You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

csteqr.c 30 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static complex c_b1 = {0.f,0.f};
  487. static complex c_b2 = {1.f,0.f};
  488. static integer c__0 = 0;
  489. static integer c__1 = 1;
  490. static integer c__2 = 2;
  491. static real c_b41 = 1.f;
  492. /* > \brief \b CSTEQR */
  493. /* =========== DOCUMENTATION =========== */
  494. /* Online html documentation available at */
  495. /* http://www.netlib.org/lapack/explore-html/ */
  496. /* > \htmlonly */
  497. /* > Download CSTEQR + dependencies */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/csteqr.
  499. f"> */
  500. /* > [TGZ]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/csteqr.
  502. f"> */
  503. /* > [ZIP]</a> */
  504. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/csteqr.
  505. f"> */
  506. /* > [TXT]</a> */
  507. /* > \endhtmlonly */
  508. /* Definition: */
  509. /* =========== */
  510. /* SUBROUTINE CSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO ) */
  511. /* CHARACTER COMPZ */
  512. /* INTEGER INFO, LDZ, N */
  513. /* REAL D( * ), E( * ), WORK( * ) */
  514. /* COMPLEX Z( LDZ, * ) */
  515. /* > \par Purpose: */
  516. /* ============= */
  517. /* > */
  518. /* > \verbatim */
  519. /* > */
  520. /* > CSTEQR computes all eigenvalues and, optionally, eigenvectors of a */
  521. /* > symmetric tridiagonal matrix using the implicit QL or QR method. */
  522. /* > The eigenvectors of a full or band complex Hermitian matrix can also */
  523. /* > be found if CHETRD or CHPTRD or CHBTRD has been used to reduce this */
  524. /* > matrix to tridiagonal form. */
  525. /* > \endverbatim */
  526. /* Arguments: */
  527. /* ========== */
  528. /* > \param[in] COMPZ */
  529. /* > \verbatim */
  530. /* > COMPZ is CHARACTER*1 */
  531. /* > = 'N': Compute eigenvalues only. */
  532. /* > = 'V': Compute eigenvalues and eigenvectors of the original */
  533. /* > Hermitian matrix. On entry, Z must contain the */
  534. /* > unitary matrix used to reduce the original matrix */
  535. /* > to tridiagonal form. */
  536. /* > = 'I': Compute eigenvalues and eigenvectors of the */
  537. /* > tridiagonal matrix. Z is initialized to the identity */
  538. /* > matrix. */
  539. /* > \endverbatim */
  540. /* > */
  541. /* > \param[in] N */
  542. /* > \verbatim */
  543. /* > N is INTEGER */
  544. /* > The order of the matrix. N >= 0. */
  545. /* > \endverbatim */
  546. /* > */
  547. /* > \param[in,out] D */
  548. /* > \verbatim */
  549. /* > D is REAL array, dimension (N) */
  550. /* > On entry, the diagonal elements of the tridiagonal matrix. */
  551. /* > On exit, if INFO = 0, the eigenvalues in ascending order. */
  552. /* > \endverbatim */
  553. /* > */
  554. /* > \param[in,out] E */
  555. /* > \verbatim */
  556. /* > E is REAL array, dimension (N-1) */
  557. /* > On entry, the (n-1) subdiagonal elements of the tridiagonal */
  558. /* > matrix. */
  559. /* > On exit, E has been destroyed. */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in,out] Z */
  563. /* > \verbatim */
  564. /* > Z is COMPLEX array, dimension (LDZ, N) */
  565. /* > On entry, if COMPZ = 'V', then Z contains the unitary */
  566. /* > matrix used in the reduction to tridiagonal form. */
  567. /* > On exit, if INFO = 0, then if COMPZ = 'V', Z contains the */
  568. /* > orthonormal eigenvectors of the original Hermitian matrix, */
  569. /* > and if COMPZ = 'I', Z contains the orthonormal eigenvectors */
