You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dsfrk.c 30 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* > \brief \b DSFRK performs a symmetric rank-k operation for matrix in RFP format. */
  486. /* =========== DOCUMENTATION =========== */
  487. /* Online html documentation available at */
  488. /* http://www.netlib.org/lapack/explore-html/ */
  489. /* > \htmlonly */
  490. /* > Download DSFRK + dependencies */
  491. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsfrk.f
  492. "> */
  493. /* > [TGZ]</a> */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsfrk.f
  495. "> */
  496. /* > [ZIP]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsfrk.f
  498. "> */
  499. /* > [TXT]</a> */
  500. /* > \endhtmlonly */
  501. /* Definition: */
  502. /* =========== */
  503. /* SUBROUTINE DSFRK( TRANSR, UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, */
  504. /* C ) */
  505. /* DOUBLE PRECISION ALPHA, BETA */
  506. /* INTEGER K, LDA, N */
  507. /* CHARACTER TRANS, TRANSR, UPLO */
  508. /* DOUBLE PRECISION A( LDA, * ), C( * ) */
  509. /* > \par Purpose: */
  510. /* ============= */
  511. /* > */
  512. /* > \verbatim */
  513. /* > */
  514. /* > Level 3 BLAS like routine for C in RFP Format. */
  515. /* > */
  516. /* > DSFRK performs one of the symmetric rank--k operations */
  517. /* > */
  518. /* > C := alpha*A*A**T + beta*C, */
  519. /* > */
  520. /* > or */
  521. /* > */
  522. /* > C := alpha*A**T*A + beta*C, */
  523. /* > */
  524. /* > where alpha and beta are real scalars, C is an n--by--n symmetric */
  525. /* > matrix and A is an n--by--k matrix in the first case and a k--by--n */
  526. /* > matrix in the second case. */
  527. /* > \endverbatim */
  528. /* Arguments: */
  529. /* ========== */
  530. /* > \param[in] TRANSR */
  531. /* > \verbatim */
  532. /* > TRANSR is CHARACTER*1 */
  533. /* > = 'N': The Normal Form of RFP A is stored; */
  534. /* > = 'T': The Transpose Form of RFP A is stored. */
  535. /* > \endverbatim */
  536. /* > */
  537. /* > \param[in] UPLO */
  538. /* > \verbatim */
  539. /* > UPLO is CHARACTER*1 */
  540. /* > On entry, UPLO specifies whether the upper or lower */
  541. /* > triangular part of the array C is to be referenced as */
  542. /* > follows: */
  543. /* > */
  544. /* > UPLO = 'U' or 'u' Only the upper triangular part of C */
  545. /* > is to be referenced. */
  546. /* > */
  547. /* > UPLO = 'L' or 'l' Only the lower triangular part of C */
  548. /* > is to be referenced. */
  549. /* > */
  550. /* > Unchanged on exit. */
  551. /* > \endverbatim */
  552. /* > */
  553. /* > \param[in] TRANS */
  554. /* > \verbatim */
  555. /* > TRANS is CHARACTER*1 */
  556. /* > On entry, TRANS specifies the operation to be performed as */
  557. /* > follows: */
  558. /* > */
  559. /* > TRANS = 'N' or 'n' C := alpha*A*A**T + beta*C. */
  560. /* > */
  561. /* > TRANS = 'T' or 't' C := alpha*A**T*A + beta*C. */
  562. /* > */
  563. /* > Unchanged on exit. */
  564. /* > \endverbatim */
  565. /* > */
  566. /* > \param[in] N */
  567. /* > \verbatim */
  568. /* > N is INTEGER */
  569. /* > On entry, N specifies the order of the matrix C. N must be */
  570. /* > at least zero. */
  571. /* > Unchanged on exit. */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[in] K */
