You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clalsd.c 38 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static complex c_b1 = {0.f,0.f};
  487. static integer c__1 = 1;
  488. static integer c__0 = 0;
  489. static real c_b10 = 1.f;
  490. static real c_b35 = 0.f;
  491. /* > \brief \b CLALSD uses the singular value decomposition of A to solve the least squares problem. */
  492. /* =========== DOCUMENTATION =========== */
  493. /* Online html documentation available at */
  494. /* http://www.netlib.org/lapack/explore-html/ */
  495. /* > \htmlonly */
  496. /* > Download CLALSD + dependencies */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clalsd.
  498. f"> */
  499. /* > [TGZ]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clalsd.
  501. f"> */
  502. /* > [ZIP]</a> */
  503. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clalsd.
  504. f"> */
  505. /* > [TXT]</a> */
  506. /* > \endhtmlonly */
  507. /* Definition: */
  508. /* =========== */
  509. /* SUBROUTINE CLALSD( UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND, */
  510. /* RANK, WORK, RWORK, IWORK, INFO ) */
  511. /* CHARACTER UPLO */
  512. /* INTEGER INFO, LDB, N, NRHS, RANK, SMLSIZ */
  513. /* REAL RCOND */
  514. /* INTEGER IWORK( * ) */
  515. /* REAL D( * ), E( * ), RWORK( * ) */
  516. /* COMPLEX B( LDB, * ), WORK( * ) */
  517. /* > \par Purpose: */
  518. /* ============= */
  519. /* > */
  520. /* > \verbatim */
  521. /* > */
  522. /* > CLALSD uses the singular value decomposition of A to solve the least */
  523. /* > squares problem of finding X to minimize the Euclidean norm of each */
  524. /* > column of A*X-B, where A is N-by-N upper bidiagonal, and X and B */
  525. /* > are N-by-NRHS. The solution X overwrites B. */
  526. /* > */
  527. /* > The singular values of A smaller than RCOND times the largest */
  528. /* > singular value are treated as zero in solving the least squares */
  529. /* > problem; in this case a minimum norm solution is returned. */
  530. /* > The actual singular values are returned in D in ascending order. */
  531. /* > */
  532. /* > This code makes very mild assumptions about floating point */
  533. /* > arithmetic. It will work on machines with a guard digit in */
  534. /* > add/subtract, or on those binary machines without guard digits */
  535. /* > which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. */
  536. /* > It could conceivably fail on hexadecimal or decimal machines */
  537. /* > without guard digits, but we know of none. */
  538. /* > \endverbatim */
  539. /* Arguments: */
  540. /* ========== */
  541. /* > \param[in] UPLO */
  542. /* > \verbatim */
  543. /* > UPLO is CHARACTER*1 */
  544. /* > = 'U': D and E define an upper bidiagonal matrix. */
  545. /* > = 'L': D and E define a lower bidiagonal matrix. */
  546. /* > \endverbatim */
  547. /* > */
  548. /* > \param[in] SMLSIZ */
  549. /* > \verbatim */
  550. /* > SMLSIZ is INTEGER */
  551. /* > The maximum size of the subproblems at the bottom of the */
  552. /* > computation tree. */
  553. /* > \endverbatim */
  554. /* > */
  555. /* > \param[in] N */
  556. /* > \verbatim */
  557. /* > N is INTEGER */
  558. /* > The dimension of the bidiagonal matrix. N >= 0. */
  559. /* > \endverbatim */
  560. /* > */
  561. /* > \param[in] NRHS */