  570. /* > of the symmetric tridiagonal matrix. */
  571. /* > If COMPZ = 'N', then Z is not referenced. */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[in] LDZ */
  575. /* > \verbatim */
  576. /* > LDZ is INTEGER */
  577. /* > The leading dimension of the array Z. LDZ >= 1, and if */
  578. /* > eigenvectors are desired, then LDZ >= f2cmax(1,N). */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[out] WORK */
  582. /* > \verbatim */
  583. /* > WORK is REAL array, dimension (f2cmax(1,2*N-2)) */
  584. /* > If COMPZ = 'N', then WORK is not referenced. */
  585. /* > \endverbatim */
  586. /* > */
  587. /* > \param[out] INFO */
  588. /* > \verbatim */
  589. /* > INFO is INTEGER */
  590. /* > = 0: successful exit */
  591. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  592. /* > > 0: the algorithm has failed to find all the eigenvalues in */
  593. /* > a total of 30*N iterations; if INFO = i, then i */
  594. /* > elements of E have not converged to zero; on exit, D */
  595. /* > and E contain the elements of a symmetric tridiagonal */
  596. /* > matrix which is unitarily similar to the original */
  597. /* > matrix. */
  598. /* > \endverbatim */
  599. /* Authors: */
  600. /* ======== */
  601. /* > \author Univ. of Tennessee */
  602. /* > \author Univ. of California Berkeley */
  603. /* > \author Univ. of Colorado Denver */
  604. /* > \author NAG Ltd. */
  605. /* > \date December 2016 */
  606. /* > \ingroup complexOTHERcomputational */
  607. /* ===================================================================== */
  608. /* Subroutine */ int csteqr_(char *compz, integer *n, real *d__, real *e,
  609. complex *z__, integer *ldz, real *work, integer *info)
  610. {
  611. /* System generated locals */
  612. integer z_dim1, z_offset, i__1, i__2;
  613. real r__1, r__2;
  614. /* Local variables */
  615. integer lend, jtot;
  616. extern /* Subroutine */ int slae2_(real *, real *, real *, real *, real *)
  617. ;
  618. real b, c__, f, g;
  619. integer i__, j, k, l, m;
  620. real p, r__, s;
  621. extern logical lsame_(char *, char *);
  622. extern /* Subroutine */ int clasr_(char *, char *, char *, integer *,
  623. integer *, real *, real *, complex *, integer *);
  624. real anorm;
  625. extern /* Subroutine */ int cswap_(integer *, complex *, integer *,
  626. complex *, integer *);
  627. integer l1, lendm1, lendp1;
  628. extern /* Subroutine */ int slaev2_(real *, real *, real *, real *, real *
  629. , real *, real *);
  630. extern real slapy2_(real *, real *);
  631. integer ii, mm, iscale;
  632. extern real slamch_(char *);
  633. extern /* Subroutine */ int claset_(char *, integer *, integer *, complex
  634. *, complex *, complex *, integer *);
  635. real safmin;
  636. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  637. real safmax;
  638. extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *,
  639. real *, integer *, integer *, real *, integer *, integer *);
  640. integer lendsv;
  641. extern /* Subroutine */ int slartg_(real *, real *, real *, real *, real *
  642. );
  643. real ssfmin;
  644. integer nmaxit, icompz;
  645. real ssfmax;
  646. extern real slanst_(char *, integer *, real *, real *);
  647. extern /* Subroutine */ int slasrt_(char *, integer *, real *, integer *);
  648. integer lm1, mm1, nm1;
  649. real rt1, rt2, eps;
  650. integer lsv;
  651. real tst, eps2;
  652. /* -- LAPACK computational routine (version 3.7.0) -- */
