You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sgelsy.c 31 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static integer c_n1 = -1;
  488. static integer c__0 = 0;
  489. static real c_b31 = 0.f;
  490. static integer c__2 = 2;
  491. static real c_b54 = 1.f;
  492. /* > \brief <b> SGELSY solves overdetermined or underdetermined systems for GE matrices</b> */
  493. /* =========== DOCUMENTATION =========== */
  494. /* Online html documentation available at */
  495. /* http://www.netlib.org/lapack/explore-html/ */
  496. /* > \htmlonly */
  497. /* > Download SGELSY + dependencies */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgelsy.
  499. f"> */
  500. /* > [TGZ]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgelsy.
  502. f"> */
  503. /* > [ZIP]</a> */
  504. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgelsy.
  505. f"> */
  506. /* > [TXT]</a> */
  507. /* > \endhtmlonly */
  508. /* Definition: */
  509. /* =========== */
  510. /* SUBROUTINE SGELSY( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK, */
  511. /* WORK, LWORK, INFO ) */
  512. /* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK */
  513. /* REAL RCOND */
  514. /* INTEGER JPVT( * ) */
  515. /* REAL A( LDA, * ), B( LDB, * ), WORK( * ) */
  516. /* > \par Purpose: */
  517. /* ============= */
  518. /* > */
  519. /* > \verbatim */
  520. /* > */
  521. /* > SGELSY computes the minimum-norm solution to a real linear least */
  522. /* > squares problem: */
  523. /* > minimize || A * X - B || */
  524. /* > using a complete orthogonal factorization of A. A is an M-by-N */
  525. /* > matrix which may be rank-deficient. */
  526. /* > */
  527. /* > Several right hand side vectors b and solution vectors x can be */
  528. /* > handled in a single call; they are stored as the columns of the */
  529. /* > M-by-NRHS right hand side matrix B and the N-by-NRHS solution */
  530. /* > matrix X. */
  531. /* > */
  532. /* > The routine first computes a QR factorization with column pivoting: */
  533. /* > A * P = Q * [ R11 R12 ] */
  534. /* > [ 0 R22 ] */
  535. /* > with R11 defined as the largest leading submatrix whose estimated */
  536. /* > condition number is less than 1/RCOND. The order of R11, RANK, */
  537. /* > is the effective rank of A. */
  538. /* > */
  539. /* > Then, R22 is considered to be negligible, and R12 is annihilated */
  540. /* > by orthogonal transformations from the right, arriving at the */
  541. /* > complete orthogonal factorization: */
  542. /* > A * P = Q * [ T11 0 ] * Z */
  543. /* > [ 0 0 ] */
  544. /* > The minimum-norm solution is then */
  545. /* > X = P * Z**T [ inv(T11)*Q1**T*B ] */
  546. /* > [ 0 ] */
  547. /* > where Q1 consists of the first RANK columns of Q. */
  548. /* > */
  549. /* > This routine is basically identical to the original xGELSX except */
  550. /* > three differences: */
  551. /* > o The call to the subroutine xGEQPF has been substituted by the */
  552. /* > the call to the subroutine xGEQP3. This subroutine is a Blas-3 */
  553. /* > version of the QR factorization with column pivoting. */
  554. /* > o Matrix B (the right hand side) is updated with Blas-3. */
  555. /* > o The permutation of matrix B (the right hand side) is faster and */
  556. /* > more simple. */
  557. /* > \endverbatim */
  558. /* Arguments: */
  559. /* ========== */
  560. /* > \param[in] M */
  561. /* > \verbatim */
  562. /* > M is INTEGER */
  563. /* > The number of rows of the matrix A. M >= 0. */
  564. /* > \endverbatim */
  565. /* > */
  566. /* > \param[in] N */
  567. /* > \verbatim */
  568. /* > N is INTEGER */