  562. /* > \verbatim */
  563. /* > NRHS is INTEGER */
  564. /* > The number of columns of B. NRHS must be at least 1. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in,out] D */
  568. /* > \verbatim */
  569. /* > D is REAL array, dimension (N) */
  570. /* > On entry D contains the main diagonal of the bidiagonal */
  571. /* > matrix. On exit, if INFO = 0, D contains its singular values. */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[in,out] E */
  575. /* > \verbatim */
  576. /* > E is REAL array, dimension (N-1) */
  577. /* > Contains the super-diagonal entries of the bidiagonal matrix. */
  578. /* > On exit, E has been destroyed. */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[in,out] B */
  582. /* > \verbatim */
  583. /* > B is COMPLEX array, dimension (LDB,NRHS) */
  584. /* > On input, B contains the right hand sides of the least */
  585. /* > squares problem. On output, B contains the solution X. */
  586. /* > \endverbatim */
  587. /* > */
  588. /* > \param[in] LDB */
  589. /* > \verbatim */
  590. /* > LDB is INTEGER */
  591. /* > The leading dimension of B in the calling subprogram. */
  592. /* > LDB must be at least f2cmax(1,N). */
  593. /* > \endverbatim */
  594. /* > */
  595. /* > \param[in] RCOND */
  596. /* > \verbatim */
  597. /* > RCOND is REAL */
  598. /* > The singular values of A less than or equal to RCOND times */
  599. /* > the largest singular value are treated as zero in solving */
  600. /* > the least squares problem. If RCOND is negative, */
  601. /* > machine precision is used instead. */
  602. /* > For example, if diag(S)*X=B were the least squares problem, */
  603. /* > where diag(S) is a diagonal matrix of singular values, the */
  604. /* > solution would be X(i) = B(i) / S(i) if S(i) is greater than */
  605. /* > RCOND*f2cmax(S), and X(i) = 0 if S(i) is less than or equal to */
  606. /* > RCOND*f2cmax(S). */
  607. /* > \endverbatim */
  608. /* > */
  609. /* > \param[out] RANK */
  610. /* > \verbatim */
  611. /* > RANK is INTEGER */
  612. /* > The number of singular values of A greater than RCOND times */
  613. /* > the largest singular value. */
  614. /* > \endverbatim */
  615. /* > */
  616. /* > \param[out] WORK */
  617. /* > \verbatim */
  618. /* > WORK is COMPLEX array, dimension (N * NRHS). */
  619. /* > \endverbatim */
  620. /* > */
  621. /* > \param[out] RWORK */
  622. /* > \verbatim */
  623. /* > RWORK is REAL array, dimension at least */
  624. /* > (9*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS + */
  625. /* > MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS ), */
  626. /* > where */
  627. /* > NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 ) */
  628. /* > \endverbatim */
  629. /* > */
  630. /* > \param[out] IWORK */
  631. /* > \verbatim */
  632. /* > IWORK is INTEGER array, dimension (3*N*NLVL + 11*N). */
  633. /* > \endverbatim */
  634. /* > */
  635. /* > \param[out] INFO */
  636. /* > \verbatim */
  637. /* > INFO is INTEGER */
  638. /* > = 0: successful exit. */
  639. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  640. /* > > 0: The algorithm failed to compute a singular value while */
  641. /* > working on the submatrix lying in rows and columns */
  642. /* > INFO/(N+1) through MOD(INFO,N+1). */
  643. /* > \endverbatim */