  653. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  654. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  655. /* December 2016 */
  656. /* ===================================================================== */
  657. /* Test the input parameters. */
  658. /* Parameter adjustments */
  659. --d__;
  660. --e;
  661. z_dim1 = *ldz;
  662. z_offset = 1 + z_dim1 * 1;
  663. z__ -= z_offset;
  664. --work;
  665. /* Function Body */
  666. *info = 0;
  667. if (lsame_(compz, "N")) {
  668. icompz = 0;
  669. } else if (lsame_(compz, "V")) {
  670. icompz = 1;
  671. } else if (lsame_(compz, "I")) {
  672. icompz = 2;
  673. } else {
  674. icompz = -1;
  675. }
  676. if (icompz < 0) {
  677. *info = -1;
  678. } else if (*n < 0) {
  679. *info = -2;
  680. } else if (*ldz < 1 || icompz > 0 && *ldz < f2cmax(1,*n)) {
  681. *info = -6;
  682. }
  683. if (*info != 0) {
  684. i__1 = -(*info);
  685. xerbla_("CSTEQR", &i__1, (ftnlen)6);
  686. return 0;
  687. }
  688. /* Quick return if possible */
  689. if (*n == 0) {
  690. return 0;
  691. }
  692. if (*n == 1) {
  693. if (icompz == 2) {
  694. i__1 = z_dim1 + 1;
  695. z__[i__1].r = 1.f, z__[i__1].i = 0.f;
  696. }
  697. return 0;
  698. }
  699. /* Determine the unit roundoff and over/underflow thresholds. */
  700. eps = slamch_("E");
  701. /* Computing 2nd power */
  702. r__1 = eps;
  703. eps2 = r__1 * r__1;
  704. safmin = slamch_("S");
  705. safmax = 1.f / safmin;
  706. ssfmax = sqrt(safmax) / 3.f;
  707. ssfmin = sqrt(safmin) / eps2;
  708. /* Compute the eigenvalues and eigenvectors of the tridiagonal */
  709. /* matrix. */
  710. if (icompz == 2) {
  711. claset_("Full", n, n, &c_b1, &c_b2, &z__[z_offset], ldz);
  712. }
  713. nmaxit = *n * 30;
  714. jtot = 0;
  715. /* Determine where the matrix splits and choose QL or QR iteration */
  716. /* for each block, according to whether top or bottom diagonal */
  717. /* element is smaller. */
  718. l1 = 1;
  719. nm1 = *n - 1;
  720. L10:
  721. if (l1 > *n) {
  722. goto L160;
  723. }
  724. if (l1 > 1) {
  725. e[l1 - 1] = 0.f;
  726. }
  727. if (l1 <= nm1) {
  728. i__1 = nm1;
  729. for (m = l1; m <= i__1; ++m) {
  730. tst = (r__1 = e[m], abs(r__1));
  731. if (tst == 0.f) {
  732. goto L30;
  733. }
  734. if (tst <= sqrt((r__1 = d__[m], abs(r__1))) * sqrt((r__2 = d__[m
  735. + 1], abs(r__2))) * eps) {
  736. e[m] = 0.f;
  737. goto L30;
  738. }
  739. /* L20: */
  740. }
  741. }
  742. m = *n;
  743. L30:
  744. l = l1;
  745. lsv = l;
  746. lend = m;
  747. lendsv = lend;
  748. l1 = m + 1;
  749. if (lend == l) {
  750. goto L10;
  751. }
  752. /* Scale submatrix in rows and columns L to LEND */
  753. i__1 = lend - l + 1;
  754. anorm = slanst_("I", &i__1, &d__[l], &e[l]);
  755. iscale = 0;
  756. if (anorm == 0.f) {
  757. goto L10;
  758. }
  759. if (anorm > ssfmax) {
  760. iscale = 1;
  761. i__1 = lend - l + 1;
  762. slascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &d__[l], n,
  763. info);
  764. i__1 = lend - l;
  765. slascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &e[l], n,
  766. info);
  767. } else if (anorm < ssfmin) {
  768. iscale = 2;
  769. i__1 = lend - l + 1;
  770. slascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &d__[l], n,
  771. info);
  772. i__1 = lend - l;
  773. slascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &e[l], n,
  774. info);
  775. }
  776. /* Choose between QL and QR iteration */