  569. /* > The number of columns of the matrix A. N >= 0. */
  570. /* > \endverbatim */
  571. /* > */
  572. /* > \param[in] NRHS */
  573. /* > \verbatim */
  574. /* > NRHS is INTEGER */
  575. /* > The number of right hand sides, i.e., the number of */
  576. /* > columns of matrices B and X. NRHS >= 0. */
  577. /* > \endverbatim */
  578. /* > */
  579. /* > \param[in,out] A */
  580. /* > \verbatim */
  581. /* > A is REAL array, dimension (LDA,N) */
  582. /* > On entry, the M-by-N matrix A. */
  583. /* > On exit, A has been overwritten by details of its */
  584. /* > complete orthogonal factorization. */
  585. /* > \endverbatim */
  586. /* > */
  587. /* > \param[in] LDA */
  588. /* > \verbatim */
  589. /* > LDA is INTEGER */
  590. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  591. /* > \endverbatim */
  592. /* > */
  593. /* > \param[in,out] B */
  594. /* > \verbatim */
  595. /* > B is REAL array, dimension (LDB,NRHS) */
  596. /* > On entry, the M-by-NRHS right hand side matrix B. */
  597. /* > On exit, the N-by-NRHS solution matrix X. */
  598. /* > \endverbatim */
  599. /* > */
  600. /* > \param[in] LDB */
  601. /* > \verbatim */
  602. /* > LDB is INTEGER */
  603. /* > The leading dimension of the array B. LDB >= f2cmax(1,M,N). */
  604. /* > \endverbatim */
  605. /* > */
  606. /* > \param[in,out] JPVT */
  607. /* > \verbatim */
  608. /* > JPVT is INTEGER array, dimension (N) */
  609. /* > On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted */
  610. /* > to the front of AP, otherwise column i is a free column. */
  611. /* > On exit, if JPVT(i) = k, then the i-th column of AP */
  612. /* > was the k-th column of A. */
  613. /* > \endverbatim */
  614. /* > */
  615. /* > \param[in] RCOND */
  616. /* > \verbatim */
  617. /* > RCOND is REAL */
  618. /* > RCOND is used to determine the effective rank of A, which */
  619. /* > is defined as the order of the largest leading triangular */
  620. /* > submatrix R11 in the QR factorization with pivoting of A, */
  621. /* > whose estimated condition number < 1/RCOND. */
  622. /* > \endverbatim */
  623. /* > */
  624. /* > \param[out] RANK */
  625. /* > \verbatim */
  626. /* > RANK is INTEGER */
  627. /* > The effective rank of A, i.e., the order of the submatrix */
  628. /* > R11. This is the same as the order of the submatrix T11 */
  629. /* > in the complete orthogonal factorization of A. */
  630. /* > \endverbatim */
  631. /* > */
  632. /* > \param[out] WORK */
  633. /* > \verbatim */
  634. /* > WORK is REAL array, dimension (MAX(1,LWORK)) */
  635. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  636. /* > \endverbatim */
  637. /* > */
  638. /* > \param[in] LWORK */
  639. /* > \verbatim */
  640. /* > LWORK is INTEGER */
  641. /* > The dimension of the array WORK. */
  642. /* > The unblocked strategy requires that: */
  643. /* > LWORK >= MAX( MN+3*N+1, 2*MN+NRHS ), */
  644. /* > where MN = f2cmin( M, N ). */
  645. /* > The block algorithm requires that: */
  646. /* > LWORK >= MAX( MN+2*N+NB*(N+1), 2*MN+NB*NRHS ), */
  647. /* > where NB is an upper bound on the blocksize returned */
  648. /* > by ILAENV for the routines SGEQP3, STZRZF, STZRQF, SORMQR, */
  649. /* > and SORMRZ. */
  650. /* > */
  651. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  652. /* > only calculates the optimal size of the WORK array, returns */
  653. /* > this value as the first entry of the WORK array, and no error */
  654. /* > message related to LWORK is issued by XERBLA. */
  655. /* > \endverbatim */
  656. /* > */
  657. /* > \param[out] INFO */
  658. /* > \verbatim */
  659. /* > INFO is INTEGER */