  644. /* Authors: */
  645. /* ======== */
  646. /* > \author Univ. of Tennessee */
  647. /* > \author Univ. of California Berkeley */
  648. /* > \author Univ. of Colorado Denver */
  649. /* > \author NAG Ltd. */
  650. /* > \date December 2016 */
  651. /* > \ingroup complexOTHERcomputational */
  652. /* > \par Contributors: */
  653. /* ================== */
  654. /* > */
  655. /* > Ming Gu and Ren-Cang Li, Computer Science Division, University of */
  656. /* > California at Berkeley, USA \n */
  657. /* > Osni Marques, LBNL/NERSC, USA \n */
  658. /* ===================================================================== */
  659. /* Subroutine */ int clalsd_(char *uplo, integer *smlsiz, integer *n, integer
  660. *nrhs, real *d__, real *e, complex *b, integer *ldb, real *rcond,
  661. integer *rank, complex *work, real *rwork, integer *iwork, integer *
  662. info)
  663. {
  664. /* System generated locals */
  665. integer b_dim1, b_offset, i__1, i__2, i__3, i__4, i__5, i__6;
  666. real r__1;
  667. complex q__1;
  668. /* Local variables */
  669. integer difl, difr;
  670. real rcnd;
  671. integer jcol, irwb, perm, nsub, nlvl, sqre, bxst, jrow, irwu, c__, i__, j,
  672. k;
  673. real r__;
  674. integer s, u, jimag, z__, jreal;
  675. extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *,
  676. integer *, real *, real *, integer *, real *, integer *, real *,
  677. real *, integer *);
  678. integer irwib;
  679. extern /* Subroutine */ int ccopy_(integer *, complex *, integer *,
  680. complex *, integer *);
  681. integer poles, sizei, irwrb, nsize;
  682. extern /* Subroutine */ int csrot_(integer *, complex *, integer *,
  683. complex *, integer *, real *, real *);
  684. integer irwvt, icmpq1, icmpq2;
  685. real cs;
  686. integer bx;
  687. extern /* Subroutine */ int clalsa_(integer *, integer *, integer *,
  688. integer *, complex *, integer *, complex *, integer *, real *,
  689. integer *, real *, integer *, real *, real *, real *, real *,
  690. integer *, integer *, integer *, integer *, real *, real *, real *
  691. , real *, integer *, integer *);
  692. real sn;
  693. extern /* Subroutine */ int clascl_(char *, integer *, integer *, real *,
  694. real *, integer *, integer *, complex *, integer *, integer *);
  695. integer st;
  696. extern real slamch_(char *);
  697. extern /* Subroutine */ int slasda_(integer *, integer *, integer *,
  698. integer *, real *, real *, real *, integer *, real *, integer *,
  699. real *, real *, real *, real *, integer *, integer *, integer *,
  700. integer *, real *, real *, real *, real *, integer *, integer *);
  701. integer vt;
  702. extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex
  703. *, integer *, complex *, integer *), claset_(char *,
  704. integer *, integer *, complex *, complex *, complex *, integer *), xerbla_(char *, integer *, ftnlen), slascl_(char *,
  705. integer *, integer *, real *, real *, integer *, integer *, real *
  706. , integer *, integer *);
  707. extern integer isamax_(integer *, real *, integer *);
  708. integer givcol;
  709. extern /* Subroutine */ int slasdq_(char *, integer *, integer *, integer
  710. *, integer *, integer *, real *, real *, real *, integer *, real *
  711. , integer *, real *, integer *, real *, integer *),
  712. slaset_(char *, integer *, integer *, real *, real *, real *,