  575. /* > \verbatim */
  576. /* > K is INTEGER */
  577. /* > On entry with TRANS = 'N' or 'n', K specifies the number */
  578. /* > of columns of the matrix A, and on entry with TRANS = 'T' */
  579. /* > or 't', K specifies the number of rows of the matrix A. K */
  580. /* > must be at least zero. */
  581. /* > Unchanged on exit. */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in] ALPHA */
  585. /* > \verbatim */
  586. /* > ALPHA is DOUBLE PRECISION */
  587. /* > On entry, ALPHA specifies the scalar alpha. */
  588. /* > Unchanged on exit. */
  589. /* > \endverbatim */
  590. /* > */
  591. /* > \param[in] A */
  592. /* > \verbatim */
  593. /* > A is DOUBLE PRECISION array, dimension (LDA,ka) */
  594. /* > where KA */
  595. /* > is K when TRANS = 'N' or 'n', and is N otherwise. Before */
  596. /* > entry with TRANS = 'N' or 'n', the leading N--by--K part of */
  597. /* > the array A must contain the matrix A, otherwise the leading */
  598. /* > K--by--N part of the array A must contain the matrix A. */
  599. /* > Unchanged on exit. */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[in] LDA */
  603. /* > \verbatim */
  604. /* > LDA is INTEGER */
  605. /* > On entry, LDA specifies the first dimension of A as declared */
  606. /* > in the calling (sub) program. When TRANS = 'N' or 'n' */
  607. /* > then LDA must be at least f2cmax( 1, n ), otherwise LDA must */
  608. /* > be at least f2cmax( 1, k ). */
  609. /* > Unchanged on exit. */
  610. /* > \endverbatim */
  611. /* > */
  612. /* > \param[in] BETA */
  613. /* > \verbatim */
  614. /* > BETA is DOUBLE PRECISION */
  615. /* > On entry, BETA specifies the scalar beta. */
  616. /* > Unchanged on exit. */
  617. /* > \endverbatim */
  618. /* > */
  619. /* > \param[in,out] C */
  620. /* > \verbatim */
  621. /* > C is DOUBLE PRECISION array, dimension (NT) */
  622. /* > NT = N*(N+1)/2. On entry, the symmetric matrix C in RFP */
  623. /* > Format. RFP Format is described by TRANSR, UPLO and N. */
  624. /* > \endverbatim */
  625. /* Authors: */
  626. /* ======== */
  627. /* > \author Univ. of Tennessee */
  628. /* > \author Univ. of California Berkeley */
  629. /* > \author Univ. of Colorado Denver */
  630. /* > \author NAG Ltd. */
  631. /* > \date December 2016 */
  632. /* > \ingroup doubleOTHERcomputational */
  633. /* ===================================================================== */
  634. /* Subroutine */ int dsfrk_(char *transr, char *uplo, char *trans, integer *n,
  635. integer *k, doublereal *alpha, doublereal *a, integer *lda,
  636. doublereal *beta, doublereal *c__)
  637. {
  638. /* System generated locals */
  639. integer a_dim1, a_offset, i__1;
  640. /* Local variables */
  641. integer info, j;
  642. logical normaltransr;
  643. extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
  644. integer *, doublereal *, doublereal *, integer *, doublereal *,
  645. integer *, doublereal *, doublereal *, integer *);
  646. extern logical lsame_(char *, char *);
  647. integer nrowa;
  648. logical lower;
  649. extern /* Subroutine */ int dsyrk_(char *, char *, integer *, integer *,
  650. doublereal *, doublereal *, integer *, doublereal *, doublereal *,
  651. integer *);
  652. integer n1, n2, nk;