  660. /* > = 0: successful exit */
  661. /* > < 0: If INFO = -i, the i-th argument had an illegal value. */
  662. /* > \endverbatim */
  663. /* Authors: */
  664. /* ======== */
  665. /* > \author Univ. of Tennessee */
  666. /* > \author Univ. of California Berkeley */
  667. /* > \author Univ. of Colorado Denver */
  668. /* > \author NAG Ltd. */
  669. /* > \date December 2016 */
  670. /* > \ingroup realGEsolve */
  671. /* > \par Contributors: */
  672. /* ================== */
  673. /* > */
  674. /* > A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA \n */
  675. /* > E. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain \n */
  676. /* > G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain \n */
  677. /* > */
  678. /* ===================================================================== */
  679. /* Subroutine */ int sgelsy_(integer *m, integer *n, integer *nrhs, real *a,
  680. integer *lda, real *b, integer *ldb, integer *jpvt, real *rcond,
  681. integer *rank, real *work, integer *lwork, integer *info)
  682. {
  683. /* System generated locals */
  684. integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;
  685. real r__1, r__2;
  686. /* Local variables */
  687. real anrm, bnrm, smin, smax;
  688. integer i__, j, iascl, ibscl, ismin, ismax;
  689. real c1, c2;
  690. extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
  691. integer *);
  692. real wsize, s1, s2;
  693. extern /* Subroutine */ int strsm_(char *, char *, char *, char *,
  694. integer *, integer *, real *, real *, integer *, real *, integer *
  695. ), slaic1_(integer *, integer *,
  696. real *, real *, real *, real *, real *, real *, real *), sgeqp3_(
  697. integer *, integer *, real *, integer *, integer *, real *, real *
  698. , integer *, integer *);
  699. integer nb;
  700. extern /* Subroutine */ int slabad_(real *, real *);
  701. integer mn;
  702. extern real slamch_(char *), slange_(char *, integer *, integer *,
  703. real *, integer *, real *);
  704. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  705. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  706. integer *, integer *, ftnlen, ftnlen);
  707. real bignum;
  708. extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *,
  709. real *, integer *, integer *, real *, integer *, integer *), slaset_(char *, integer *, integer *, real *, real *,
  710. real *, integer *);
  711. integer lwkmin, nb1, nb2, nb3, nb4;
  712. real sminpr, smaxpr, smlnum;
  713. integer lwkopt;
  714. logical lquery;
  715. extern /* Subroutine */ int sormqr_(char *, char *, integer *, integer *,
  716. integer *, real *, integer *, real *, real *, integer *, real *,
  717. integer *, integer *), sormrz_(char *, char *,
  718. integer *, integer *, integer *, integer *, real *, integer *,
  719. real *, real *, integer *, real *, integer *, integer *), stzrzf_(integer *, integer *, real *, integer *, real *,
  720. real *, integer *, integer *);
  721. /* -- LAPACK driver routine (version 3.7.0) -- */
  722. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  723. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  724. /* December 2016 */
  725. /* ===================================================================== */
  726. /* Parameter adjustments */
  727. a_dim1 = *lda;
  728. a_offset = 1 + a_dim1 * 1;
  729. a -= a_offset;
  730. b_dim1 = *ldb;
  731. b_offset = 1 + b_dim1 * 1;
  732. b -= b_offset;
  733. --jpvt;
  734. --work;
  735. /* Function Body */
  736. mn = f2cmin(*m,*n);
  737. ismin = mn + 1;
  738. ismax = (mn << 1) + 1;
  739. /* Test the input arguments. */
  740. *info = 0;
  741. lquery = *lwork == -1;