  713. integer *), slartg_(real *, real *, real *, real *, real *
  714. );
  715. real orgnrm;
  716. integer givnum;
  717. extern real slanst_(char *, integer *, real *, real *);
  718. extern /* Subroutine */ int slasrt_(char *, integer *, real *, integer *);
  719. integer givptr, nm1, nrwork, irwwrk, smlszp, st1;
  720. real eps;
  721. integer iwk;
  722. real tol;
  723. /* -- LAPACK computational routine (version 3.7.0) -- */
  724. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  725. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  726. /* December 2016 */
  727. /* ===================================================================== */
  728. /* Test the input parameters. */
  729. /* Parameter adjustments */
  730. --d__;
  731. --e;
  732. b_dim1 = *ldb;
  733. b_offset = 1 + b_dim1 * 1;
  734. b -= b_offset;
  735. --work;
  736. --rwork;
  737. --iwork;
  738. /* Function Body */
  739. *info = 0;
  740. if (*n < 0) {
  741. *info = -3;
  742. } else if (*nrhs < 1) {
  743. *info = -4;
  744. } else if (*ldb < 1 || *ldb < *n) {
  745. *info = -8;
  746. }
  747. if (*info != 0) {
  748. i__1 = -(*info);
  749. xerbla_("CLALSD", &i__1, (ftnlen)6);
  750. return 0;
  751. }
  752. eps = slamch_("Epsilon");
  753. /* Set up the tolerance. */
  754. if (*rcond <= 0.f || *rcond >= 1.f) {
  755. rcnd = eps;
  756. } else {
  757. rcnd = *rcond;
  758. }
  759. *rank = 0;
  760. /* Quick return if possible. */
  761. if (*n == 0) {
  762. return 0;
  763. } else if (*n == 1) {
  764. if (d__[1] == 0.f) {
  765. claset_("A", &c__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
  766. } else {
  767. *rank = 1;
  768. clascl_("G", &c__0, &c__0, &d__[1], &c_b10, &c__1, nrhs, &b[
  769. b_offset], ldb, info);
  770. d__[1] = abs(d__[1]);
  771. }
  772. return 0;
  773. }
  774. /* Rotate the matrix if it is lower bidiagonal. */
  775. if (*(unsigned char *)uplo == 'L') {
  776. i__1 = *n - 1;
  777. for (i__ = 1; i__ <= i__1; ++i__) {
  778. slartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
  779. d__[i__] = r__;
  780. e[i__] = sn * d__[i__ + 1];
  781. d__[i__ + 1] = cs * d__[i__ + 1];
  782. if (*nrhs == 1) {
  783. csrot_(&c__1, &b[i__ + b_dim1], &c__1, &b[i__ + 1 + b_dim1], &
  784. c__1, &cs, &sn);
  785. } else {
  786. rwork[(i__ << 1) - 1] = cs;
  787. rwork[i__ * 2] = sn;
  788. }
  789. /* L10: */
  790. }
  791. if (*nrhs > 1) {
  792. i__1 = *nrhs;
  793. for (i__ = 1; i__ <= i__1; ++i__) {
  794. i__2 = *n - 1;
  795. for (j = 1; j <= i__2; ++j) {
  796. cs = rwork[(j << 1) - 1];
  797. sn = rwork[j * 2];
  798. csrot_(&c__1, &b[j + i__ * b_dim1], &c__1, &b[j + 1 + i__
  799. * b_dim1], &c__1, &cs, &sn);
  800. /* L20: */
  801. }
  802. /* L30: */
  803. }
  804. }
  805. }
  806. /* Scale. */
  807. nm1 = *n - 1;
  808. orgnrm = slanst_("M", n, &d__[1], &e[1]);
  809. if (orgnrm == 0.f) {
  810. claset_("A", n, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
  811. return 0;
  812. }
  813. slascl_("G", &c__0, &c__0, &orgnrm, &c_b10, n, &c__1, &d__[1], n, info);
  814. slascl_("G", &c__0, &c__0, &orgnrm, &c_b10, &nm1, &c__1, &e[1], &nm1,
  815. info);
  816. /* If N is smaller than the minimum divide size SMLSIZ, then solve */
  817. /* the problem with another solver. */
  818. if (*n <= *smlsiz) {
  819. irwu = 1;
