. } else {
  1008. isuppz[(*m << 1) - 1] = 1;
  1009. isuppz[*m * 2] = 1;
  1010. }
  1011. } else {
  1012. isuppz[(*m << 1) - 1] = 2;
  1013. isuppz[*m * 2] = 2;
  1014. }
  1015. }
  1016. }
  1017. if (alleig || valeig && r1 > wl && r1 <= wu || indeig && iiu == 2) {
  1018. ++(*m);
  1019. w[*m] = r1;
  1020. if (wantz && ! zquery) {
  1021. z__[*m * z_dim1 + 1] = cs;
  1022. z__[*m * z_dim1 + 2] = sn;
  1023. /* Note: At most one of SN and CS can be zero. */
  1024. if (sn != 0.f) {
  1025. if (cs != 0.f) {
  1026. isuppz[(*m << 1) - 1] = 1;
  1027. isuppz[*m * 2] = 2;
  1028. } else {
  1029. isuppz[(*m << 1) - 1] = 1;
  1030. isuppz[*m * 2] = 1;
  1031. }
  1032. } else {
  1033. isuppz[(*m << 1) - 1] = 2;
  1034. isuppz[*m * 2] = 2;
  1035. }
  1036. }
  1037. }
  1038. } else {
  1039. /* Continue with general N */
  1040. indgrs = 1;
  1041. inderr = (*n << 1) + 1;
  1042. indgp = *n * 3 + 1;
  1043. indd = (*n << 2) + 1;
  1044. inde2 = *n * 5 + 1;
  1045. indwrk = *n * 6 + 1;
  1046. iinspl = 1;
  1047. iindbl = *n + 1;
  1048. iindw = (*n << 1) + 1;
  1049. iindwk = *n * 3 + 1;
  1050. /* Scale matrix to allowable range, if necessary. */
  1051. /* The allowable range is related to the PIVMIN parameter; see the */
  1052. /* comments in SLARRD. The preference for scaling small values */
  1053. /* up is heuristic; we expect users' matrices not to be close to the */
  1054. /* RMAX threshold. */
  1055. scale = 1.f;
  1056. tnrm = slanst_("M", n, &d__[1], &e[1]);
  1057. if (tnrm > 0.f && tnrm < rmin) {
  1058. scale = rmin / tnrm;
  1059. } else if (tnrm > rmax) {
  1060. scale = rmax / tnrm;
  1061. }
  1062. if (scale != 1.f) {
  1063. sscal_(n, &scale, &d__[1], &c__1);
  1064. i__1 = *n - 1;
  1065. sscal_(&i__1, &scale, &e[1], &c__1);
  1066. tnrm *= scale;
  1067. if (valeig) {
  1068. /* If eigenvalues in interval have to be found, */
  1069. /* scale (WL, WU] accordingly */
  1070. wl *= scale;
  1071. wu *= scale;
  1072. }
  1073. }
  1074. /* Compute the desired eigenvalues of the tridiagonal after splitting */
  1075. /* into smaller subblocks if the corresponding off-diagonal elements */
  1076. /* are small */
  1077. /* THRESH is the splitting parameter for SLARRE */
  1078. /* A negative THRESH forces the old splitting criterion based on the */
  1079. /* size of the off-diagonal. A positive THRESH switches to splitting */
  1080. /* which preserves relative accuracy. */
  1081. if (*tryrac) {
  1082. /* Test whether the matrix warrants the more expensive relative approach. */
  1083. slarrr_(n, &d__[1], &e[1], &iinfo);
  1084. } else {
  1085. /* The user does not care about relative accurately eigenvalues */
  1086. iinfo = -1;
  1087. }
  1088. /* Set the splitting criterion */
  1089. if (iinfo == 0) {
  1090. thresh = eps;
  1091. } else {
  1092. thresh = -eps;
  1093. /* relative accuracy is desired but T does not guarantee it */
  1094. *tryrac = FALSE_;
  1095. }
  1096. if (*tryrac) {
  1097. /* Copy original diagonal, needed to guarantee relative accuracy */
  1098. scopy_(n, &d__[1], &c__1, &work[indd], &c__1);
  1099. }
  1100. /* Store the squares of the offdiagonal values of T */
  1101. i__1 = *n - 1;
  1102. for (j = 1; j <= i__1; ++j) {
  1103. /* Computing 2nd power */
  1104. r__1 = e[j];
  1105. work[inde2 + j - 1] = r__1 * r__1;
  1106. /* L5: */
  1107. }
  1108. /* Set the tolerance parameters for bisection */
  1109. if (! wantz) {
  1110. /* SLARRE computes the eigenvalues to full precision. */
  1111. rtol1 = eps * 4.f;
  1112. rtol2 = eps * 4.f;
  1113. } else {
  1114. /* SLARRE computes the eigenvalues to less than full precision. */
  1115. /* SLARRV will refine the eigenvalue approximations, and we can */
  1116. /* need less accurate initial bisection in SLARRE. */
  1117. /* Note: these settings do only affect the subset case and SLARRE */
  1118. /* Computing MAX */
  1119. r__1 = sqrt(eps) * .05f, r__2 = eps * 4.f;
  1120. rtol1 = f2cmax(r__1,r__2);
  1121. /* Computing MAX */
  1122. r__1 = sqrt(eps) * .005f, r__2 = eps * 4.f;
  1123. rtol2 = f2cmax(r__1,r__2);
  1124. }