  777. if ((r__1 = d__[lend], abs(r__1)) < (r__2 = d__[l], abs(r__2))) {
  778. lend = lsv;
  779. l = lendsv;
  780. }
  781. if (lend > l) {
  782. /* QL Iteration */
  783. /* Look for small subdiagonal element. */
  784. L40:
  785. if (l != lend) {
  786. lendm1 = lend - 1;
  787. i__1 = lendm1;
  788. for (m = l; m <= i__1; ++m) {
  789. /* Computing 2nd power */
  790. r__2 = (r__1 = e[m], abs(r__1));
  791. tst = r__2 * r__2;
  792. if (tst <= eps2 * (r__1 = d__[m], abs(r__1)) * (r__2 = d__[m
  793. + 1], abs(r__2)) + safmin) {
  794. goto L60;
  795. }
  796. /* L50: */
  797. }
  798. }
  799. m = lend;
  800. L60:
  801. if (m < lend) {
  802. e[m] = 0.f;
  803. }
  804. p = d__[l];
  805. if (m == l) {
  806. goto L80;
  807. }
  808. /* If remaining matrix is 2-by-2, use SLAE2 or SLAEV2 */
  809. /* to compute its eigensystem. */
  810. if (m == l + 1) {
  811. if (icompz > 0) {
  812. slaev2_(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2, &c__, &s);
  813. work[l] = c__;
  814. work[*n - 1 + l] = s;
  815. clasr_("R", "V", "B", n, &c__2, &work[l], &work[*n - 1 + l], &
  816. z__[l * z_dim1 + 1], ldz);
  817. } else {
  818. slae2_(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2);
  819. }
  820. d__[l] = rt1;
  821. d__[l + 1] = rt2;
  822. e[l] = 0.f;
  823. l += 2;
  824. if (l <= lend) {
  825. goto L40;
  826. }
  827. goto L140;
  828. }
  829. if (jtot == nmaxit) {
  830. goto L140;
  831. }
  832. ++jtot;
  833. /* Form shift. */
  834. g = (d__[l + 1] - p) / (e[l] * 2.f);
  835. r__ = slapy2_(&g, &c_b41);
  836. g = d__[m] - p + e[l] / (g + r_sign(&r__, &g));
  837. s = 1.f;
  838. c__ = 1.f;
  839. p = 0.f;
  840. /* Inner loop */
  841. mm1 = m - 1;
  842. i__1 = l;
  843. for (i__ = mm1; i__ >= i__1; --i__) {
  844. f = s * e[i__];
  845. b = c__ * e[i__];
  846. slartg_(&g, &f, &c__, &s, &r__);
  847. if (i__ != m - 1) {
  848. e[i__ + 1] = r__;
  849. }
  850. g = d__[i__ + 1] - p;
  851. r__ = (d__[i__] - g) * s + c__ * 2.f * b;
  852. p = s * r__;
  853. d__[i__ + 1] = g + p;
  854. g = c__ * r__ - b;
  855. /* If eigenvectors are desired, then save rotations. */
  856. if (icompz > 0) {
  857. work[i__] = c__;
  858. work[*n - 1 + i__] = -s;
  859. }
  860. /* L70: */
  861. }
  862. /* If eigenvectors are desired, then apply saved rotations. */
  863. if (icompz > 0) {
  864. mm = m - l + 1;
  865. clasr_("R", "V", "B", n, &mm, &work[l], &work[*n - 1 + l], &z__[l
  866. * z_dim1 + 1], ldz);
  867. }
  868. d__[l] -= p;
  869. e[l] = g;
  870. goto L40;
  871. /* Eigenvalue found. */
  872. L80:
  873. d__[l] = p;
  874. ++l;
  875. if (l <= lend) {
  876. goto L40;
  877. }
  878. goto L140;
  879. } else {
  880. /* QR Iteration */
  881. /* Look for small superdiagonal element. */
  882. L90:
  883. if (l != lend) {
  884. lendp1 = lend + 1;
  885. i__1 = lendp1;
  886. for (m = l; m >= i__1; --m) {
  887. /* Computing 2nd power */
  888. r__2 = (r__1 = e[m - 1], abs(r__1));
  889. tst = r__2 * r__2;
  890. if (tst <= eps2 * (r__1 = d__[m], abs(r__1)) * (r__2 = d__[m
  891. - 1], abs(r__2)) + safmin) {
  892. goto L110;
  893. }
  894. /* L100: */
  895. }
  896. }
  897. m = lend;
  898. L110:
  899. if (m > lend) {
  900. e[m - 1] = 0.f;
  901. }
  902. p = d__[l];
  903. if (m == l) {
  904. goto L130;
  905. }
  906. /* If remaining matrix is 2-by-2, use SLAE2 or SLAEV2 */
  907. /* to compute its eigensystem. */
  908. if (m == l - 1) {
  909. if (icompz > 0) {
  910. slaev2_(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2, &c__, &s)