  820. irwvt = irwu + *n * *n;
  821. irwwrk = irwvt + *n * *n;
  822. irwrb = irwwrk;
  823. irwib = irwrb + *n * *nrhs;
  824. irwb = irwib + *n * *nrhs;
  825. slaset_("A", n, n, &c_b35, &c_b10, &rwork[irwu], n);
  826. slaset_("A", n, n, &c_b35, &c_b10, &rwork[irwvt], n);
  827. slasdq_("U", &c__0, n, n, n, &c__0, &d__[1], &e[1], &rwork[irwvt], n,
  828. &rwork[irwu], n, &rwork[irwwrk], &c__1, &rwork[irwwrk], info);
  829. if (*info != 0) {
  830. return 0;
  831. }
  832. /* In the real version, B is passed to SLASDQ and multiplied */
  833. /* internally by Q**H. Here B is complex and that product is */
  834. /* computed below in two steps (real and imaginary parts). */
  835. j = irwb - 1;
  836. i__1 = *nrhs;
  837. for (jcol = 1; jcol <= i__1; ++jcol) {
  838. i__2 = *n;
  839. for (jrow = 1; jrow <= i__2; ++jrow) {
  840. ++j;
  841. i__3 = jrow + jcol * b_dim1;
  842. rwork[j] = b[i__3].r;
  843. /* L40: */
  844. }
  845. /* L50: */
  846. }
  847. sgemm_("T", "N", n, nrhs, n, &c_b10, &rwork[irwu], n, &rwork[irwb], n,
  848. &c_b35, &rwork[irwrb], n);
  849. j = irwb - 1;
  850. i__1 = *nrhs;
  851. for (jcol = 1; jcol <= i__1; ++jcol) {
  852. i__2 = *n;
  853. for (jrow = 1; jrow <= i__2; ++jrow) {
  854. ++j;
  855. rwork[j] = r_imag(&b[jrow + jcol * b_dim1]);
  856. /* L60: */
  857. }
  858. /* L70: */
  859. }
  860. sgemm_("T", "N", n, nrhs, n, &c_b10, &rwork[irwu], n, &rwork[irwb], n,
  861. &c_b35, &rwork[irwib], n);
  862. jreal = irwrb - 1;
  863. jimag = irwib - 1;
  864. i__1 = *nrhs;
  865. for (jcol = 1; jcol <= i__1; ++jcol) {
  866. i__2 = *n;
  867. for (jrow = 1; jrow <= i__2; ++jrow) {
  868. ++jreal;
  869. ++jimag;
  870. i__3 = jrow + jcol * b_dim1;
  871. i__4 = jreal;
  872. i__5 = jimag;
  873. q__1.r = rwork[i__4], q__1.i = rwork[i__5];
  874. b[i__3].r = q__1.r, b[i__3].i = q__1.i;
  875. /* L80: */
  876. }
  877. /* L90: */
  878. }
  879. tol = rcnd * (r__1 = d__[isamax_(n, &d__[1], &c__1)], abs(r__1));
  880. i__1 = *n;
  881. for (i__ = 1; i__ <= i__1; ++i__) {
  882. if (d__[i__] <= tol) {
  883. claset_("A", &c__1, nrhs, &c_b1, &c_b1, &b[i__ + b_dim1], ldb);
  884. } else {
  885. clascl_("G", &c__0, &c__0, &d__[i__], &c_b10, &c__1, nrhs, &b[
  886. i__ + b_dim1], ldb, info);
  887. ++(*rank);
  888. }
  889. /* L100: */
  890. }
  891. /* Since B is complex, the following call to SGEMM is performed */
  892. /* in two steps (real and imaginary parts). That is for V * B */
  893. /* (in the real version of the code V**H is stored in WORK). */
  894. /* CALL SGEMM( 'T', 'N', N, NRHS, N, ONE, WORK, N, B, LDB, ZERO, */
  895. /* $ WORK( NWORK ), N ) */
  896. j = irwb - 1;
  897. i__1 = *nrhs;
  898. for (jcol = 1; jcol <= i__1; ++jcol) {
  899. i__2 = *n;
  900. for (jrow = 1; jrow <= i__2; ++jrow) {
  901. ++j;
  902. i__3 = jrow + jcol * b_dim1;
  903. rwork[j] = b[i__3].r;
  904. /* L110: */
  905. }
  906. /* L120: */
  907. }
  908. sgemm_("T", "N", n, nrhs, n, &c_b10, &rwork[irwvt], n, &rwork[irwb],
  909. n, &c_b35, &rwork[irwrb], n);
  910. j = irwb - 1;
  911. i__1 = *nrhs;
  912. for (jcol = 1; jcol <= i__1; ++jcol) {
  913. i__2 = *n;
  914. for (jrow = 1; jrow <= i__2; ++jrow) {
  915. ++j;
  916. rwork[j] = r_imag(&b[jrow + jcol * b_dim1]);
  917. /* L130: */
  918. }
  919. /* L140: */
  920. }