  742. if (*m < 0) {
  743. *info = -1;
  744. } else if (*n < 0) {
  745. *info = -2;
  746. } else if (*nrhs < 0) {
  747. *info = -3;
  748. } else if (*lda < f2cmax(1,*m)) {
  749. *info = -5;
  750. } else /* if(complicated condition) */ {
  751. /* Computing MAX */
  752. i__1 = f2cmax(1,*m);
  753. if (*ldb < f2cmax(i__1,*n)) {
  754. *info = -7;
  755. }
  756. }
  757. /* Figure out optimal block size */
  758. if (*info == 0) {
  759. if (mn == 0 || *nrhs == 0) {
  760. lwkmin = 1;
  761. lwkopt = 1;
  762. } else {
  763. nb1 = ilaenv_(&c__1, "SGEQRF", " ", m, n, &c_n1, &c_n1, (ftnlen)6,
  764. (ftnlen)1);
  765. nb2 = ilaenv_(&c__1, "SGERQF", " ", m, n, &c_n1, &c_n1, (ftnlen)6,
  766. (ftnlen)1);
  767. nb3 = ilaenv_(&c__1, "SORMQR", " ", m, n, nrhs, &c_n1, (ftnlen)6,
  768. (ftnlen)1);
  769. nb4 = ilaenv_(&c__1, "SORMRQ", " ", m, n, nrhs, &c_n1, (ftnlen)6,
  770. (ftnlen)1);
  771. /* Computing MAX */
  772. i__1 = f2cmax(nb1,nb2), i__1 = f2cmax(i__1,nb3);
  773. nb = f2cmax(i__1,nb4);
  774. /* Computing MAX */
  775. i__1 = mn << 1, i__2 = *n + 1, i__1 = f2cmax(i__1,i__2), i__2 = mn +
  776. *nrhs;
  777. lwkmin = mn + f2cmax(i__1,i__2);
  778. /* Computing MAX */
  779. i__1 = lwkmin, i__2 = mn + (*n << 1) + nb * (*n + 1), i__1 = f2cmax(
  780. i__1,i__2), i__2 = (mn << 1) + nb * *nrhs;
  781. lwkopt = f2cmax(i__1,i__2);
  782. }
  783. work[1] = (real) lwkopt;
  784. if (*lwork < lwkmin && ! lquery) {
  785. *info = -12;
  786. }
  787. }
  788. if (*info != 0) {
  789. i__1 = -(*info);
  790. xerbla_("SGELSY", &i__1, (ftnlen)6);
  791. return 0;
  792. } else if (lquery) {
  793. return 0;
  794. }
  795. /* Quick return if possible */
  796. if (mn == 0 || *nrhs == 0) {
  797. *rank = 0;
  798. return 0;
  799. }
  800. /* Get machine parameters */
  801. smlnum = slamch_("S") / slamch_("P");
  802. bignum = 1.f / smlnum;
  803. slabad_(&smlnum, &bignum);
  804. /* Scale A, B if f2cmax entries outside range [SMLNUM,BIGNUM] */
  805. anrm = slange_("M", m, n, &a[a_offset], lda, &work[1]);
  806. iascl = 0;
  807. if (anrm > 0.f && anrm < smlnum) {
  808. /* Scale matrix norm up to SMLNUM */
  809. slascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
  810. info);
  811. iascl = 1;
  812. } else if (anrm > bignum) {
  813. /* Scale matrix norm down to BIGNUM */
  814. slascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
  815. info);
  816. iascl = 2;
  817. } else if (anrm == 0.f) {
  818. /* Matrix all zero. Return zero solution. */
  819. i__1 = f2cmax(*m,*n);
  820. slaset_("F", &i__1, nrhs, &c_b31, &c_b31, &b[b_offset], ldb);
  821. *rank = 0;
  822. goto L70;
  823. }
  824. bnrm = slange_("M", m, nrhs, &b[b_offset], ldb, &work[1]);
  825. ibscl = 0;
  826. if (bnrm > 0.f && bnrm < smlnum) {
  827. /* Scale matrix norm up to SMLNUM */
  828. slascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
  829. info);
  830. ibscl = 1;
  831. } else if (bnrm > bignum) {
  832. /* Scale matrix norm down to BIGNUM */
  833. slascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
  834. info);
  835. ibscl = 2;
  836. }
  837. /* Compute QR factorization with column pivoting of A: */
  838. /* A * P = Q * R */
  839. i__1 = *lwork - mn;
  840. sgeqp3_(m, n, &a[a_offset], lda, &jpvt[1], &work[1], &work[mn + 1], &i__1,
  841. info);
  842. wsize = mn + work[mn + 1];
  843. /* workspace: MN+2*N+NB*(N+1). */
  844. /* Details of Householder rotations stored in WORK(1:MN). */
  845. /* Determine RANK using incremental condition estimation */
  846. work[ismin] = 1.f;
  847. work[ismax] = 1.f;
  848. smax = (r__1 = a[a_dim1 + 1], abs(r__1));
  849. smin = smax;