  911. ;
  912. work[m] = c__;
  913. work[*n - 1 + m] = s;
  914. clasr_("R", "V", "F", n, &c__2, &work[m], &work[*n - 1 + m], &
  915. z__[(l - 1) * z_dim1 + 1], ldz);
  916. } else {
  917. slae2_(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2);
  918. }
  919. d__[l - 1] = rt1;
  920. d__[l] = rt2;
  921. e[l - 1] = 0.f;
  922. l += -2;
  923. if (l >= lend) {
  924. goto L90;
  925. }
  926. goto L140;
  927. }
  928. if (jtot == nmaxit) {
  929. goto L140;
  930. }
  931. ++jtot;
  932. /* Form shift. */
  933. g = (d__[l - 1] - p) / (e[l - 1] * 2.f);
  934. r__ = slapy2_(&g, &c_b41);
  935. g = d__[m] - p + e[l - 1] / (g + r_sign(&r__, &g));
  936. s = 1.f;
  937. c__ = 1.f;
  938. p = 0.f;
  939. /* Inner loop */
  940. lm1 = l - 1;
  941. i__1 = lm1;
  942. for (i__ = m; i__ <= i__1; ++i__) {
  943. f = s * e[i__];
  944. b = c__ * e[i__];
  945. slartg_(&g, &f, &c__, &s, &r__);
  946. if (i__ != m) {
  947. e[i__ - 1] = r__;
  948. }
  949. g = d__[i__] - p;
  950. r__ = (d__[i__ + 1] - g) * s + c__ * 2.f * b;
  951. p = s * r__;
  952. d__[i__] = g + p;
  953. g = c__ * r__ - b;
  954. /* If eigenvectors are desired, then save rotations. */
  955. if (icompz > 0) {
  956. work[i__] = c__;
  957. work[*n - 1 + i__] = s;
  958. }
  959. /* L120: */
  960. }
  961. /* If eigenvectors are desired, then apply saved rotations. */
  962. if (icompz > 0) {
  963. mm = l - m + 1;
  964. clasr_("R", "V", "F", n, &mm, &work[m], &work[*n - 1 + m], &z__[m
  965. * z_dim1 + 1], ldz);
  966. }
  967. d__[l] -= p;
  968. e[lm1] = g;
  969. goto L90;
  970. /* Eigenvalue found. */
  971. L130:
  972. d__[l] = p;
  973. --l;
  974. if (l >= lend) {
  975. goto L90;
  976. }
  977. goto L140;
  978. }
  979. /* Undo scaling if necessary */
  980. L140:
  981. if (iscale == 1) {
  982. i__1 = lendsv - lsv + 1;
  983. slascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &d__[lsv],
  984. n, info);
  985. i__1 = lendsv - lsv;
  986. slascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &e[lsv], n,
  987. info);
  988. } else if (iscale == 2) {
  989. i__1 = lendsv - lsv + 1;
  990. slascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &d__[lsv],
  991. n, info);
  992. i__1 = lendsv - lsv;
  993. slascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &e[lsv], n,
  994. info);
  995. }
  996. /* Check for no convergence to an eigenvalue after a total */
  997. /* of N*MAXIT iterations. */
  998. if (jtot == nmaxit) {
  999. i__1 = *n - 1;
  1000. for (i__ = 1; i__ <= i__1; ++i__) {
  1001. if (e[i__] != 0.f) {
  1002. ++(*info);
  1003. }
  1004. /* L150: */
  1005. }
  1006. return 0;
  1007. }
  1008. goto L10;
  1009. /* Order eigenvalues and eigenvectors. */
  1010. L160:
  1011. if (icompz == 0) {
  1012. /* Use Quick Sort */
  1013. slasrt_("I", n, &d__[1], info);
  1014. } else {
  1015. /* Use Selection Sort to minimize swaps of eigenvectors */
  1016. i__1 = *n;
  1017. for (ii = 2; ii <= i__1; ++ii) {
  1018. i__ = ii - 1;
  1019. k = i__;
  1020. p = d__[i__];
  1021. i__2 = *n;
  1022. for (j = ii; j <= i__2; ++j) {
  1023. if (d__[j] < p) {
  1024. k = j;
  1025. p = d__[j];
  1026. }
  1027. /* L170: */
  1028. }
  1029. if (k != i__) {
  1030. d__[k] = d__[i__];
  1031. d__[i__] = p;
  1032. cswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[k * z_dim1 + 1],
  1033. &c__1);
  1034. }
  1035. /* L180: */
  1036. }
  1037. }
  1038. return 0;
  1039. /* End of CSTEQR */
  1040. } /* csteqr_ */