  921. sgemm_("T", "N", n, nrhs, n, &c_b10, &rwork[irwvt], n, &rwork[irwb],
  922. n, &c_b35, &rwork[irwib], n);
  923. jreal = irwrb - 1;
  924. jimag = irwib - 1;
  925. i__1 = *nrhs;
  926. for (jcol = 1; jcol <= i__1; ++jcol) {
  927. i__2 = *n;
  928. for (jrow = 1; jrow <= i__2; ++jrow) {
  929. ++jreal;
  930. ++jimag;
  931. i__3 = jrow + jcol * b_dim1;
  932. i__4 = jreal;
  933. i__5 = jimag;
  934. q__1.r = rwork[i__4], q__1.i = rwork[i__5];
  935. b[i__3].r = q__1.r, b[i__3].i = q__1.i;
  936. /* L150: */
  937. }
  938. /* L160: */
  939. }
  940. /* Unscale. */
  941. slascl_("G", &c__0, &c__0, &c_b10, &orgnrm, n, &c__1, &d__[1], n,
  942. info);
  943. slasrt_("D", n, &d__[1], info);
  944. clascl_("G", &c__0, &c__0, &orgnrm, &c_b10, n, nrhs, &b[b_offset],
  945. ldb, info);
  946. return 0;
  947. }
  948. /* Book-keeping and setting up some constants. */
  949. nlvl = (integer) (log((real) (*n) / (real) (*smlsiz + 1)) / log(2.f)) + 1;
  950. smlszp = *smlsiz + 1;
  951. u = 1;
  952. vt = *smlsiz * *n + 1;
  953. difl = vt + smlszp * *n;
  954. difr = difl + nlvl * *n;
  955. z__ = difr + (nlvl * *n << 1);
  956. c__ = z__ + nlvl * *n;
  957. s = c__ + *n;
  958. poles = s + *n;
  959. givnum = poles + (nlvl << 1) * *n;
  960. nrwork = givnum + (nlvl << 1) * *n;
  961. bx = 1;
  962. irwrb = nrwork;
  963. irwib = irwrb + *smlsiz * *nrhs;
  964. irwb = irwib + *smlsiz * *nrhs;
  965. sizei = *n + 1;
  966. k = sizei + *n;
  967. givptr = k + *n;
  968. perm = givptr + *n;
  969. givcol = perm + nlvl * *n;
  970. iwk = givcol + (nlvl * *n << 1);
  971. st = 1;
  972. sqre = 0;
  973. icmpq1 = 1;
  974. icmpq2 = 0;
  975. nsub = 0;
  976. i__1 = *n;
  977. for (i__ = 1; i__ <= i__1; ++i__) {
  978. if ((r__1 = d__[i__], abs(r__1)) < eps) {
  979. d__[i__] = r_sign(&eps, &d__[i__]);
  980. }
  981. /* L170: */
  982. }
  983. i__1 = nm1;
  984. for (i__ = 1; i__ <= i__1; ++i__) {
  985. if ((r__1 = e[i__], abs(r__1)) < eps || i__ == nm1) {
  986. ++nsub;
  987. iwork[nsub] = st;
  988. /* Subproblem found. First determine its size and then */
  989. /* apply divide and conquer on it. */
  990. if (i__ < nm1) {
  991. /* A subproblem with E(I) small for I < NM1. */
  992. nsize = i__ - st + 1;
  993. iwork[sizei + nsub - 1] = nsize;
  994. } else if ((r__1 = e[i__], abs(r__1)) >= eps) {
  995. /* A subproblem with E(NM1) not too small but I = NM1. */
  996. nsize = *n - st + 1;
  997. iwork[sizei + nsub - 1] = nsize;
  998. } else {
  999. /* A subproblem with E(NM1) small. This implies an */
  1000. /* 1-by-1 subproblem at D(N), which is not solved */
  1001. /* explicitly. */
  1002. nsize = i__ - st + 1;
  1003. iwork[sizei + nsub - 1] = nsize;
  1004. ++nsub;
  1005. iwork[nsub] = *n;
  1006. iwork[sizei + nsub - 1] = 1;
  1007. ccopy_(nrhs, &b[*n + b_dim1], ldb, &work[bx + nm1], n);
  1008. }
  1009. st1 = st - 1;
  1010. if (nsize == 1) {
  1011. /* This is a 1-by-1 subproblem and is not solved */
  1012. /* explicitly. */
  1013. ccopy_(nrhs, &b[st + b_dim1], ldb, &work[bx + st1], n);
  1014. } else if (nsize <= *smlsiz) {
  1015. /* This is a small subproblem and is solved by SLASDQ. */
  1016. slaset_("A", &nsize, &nsize, &c_b35, &c_b10, &rwork[vt + st1],
  1017. n);
  1018. slaset_("A", &nsize, &nsize, &c_b35, &c_b10, &rwork[u + st1],
  1019. n);
  1020. slasdq_("U", &c__0, &nsize, &nsize, &nsize, &c__0, &d__[st], &