  850. if ((r__1 = a[a_dim1 + 1], abs(r__1)) == 0.f) {
  851. *rank = 0;
  852. i__1 = f2cmax(*m,*n);
  853. slaset_("F", &i__1, nrhs, &c_b31, &c_b31, &b[b_offset], ldb);
  854. goto L70;
  855. } else {
  856. *rank = 1;
  857. }
  858. L10:
  859. if (*rank < mn) {
  860. i__ = *rank + 1;
  861. slaic1_(&c__2, rank, &work[ismin], &smin, &a[i__ * a_dim1 + 1], &a[
  862. i__ + i__ * a_dim1], &sminpr, &s1, &c1);
  863. slaic1_(&c__1, rank, &work[ismax], &smax, &a[i__ * a_dim1 + 1], &a[
  864. i__ + i__ * a_dim1], &smaxpr, &s2, &c2);
  865. if (smaxpr * *rcond <= sminpr) {
  866. i__1 = *rank;
  867. for (i__ = 1; i__ <= i__1; ++i__) {
  868. work[ismin + i__ - 1] = s1 * work[ismin + i__ - 1];
  869. work[ismax + i__ - 1] = s2 * work[ismax + i__ - 1];
  870. /* L20: */
  871. }
  872. work[ismin + *rank] = c1;
  873. work[ismax + *rank] = c2;
  874. smin = sminpr;
  875. smax = smaxpr;
  876. ++(*rank);
  877. goto L10;
  878. }
  879. }
  880. /* workspace: 3*MN. */
  881. /* Logically partition R = [ R11 R12 ] */
  882. /* [ 0 R22 ] */
  883. /* where R11 = R(1:RANK,1:RANK) */
  884. /* [R11,R12] = [ T11, 0 ] * Y */
  885. if (*rank < *n) {
  886. i__1 = *lwork - (mn << 1);
  887. stzrzf_(rank, n, &a[a_offset], lda, &work[mn + 1], &work[(mn << 1) +
  888. 1], &i__1, info);
  889. }
  890. /* workspace: 2*MN. */
  891. /* Details of Householder rotations stored in WORK(MN+1:2*MN) */
  892. /* B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS) */
  893. i__1 = *lwork - (mn << 1);
  894. sormqr_("Left", "Transpose", m, nrhs, &mn, &a[a_offset], lda, &work[1], &
  895. b[b_offset], ldb, &work[(mn << 1) + 1], &i__1, info);
  896. /* Computing MAX */
  897. r__1 = wsize, r__2 = (mn << 1) + work[(mn << 1) + 1];
  898. wsize = f2cmax(r__1,r__2);
  899. /* workspace: 2*MN+NB*NRHS. */
  900. /* B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS) */
  901. strsm_("Left", "Upper", "No transpose", "Non-unit", rank, nrhs, &c_b54, &
  902. a[a_offset], lda, &b[b_offset], ldb);
  903. i__1 = *nrhs;
  904. for (j = 1; j <= i__1; ++j) {
  905. i__2 = *n;
  906. for (i__ = *rank + 1; i__ <= i__2; ++i__) {
  907. b[i__ + j * b_dim1] = 0.f;
  908. /* L30: */
  909. }
  910. /* L40: */
  911. }
  912. /* B(1:N,1:NRHS) := Y**T * B(1:N,1:NRHS) */
  913. if (*rank < *n) {
  914. i__1 = *n - *rank;
  915. i__2 = *lwork - (mn << 1);
  916. sormrz_("Left", "Transpose", n, nrhs, rank, &i__1, &a[a_offset], lda,
  917. &work[mn + 1], &b[b_offset], ldb, &work[(mn << 1) + 1], &i__2,
  918. info);
  919. }
  920. /* workspace: 2*MN+NRHS. */
  921. /* B(1:N,1:NRHS) := P * B(1:N,1:NRHS) */
  922. i__1 = *nrhs;
  923. for (j = 1; j <= i__1; ++j) {
  924. i__2 = *n;
  925. for (i__ = 1; i__ <= i__2; ++i__) {
  926. work[jpvt[i__]] = b[i__ + j * b_dim1];
  927. /* L50: */
  928. }
  929. scopy_(n, &work[1], &c__1, &b[j * b_dim1 + 1], &c__1);
  930. /* L60: */
  931. }
  932. /* workspace: N. */
  933. /* Undo scaling */
  934. if (iascl == 1) {
  935. slascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
  936. info);
  937. slascl_("U", &c__0, &c__0, &smlnum, &anrm, rank, rank, &a[a_offset],
  938. lda, info);
  939. } else if (iascl == 2) {
  940. slascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
  941. info);
  942. slascl_("U", &c__0, &c__0, &bignum, &anrm, rank, rank, &a[a_offset],
  943. lda, info);
  944. }
  945. if (ibscl == 1) {
  946. slascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
  947. info);
  948. } else if (ibscl == 2) {
  949. slascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
  950. info);
  951. }
  952. L70:
  953. work[1] = (real) lwkopt;
  954. return 0;
  955. /* End of SGELSY */
  956. } /* sgelsy_ */