  653. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  654. logical nisodd, notrans;
  655. /* -- LAPACK computational routine (version 3.7.0) -- */
  656. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  657. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  658. /* December 2016 */
  659. /* ===================================================================== */
  660. /* Test the input parameters. */
  661. /* Parameter adjustments */
  662. a_dim1 = *lda;
  663. a_offset = 1 + a_dim1 * 1;
  664. a -= a_offset;
  665. --c__;
  666. /* Function Body */
  667. info = 0;
  668. normaltransr = lsame_(transr, "N");
  669. lower = lsame_(uplo, "L");
  670. notrans = lsame_(trans, "N");
  671. if (notrans) {
  672. nrowa = *n;
  673. } else {
  674. nrowa = *k;
  675. }
  676. if (! normaltransr && ! lsame_(transr, "T")) {
  677. info = -1;
  678. } else if (! lower && ! lsame_(uplo, "U")) {
  679. info = -2;
  680. } else if (! notrans && ! lsame_(trans, "T")) {
  681. info = -3;
  682. } else if (*n < 0) {
  683. info = -4;
  684. } else if (*k < 0) {
  685. info = -5;
  686. } else if (*lda < f2cmax(1,nrowa)) {
  687. info = -8;
  688. }
  689. if (info != 0) {
  690. i__1 = -info;
  691. xerbla_("DSFRK ", &i__1, (ftnlen)6);
  692. return 0;
  693. }
  694. /* Quick return if possible. */
  695. /* The quick return case: ((ALPHA.EQ.0).AND.(BETA.NE.ZERO)) is not */
  696. /* done (it is in DSYRK for example) and left in the general case. */
  697. if (*n == 0 || (*alpha == 0. || *k == 0) && *beta == 1.) {
  698. return 0;
  699. }
  700. if (*alpha == 0. && *beta == 0.) {
  701. i__1 = *n * (*n + 1) / 2;
  702. for (j = 1; j <= i__1; ++j) {
  703. c__[j] = 0.;
  704. }
  705. return 0;
  706. }
  707. /* C is N-by-N. */
  708. /* If N is odd, set NISODD = .TRUE., and N1 and N2. */
  709. /* If N is even, NISODD = .FALSE., and NK. */
  710. if (*n % 2 == 0) {
  711. nisodd = FALSE_;
  712. nk = *n / 2;
  713. } else {
  714. nisodd = TRUE_;
  715. if (lower) {
  716. n2 = *n / 2;
  717. n1 = *n - n2;
  718. } else {
  719. n1 = *n / 2;
  720. n2 = *n - n1;
  721. }
  722. }
  723. if (nisodd) {
  724. /* N is odd */
  725. if (normaltransr) {
  726. /* N is odd and TRANSR = 'N' */
  727. if (lower) {
  728. /* N is odd, TRANSR = 'N', and UPLO = 'L' */
  729. if (notrans) {
  730. /* N is odd, TRANSR = 'N', UPLO = 'L', and TRANS = 'N' */
  731. dsyrk_("L", "N", &n1, k, alpha, &a[a_dim1 + 1], lda, beta,
  732. &c__[1], n);
  733. dsyrk_("U", "N", &n2, k, alpha, &a[n1 + 1 + a_dim1], lda,
  734. beta, &c__[*n + 1], n);
  735. dgemm_("N", "T", &n2, &n1, k, alpha, &a[n1 + 1 + a_dim1],
  736. lda, &a[a_dim1 + 1], lda, beta, &c__[n1 + 1], n);
  737. } else {
  738. /* N is odd, TRANSR = 'N', UPLO = 'L', and TRANS = 'T' */
  739. dsyrk_("L", "T", &n1, k, alpha, &a[a_dim1 + 1], lda, beta,
  740. &c__[1], n);
  741. dsyrk_("U", "T", &n2, k, alpha, &a[(n1 + 1) * a_dim1 + 1],
  742. lda, beta, &c__[*n + 1], n)
  743. ;
  744. dgemm_("T", "N", &n2, &n1, k, alpha, &a[(n1 + 1) * a_dim1
  745. + 1], lda, &a[a_dim1 + 1], lda, beta, &c__[n1 + 1]
  746. , n);
  747. }
  748. } else {
  749. /* N is odd, TRANSR = 'N', and UPLO = 'U' */
  750. if (notrans) {
  751. /* N is odd, TRANSR = 'N', UPLO = 'U', and TRANS = 'N' */
  752. dsyrk_("L", "N", &n1, k, alpha, &a[a_dim1 + 1], lda, beta,
  753. &c__[n2 + 1], n);