  1021. e[st], &rwork[vt + st1], n, &rwork[u + st1], n, &
  1022. rwork[nrwork], &c__1, &rwork[nrwork], info)
  1023. ;
  1024. if (*info != 0) {
  1025. return 0;
  1026. }
  1027. /* In the real version, B is passed to SLASDQ and multiplied */
  1028. /* internally by Q**H. Here B is complex and that product is */
  1029. /* computed below in two steps (real and imaginary parts). */
  1030. j = irwb - 1;
  1031. i__2 = *nrhs;
  1032. for (jcol = 1; jcol <= i__2; ++jcol) {
  1033. i__3 = st + nsize - 1;
  1034. for (jrow = st; jrow <= i__3; ++jrow) {
  1035. ++j;
  1036. i__4 = jrow + jcol * b_dim1;
  1037. rwork[j] = b[i__4].r;
  1038. /* L180: */
  1039. }
  1040. /* L190: */
  1041. }
  1042. sgemm_("T", "N", &nsize, nrhs, &nsize, &c_b10, &rwork[u + st1]
  1043. , n, &rwork[irwb], &nsize, &c_b35, &rwork[irwrb], &
  1044. nsize);
  1045. j = irwb - 1;
  1046. i__2 = *nrhs;
  1047. for (jcol = 1; jcol <= i__2; ++jcol) {
  1048. i__3 = st + nsize - 1;
  1049. for (jrow = st; jrow <= i__3; ++jrow) {
  1050. ++j;
  1051. rwork[j] = r_imag(&b[jrow + jcol * b_dim1]);
  1052. /* L200: */
  1053. }
  1054. /* L210: */
  1055. }
  1056. sgemm_("T", "N", &nsize, nrhs, &nsize, &c_b10, &rwork[u + st1]
  1057. , n, &rwork[irwb], &nsize, &c_b35, &rwork[irwib], &
  1058. nsize);
  1059. jreal = irwrb - 1;
  1060. jimag = irwib - 1;
  1061. i__2 = *nrhs;
  1062. for (jcol = 1; jcol <= i__2; ++jcol) {
  1063. i__3 = st + nsize - 1;
  1064. for (jrow = st; jrow <= i__3; ++jrow) {
  1065. ++jreal;
  1066. ++jimag;
  1067. i__4 = jrow + jcol * b_dim1;
  1068. i__5 = jreal;
  1069. i__6 = jimag;
  1070. q__1.r = rwork[i__5], q__1.i = rwork[i__6];
  1071. b[i__4].r = q__1.r, b[i__4].i = q__1.i;
  1072. /* L220: */
  1073. }
  1074. /* L230: */
  1075. }
  1076. clacpy_("A", &nsize, nrhs, &b[st + b_dim1], ldb, &work[bx +
  1077. st1], n);
  1078. } else {
  1079. /* A large problem. Solve it using divide and conquer. */
  1080. slasda_(&icmpq1, smlsiz, &nsize, &sqre, &d__[st], &e[st], &
  1081. rwork[u + st1], n, &rwork[vt + st1], &iwork[k + st1],
  1082. &rwork[difl + st1], &rwork[difr + st1], &rwork[z__ +
  1083. st1], &rwork[poles + st1], &iwork[givptr + st1], &
  1084. iwork[givcol + st1], n, &iwork[perm + st1], &rwork[
  1085. givnum + st1], &rwork[c__ + st1], &rwork[s + st1], &
  1086. rwork[nrwork], &iwork[iwk], info);
  1087. if (*info != 0) {
  1088. return 0;
  1089. }
  1090. bxst = bx + st1;
  1091. clalsa_(&icmpq2, smlsiz, &nsize, nrhs, &b[st + b_dim1], ldb, &
  1092. work[bxst], n, &rwork[u + st1], n, &rwork[vt + st1], &
  1093. iwork[k + st1], &rwork[difl + st1], &rwork[difr + st1]
  1094. , &rwork[z__ + st1], &rwork[poles + st1], &iwork[
  1095. givptr + st1], &iwork[givcol + st1], n, &iwork[perm +
  1096. st1], &rwork[givnum + st1], &rwork[c__ + st1], &rwork[
  1097. s + st1], &rwork[nrwork], &iwork[iwk], info);
  1098. if (*info != 0) {
  1099. return 0;
  1100. }
  1101. }
  1102. st = i__ + 1;
  1103. }
  1104. /* L240: */
  1105. }
  1106. /* Apply the singular values and treat the tiny ones as zero. */
  1107. tol = rcnd * (r__1 = d__[isamax_(n, &d__[1], &c__1)], abs(r__1));
  1108. i__1 = *n;
  1109. for (i__ = 1; i__ <= i__1; ++i__) {
  1110. /* Some of the elements in D can be negative because 1-by-1 */
  1111. /* subproblems were not solved explicitly. */