  1125. slarre_(range, n, &wl, &wu, &iil, &iiu, &d__[1], &e[1], &work[inde2],
  1126. &rtol1, &rtol2, &thresh, &nsplit, &iwork[iinspl], m, &w[1], &
  1127. work[inderr], &work[indgp], &iwork[iindbl], &iwork[iindw], &
  1128. work[indgrs], &pivmin, &work[indwrk], &iwork[iindwk], &iinfo);
  1129. if (iinfo != 0) {
  1130. *info = abs(iinfo) + 10;
  1131. return 0;
  1132. }
  1133. /* Note that if RANGE .NE. 'V', SLARRE computes bounds on the desired */
  1134. /* part of the spectrum. All desired eigenvalues are contained in */
  1135. /* (WL,WU] */
  1136. if (wantz) {
  1137. /* Compute the desired eigenvectors corresponding to the computed */
  1138. /* eigenvalues */
  1139. slarrv_(n, &wl, &wu, &d__[1], &e[1], &pivmin, &iwork[iinspl], m, &
  1140. c__1, m, &c_b18, &rtol1, &rtol2, &w[1], &work[inderr], &
  1141. work[indgp], &iwork[iindbl], &iwork[iindw], &work[indgrs],
  1142. &z__[z_offset], ldz, &isuppz[1], &work[indwrk], &iwork[
  1143. iindwk], &iinfo);
  1144. if (iinfo != 0) {
  1145. *info = abs(iinfo) + 20;
  1146. return 0;
  1147. }
  1148. } else {
  1149. /* SLARRE computes eigenvalues of the (shifted) root representation */
  1150. /* SLARRV returns the eigenvalues of the unshifted matrix. */
  1151. /* However, if the eigenvectors are not desired by the user, we need */
  1152. /* to apply the corresponding shifts from SLARRE to obtain the */
  1153. /* eigenvalues of the original matrix. */
  1154. i__1 = *m;
  1155. for (j = 1; j <= i__1; ++j) {
  1156. itmp = iwork[iindbl + j - 1];
  1157. w[j] += e[iwork[iinspl + itmp - 1]];
  1158. /* L20: */
  1159. }
  1160. }
  1161. if (*tryrac) {
  1162. /* Refine computed eigenvalues so that they are relatively accurate */
  1163. /* with respect to the original matrix T. */
  1164. ibegin = 1;
  1165. wbegin = 1;
  1166. i__1 = iwork[iindbl + *m - 1];
  1167. for (jblk = 1; jblk <= i__1; ++jblk) {
  1168. iend = iwork[iinspl + jblk - 1];
  1169. in = iend - ibegin + 1;
  1170. wend = wbegin - 1;
  1171. /* check if any eigenvalues have to be refined in this block */
  1172. L36:
  1173. if (wend < *m) {
  1174. if (iwork[iindbl + wend] == jblk) {
  1175. ++wend;
  1176. goto L36;
  1177. }
  1178. }
  1179. if (wend < wbegin) {
  1180. ibegin = iend + 1;
  1181. goto L39;
  1182. }
  1183. offset = iwork[iindw + wbegin - 1] - 1;
  1184. ifirst = iwork[iindw + wbegin - 1];
  1185. ilast = iwork[iindw + wend - 1];
  1186. rtol2 = eps * 4.f;
  1187. slarrj_(&in, &work[indd + ibegin - 1], &work[inde2 + ibegin -
  1188. 1], &ifirst, &ilast, &rtol2, &offset, &w[wbegin], &
  1189. work[inderr + wbegin - 1], &work[indwrk], &iwork[
  1190. iindwk], &pivmin, &tnrm, &iinfo);
  1191. ibegin = iend + 1;
  1192. wbegin = wend + 1;
  1193. L39:
  1194. ;
  1195. }
  1196. }
  1197. /* If matrix was scaled, then rescale eigenvalues appropriately. */
  1198. if (scale != 1.f) {
  1199. r__1 = 1.f / scale;
  1200. sscal_(m, &r__1, &w[1], &c__1);
  1201. }
  1202. }
  1203. /* If eigenvalues are not in increasing order, then sort them, */
  1204. /* possibly along with eigenvectors. */
  1205. if (nsplit > 1 || *n == 2) {
  1206. if (! wantz) {
  1207. slasrt_("I", m, &w[1], &iinfo);
  1208. if (iinfo != 0) {
  1209. *info = 3;
  1210. return 0;
  1211. }
  1212. } else {
  1213. i__1 = *m - 1;
  1214. for (j = 1; j <= i__1; ++j) {
  1215. i__ = 0;
  1216. tmp = w[j];
  1217. i__2 = *m;
  1218. for (jj = j + 1; jj <= i__2; ++jj) {
  1219. if (w[jj] < tmp) {
  1220. i__ = jj;
  1221. tmp = w[jj];
  1222. }
  1223. /* L50: */
  1224. }
  1225. if (i__ != 0) {
  1226. w[i__] = w[j];
  1227. w[j] = tmp;
  1228. if (wantz) {
  1229. sswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j *
  1230. z_dim1 + 1], &c__1);
  1231. itmp = isuppz[(i__ << 1) - 1];
  1232. isuppz[(i__ << 1) - 1] = isuppz[(j << 1) - 1];
  1233. isuppz[(j << 1) - 1] = itmp;
  1234. itmp = isuppz[i__ * 2];
  1235. isuppz[i__ * 2] = isuppz[j * 2];
  1236. isuppz[j * 2] = itmp;
  1237. }
  1238. }
  1239. /* L60: */
  1240. }
  1241. }
  1242. }
  1243. work[1] = (real) lwmin;
  1244. iwork[1] = liwmin;
  1245. return 0;
  1246. /* End of SSTEMR */
  1247. } /* sstemr_ */