  754. dsyrk_("U", "N", &n2, k, alpha, &a[n2 + a_dim1], lda,
  755. beta, &c__[n1 + 1], n);
  756. dgemm_("N", "T", &n1, &n2, k, alpha, &a[a_dim1 + 1], lda,
  757. &a[n2 + a_dim1], lda, beta, &c__[1], n);
  758. } else {
  759. /* N is odd, TRANSR = 'N', UPLO = 'U', and TRANS = 'T' */
  760. dsyrk_("L", "T", &n1, k, alpha, &a[a_dim1 + 1], lda, beta,
  761. &c__[n2 + 1], n);
  762. dsyrk_("U", "T", &n2, k, alpha, &a[n2 * a_dim1 + 1], lda,
  763. beta, &c__[n1 + 1], n);
  764. dgemm_("T", "N", &n1, &n2, k, alpha, &a[a_dim1 + 1], lda,
  765. &a[n2 * a_dim1 + 1], lda, beta, &c__[1], n);
  766. }
  767. }
  768. } else {
  769. /* N is odd, and TRANSR = 'T' */
  770. if (lower) {
  771. /* N is odd, TRANSR = 'T', and UPLO = 'L' */
  772. if (notrans) {
  773. /* N is odd, TRANSR = 'T', UPLO = 'L', and TRANS = 'N' */
  774. dsyrk_("U", "N", &n1, k, alpha, &a[a_dim1 + 1], lda, beta,
  775. &c__[1], &n1);
  776. dsyrk_("L", "N", &n2, k, alpha, &a[n1 + 1 + a_dim1], lda,
  777. beta, &c__[2], &n1);
  778. dgemm_("N", "T", &n1, &n2, k, alpha, &a[a_dim1 + 1], lda,
  779. &a[n1 + 1 + a_dim1], lda, beta, &c__[n1 * n1 + 1],
  780. &n1);
  781. } else {
  782. /* N is odd, TRANSR = 'T', UPLO = 'L', and TRANS = 'T' */
  783. dsyrk_("U", "T", &n1, k, alpha, &a[a_dim1 + 1], lda, beta,
  784. &c__[1], &n1);
  785. dsyrk_("L", "T", &n2, k, alpha, &a[(n1 + 1) * a_dim1 + 1],
  786. lda, beta, &c__[2], &n1);
  787. dgemm_("T", "N", &n1, &n2, k, alpha, &a[a_dim1 + 1], lda,
  788. &a[(n1 + 1) * a_dim1 + 1], lda, beta, &c__[n1 *
  789. n1 + 1], &n1);
  790. }
  791. } else {
  792. /* N is odd, TRANSR = 'T', and UPLO = 'U' */
  793. if (notrans) {
  794. /* N is odd, TRANSR = 'T', UPLO = 'U', and TRANS = 'N' */
  795. dsyrk_("U", "N", &n1, k, alpha, &a[a_dim1 + 1], lda, beta,
  796. &c__[n2 * n2 + 1], &n2);
  797. dsyrk_("L", "N", &n2, k, alpha, &a[n1 + 1 + a_dim1], lda,
  798. beta, &c__[n1 * n2 + 1], &n2);
  799. dgemm_("N", "T", &n2, &n1, k, alpha, &a[n1 + 1 + a_dim1],
  800. lda, &a[a_dim1 + 1], lda, beta, &c__[1], &n2);
  801. } else {
  802. /* N is odd, TRANSR = 'T', UPLO = 'U', and TRANS = 'T' */
  803. dsyrk_("U", "T", &n1, k, alpha, &a[a_dim1 + 1], lda, beta,
  804. &c__[n2 * n2 + 1], &n2);
  805. dsyrk_("L", "T", &n2, k, alpha, &a[(n1 + 1) * a_dim1 + 1],
  806. lda, beta, &c__[n1 * n2 + 1], &n2);
  807. dgemm_("T", "N", &n2, &n1, k, alpha, &a[(n1 + 1) * a_dim1
  808. + 1], lda, &a[a_dim1 + 1], lda, beta, &c__[1], &
  809. n2);
  810. }
  811. }
  812. }
  813. } else {
  814. /* N is even */
  815. if (normaltransr) {
  816. /* N is even and TRANSR = 'N' */
  817. if (lower) {
  818. /* N is even, TRANSR = 'N', and UPLO = 'L' */
  819. if (notrans) {
  820. /* N is even, TRANSR = 'N', UPLO = 'L', and TRANS = 'N' */
  821. i__1 = *n + 1;
  822. dsyrk_("L", "N", &nk, k, alpha, &a[a_dim1 + 1], lda, beta,
  823. &c__[2], &i__1);
  824. i__1 = *n + 1;
  825. dsyrk_("U", "N", &nk, k, alpha, &a[nk + 1 + a_dim1], lda,
  826. beta, &c__[1], &i__1);
  827. i__1 = *n + 1;
  828. dgemm_("N", "T", &nk, &nk, k, alpha, &a[nk + 1 + a_dim1],
  829. lda, &a[a_dim1 + 1], lda, beta, &c__[nk + 2], &
  830. i__1);
  831. } else {
  832. /* N is even, TRANSR = 'N', UPLO = 'L', and TRANS = 'T' */
  833. i__1 = *n + 1;
  834. dsyrk_("L", "T", &nk, k, alpha, &a[a_dim1 + 1], lda, beta,
  835. &c__[2], &i__1);