  1112. if ((r__1 = d__[i__], abs(r__1)) <= tol) {
  1113. claset_("A", &c__1, nrhs, &c_b1, &c_b1, &work[bx + i__ - 1], n);
  1114. } else {
  1115. ++(*rank);
  1116. clascl_("G", &c__0, &c__0, &d__[i__], &c_b10, &c__1, nrhs, &work[
  1117. bx + i__ - 1], n, info);
  1118. }
  1119. d__[i__] = (r__1 = d__[i__], abs(r__1));
  1120. /* L250: */
  1121. }
  1122. /* Now apply back the right singular vectors. */
  1123. icmpq2 = 1;
  1124. i__1 = nsub;
  1125. for (i__ = 1; i__ <= i__1; ++i__) {
  1126. st = iwork[i__];
  1127. st1 = st - 1;
  1128. nsize = iwork[sizei + i__ - 1];
  1129. bxst = bx + st1;
  1130. if (nsize == 1) {
  1131. ccopy_(nrhs, &work[bxst], n, &b[st + b_dim1], ldb);
  1132. } else if (nsize <= *smlsiz) {
  1133. /* Since B and BX are complex, the following call to SGEMM */
  1134. /* is performed in two steps (real and imaginary parts). */
  1135. /* CALL SGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE, */
  1136. /* $ RWORK( VT+ST1 ), N, RWORK( BXST ), N, ZERO, */
  1137. /* $ B( ST, 1 ), LDB ) */
  1138. j = bxst - *n - 1;
  1139. jreal = irwb - 1;
  1140. i__2 = *nrhs;
  1141. for (jcol = 1; jcol <= i__2; ++jcol) {
  1142. j += *n;
  1143. i__3 = nsize;
  1144. for (jrow = 1; jrow <= i__3; ++jrow) {
  1145. ++jreal;
  1146. i__4 = j + jrow;
  1147. rwork[jreal] = work[i__4].r;
  1148. /* L260: */
  1149. }
  1150. /* L270: */
  1151. }
  1152. sgemm_("T", "N", &nsize, nrhs, &nsize, &c_b10, &rwork[vt + st1],
  1153. n, &rwork[irwb], &nsize, &c_b35, &rwork[irwrb], &nsize);
  1154. j = bxst - *n - 1;
  1155. jimag = irwb - 1;
  1156. i__2 = *nrhs;
  1157. for (jcol = 1; jcol <= i__2; ++jcol) {
  1158. j += *n;
  1159. i__3 = nsize;
  1160. for (jrow = 1; jrow <= i__3; ++jrow) {
  1161. ++jimag;
  1162. rwork[jimag] = r_imag(&work[j + jrow]);
  1163. /* L280: */
  1164. }
  1165. /* L290: */
  1166. }
  1167. sgemm_("T", "N", &nsize, nrhs, &nsize, &c_b10, &rwork[vt + st1],
  1168. n, &rwork[irwb], &nsize, &c_b35, &rwork[irwib], &nsize);
  1169. jreal = irwrb - 1;
  1170. jimag = irwib - 1;
  1171. i__2 = *nrhs;
  1172. for (jcol = 1; jcol <= i__2; ++jcol) {
  1173. i__3 = st + nsize - 1;
  1174. for (jrow = st; jrow <= i__3; ++jrow) {
  1175. ++jreal;
  1176. ++jimag;
  1177. i__4 = jrow + jcol * b_dim1;
  1178. i__5 = jreal;
  1179. i__6 = jimag;
  1180. q__1.r = rwork[i__5], q__1.i = rwork[i__6];
  1181. b[i__4].r = q__1.r, b[i__4].i = q__1.i;
  1182. /* L300: */
  1183. }
  1184. /* L310: */
  1185. }
  1186. } else {
  1187. clalsa_(&icmpq2, smlsiz, &nsize, nrhs, &work[bxst], n, &b[st +
  1188. b_dim1], ldb, &rwork[u + st1], n, &rwork[vt + st1], &
  1189. iwork[k + st1], &rwork[difl + st1], &rwork[difr + st1], &
  1190. rwork[z__ + st1], &rwork[poles + st1], &iwork[givptr +
  1191. st1], &iwork[givcol + st1], n, &iwork[perm + st1], &rwork[
  1192. givnum + st1], &rwork[c__ + st1], &rwork[s + st1], &rwork[
  1193. nrwork], &iwork[iwk], info);
  1194. if (*info != 0) {
  1195. return 0;
  1196. }
  1197. }
  1198. /* L320: */
  1199. }
  1200. /* Unscale and sort the singular values. */
  1201. slascl_("G", &c__0, &c__0, &c_b10, &orgnrm, n, &c__1, &d__[1], n, info);
  1202. slasrt_("D", n, &d__[1], info);
  1203. clascl_("G", &c__0, &c__0, &orgnrm, &c_b10, n, nrhs, &b[b_offset], ldb,
  1204. info);
  1205. return 0;
  1206. /* End of CLALSD */
  1207. } /* clalsd_ */