  836. i__1 = *n + 1;
  837. dsyrk_("U", "T", &nk, k, alpha, &a[(nk + 1) * a_dim1 + 1],
  838. lda, beta, &c__[1], &i__1);
  839. i__1 = *n + 1;
  840. dgemm_("T", "N", &nk, &nk, k, alpha, &a[(nk + 1) * a_dim1
  841. + 1], lda, &a[a_dim1 + 1], lda, beta, &c__[nk + 2]
  842. , &i__1);
  843. }
  844. } else {
  845. /* N is even, TRANSR = 'N', and UPLO = 'U' */
  846. if (notrans) {
  847. /* N is even, TRANSR = 'N', UPLO = 'U', and TRANS = 'N' */
  848. i__1 = *n + 1;
  849. dsyrk_("L", "N", &nk, k, alpha, &a[a_dim1 + 1], lda, beta,
  850. &c__[nk + 2], &i__1);
  851. i__1 = *n + 1;
  852. dsyrk_("U", "N", &nk, k, alpha, &a[nk + 1 + a_dim1], lda,
  853. beta, &c__[nk + 1], &i__1);
  854. i__1 = *n + 1;
  855. dgemm_("N", "T", &nk, &nk, k, alpha, &a[a_dim1 + 1], lda,
  856. &a[nk + 1 + a_dim1], lda, beta, &c__[1], &i__1);
  857. } else {
  858. /* N is even, TRANSR = 'N', UPLO = 'U', and TRANS = 'T' */
  859. i__1 = *n + 1;
  860. dsyrk_("L", "T", &nk, k, alpha, &a[a_dim1 + 1], lda, beta,
  861. &c__[nk + 2], &i__1);
  862. i__1 = *n + 1;
  863. dsyrk_("U", "T", &nk, k, alpha, &a[(nk + 1) * a_dim1 + 1],
  864. lda, beta, &c__[nk + 1], &i__1);
  865. i__1 = *n + 1;
  866. dgemm_("T", "N", &nk, &nk, k, alpha, &a[a_dim1 + 1], lda,
  867. &a[(nk + 1) * a_dim1 + 1], lda, beta, &c__[1], &
  868. i__1);
  869. }
  870. }
  871. } else {
  872. /* N is even, and TRANSR = 'T' */
  873. if (lower) {
  874. /* N is even, TRANSR = 'T', and UPLO = 'L' */
  875. if (notrans) {
  876. /* N is even, TRANSR = 'T', UPLO = 'L', and TRANS = 'N' */
  877. dsyrk_("U", "N", &nk, k, alpha, &a[a_dim1 + 1], lda, beta,
  878. &c__[nk + 1], &nk);
  879. dsyrk_("L", "N", &nk, k, alpha, &a[nk + 1 + a_dim1], lda,
  880. beta, &c__[1], &nk);
  881. dgemm_("N", "T", &nk, &nk, k, alpha, &a[a_dim1 + 1], lda,
  882. &a[nk + 1 + a_dim1], lda, beta, &c__[(nk + 1) *
  883. nk + 1], &nk);
  884. } else {
  885. /* N is even, TRANSR = 'T', UPLO = 'L', and TRANS = 'T' */
  886. dsyrk_("U", "T", &nk, k, alpha, &a[a_dim1 + 1], lda, beta,
  887. &c__[nk + 1], &nk);
  888. dsyrk_("L", "T", &nk, k, alpha, &a[(nk + 1) * a_dim1 + 1],
  889. lda, beta, &c__[1], &nk);
  890. dgemm_("T", "N", &nk, &nk, k, alpha, &a[a_dim1 + 1], lda,
  891. &a[(nk + 1) * a_dim1 + 1], lda, beta, &c__[(nk +
  892. 1) * nk + 1], &nk);
  893. }
  894. } else {
  895. /* N is even, TRANSR = 'T', and UPLO = 'U' */
  896. if (notrans) {
  897. /* N is even, TRANSR = 'T', UPLO = 'U', and TRANS = 'N' */
  898. dsyrk_("U", "N", &nk, k, alpha, &a[a_dim1 + 1], lda, beta,
  899. &c__[nk * (nk + 1) + 1], &nk);
  900. dsyrk_("L", "N", &nk, k, alpha, &a[nk + 1 + a_dim1], lda,
  901. beta, &c__[nk * nk + 1], &nk);
  902. dgemm_("N", "T", &nk, &nk, k, alpha, &a[nk + 1 + a_dim1],
  903. lda, &a[a_dim1 + 1], lda, beta, &c__[1], &nk);
  904. } else {
  905. /* N is even, TRANSR = 'T', UPLO = 'U', and TRANS = 'T' */
  906. dsyrk_("U", "T", &nk, k, alpha, &a[a_dim1 + 1], lda, beta,
  907. &c__[nk * (nk + 1) + 1], &nk);
  908. dsyrk_("L", "T", &nk, k, alpha, &a[(nk + 1) * a_dim1 + 1],
  909. lda, beta, &c__[nk * nk + 1], &nk);
  910. dgemm_("T", "N", &nk, &nk, k, alpha, &a[(nk + 1) * a_dim1
  911. + 1], lda, &a[a_dim1 + 1], lda, beta, &c__[1], &
  912. nk);
  913. }
  914. }
  915. }
  916. }
  917. return 0;
  918. /* End of DSFRK */
  919. } /* dsfrk_ */