You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zgbsvx.c 41 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. /* > \brief <b> ZGBSVX computes the solution to system of linear equations A * X = B for GB matrices</b> */
  486. /* =========== DOCUMENTATION =========== */
  487. /* Online html documentation available at */
  488. /* http://www.netlib.org/lapack/explore-html/ */
  489. /* > \htmlonly */
  490. /* > Download ZGBSVX + dependencies */
  491. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgbsvx.
  492. f"> */
  493. /* > [TGZ]</a> */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgbsvx.
  495. f"> */
  496. /* > [ZIP]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgbsvx.
  498. f"> */
  499. /* > [TXT]</a> */
  500. /* > \endhtmlonly */
  501. /* Definition: */
  502. /* =========== */
  503. /* SUBROUTINE ZGBSVX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, */
  504. /* LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX, */
  505. /* RCOND, FERR, BERR, WORK, RWORK, INFO ) */
  506. /* CHARACTER EQUED, FACT, TRANS */
  507. /* INTEGER INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS */
  508. /* DOUBLE PRECISION RCOND */
  509. /* INTEGER IPIV( * ) */
  510. /* DOUBLE PRECISION BERR( * ), C( * ), FERR( * ), R( * ), */
  511. /* $ RWORK( * ) */
  512. /* COMPLEX*16 AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ), */
  513. /* $ WORK( * ), X( LDX, * ) */
  514. /* > \par Purpose: */
  515. /* ============= */
  516. /* > */
  517. /* > \verbatim */
  518. /* > */
  519. /* > ZGBSVX uses the LU factorization to compute the solution to a complex */
  520. /* > system of linear equations A * X = B, A**T * X = B, or A**H * X = B, */
  521. /* > where A is a band matrix of order N with KL subdiagonals and KU */
  522. /* > superdiagonals, and X and B are N-by-NRHS matrices. */
  523. /* > */
  524. /* > Error bounds on the solution and a condition estimate are also */
  525. /* > provided. */
  526. /* > \endverbatim */
  527. /* > \par Description: */
  528. /* ================= */
  529. /* > */
  530. /* > \verbatim */
  531. /* > */
  532. /* > The following steps are performed by this subroutine: */
  533. /* > */
  534. /* > 1. If FACT = 'E', real scaling factors are computed to equilibrate */
  535. /* > the system: */
  536. /* > TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B */
  537. /* > TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B */
  538. /* > TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B */
  539. /* > Whether or not the system will be equilibrated depends on the */
  540. /* > scaling of the matrix A, but if equilibration is used, A is */
  541. /* > overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N') */
  542. /* > or diag(C)*B (if TRANS = 'T' or 'C'). */
  543. /* > */
  544. /* > 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the */
  545. /* > matrix A (after equilibration if FACT = 'E') as */
  546. /* > A = L * U, */
  547. /* > where L is a product of permutation and unit lower triangular */
  548. /* > matrices with KL subdiagonals, and U is upper triangular with */
  549. /* > KL+KU superdiagonals. */
  550. /* > */
  551. /* > 3. If some U(i,i)=0, so that U is exactly singular, then the routine */
  552. /* > returns with INFO = i. Otherwise, the factored form of A is used */
  553. /* > to estimate the condition number of the matrix A. If the */
  554. /* > reciprocal of the condition number is less than machine precision, */
  555. /* > INFO = N+1 is returned as a warning, but the routine still goes on */
  556. /* > to solve for X and compute error bounds as described below. */
  557. /* > */
  558. /* > 4. The system of equations is solved for X using the factored form */
  559. /* > of A. */
  560. /* > */
  561. /* > 5. Iterative refinement is applied to improve the computed solution */
  562. /* > matrix and calculate error bounds and backward error estimates */
  563. /* > for it. */
  564. /* > */
  565. /* > 6. If equilibration was used, the matrix X is premultiplied by */
  566. /* > diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so */
  567. /* > that it solves the original system before equilibration. */
  568. /* > \endverbatim */
  569. /* Arguments: */
  570. /* ========== */
  571. /* > \param[in] FACT */
  572. /* > \verbatim */
  573. /* > FACT is CHARACTER*1 */
  574. /* > Specifies whether or not the factored form of the matrix A is */
  575. /* > supplied on entry, and if not, whether the matrix A should be */
  576. /* > equilibrated before it is factored. */
  577. /* > = 'F': On entry, AFB and IPIV contain the factored form of */
  578. /* > A. If EQUED is not 'N', the matrix A has been */
  579. /* > equilibrated with scaling factors given by R and C. */
  580. /* > AB, AFB, and IPIV are not modified. */
  581. /* > = 'N': The matrix A will be copied to AFB and factored. */
  582. /* > = 'E': The matrix A will be equilibrated if necessary, then */
  583. /* > copied to AFB and factored. */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[in] TRANS */
  587. /* > \verbatim */
  588. /* > TRANS is CHARACTER*1 */
  589. /* > Specifies the form of the system of equations. */
  590. /* > = 'N': A * X = B (No transpose) */
  591. /* > = 'T': A**T * X = B (Transpose) */
  592. /* > = 'C': A**H * X = B (Conjugate transpose) */
  593. /* > \endverbatim */
  594. /* > */
  595. /* > \param[in] N */
  596. /* > \verbatim */
  597. /* > N is INTEGER */
  598. /* > The number of linear equations, i.e., the order of the */
  599. /* > matrix A. N >= 0. */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[in] KL */
  603. /* > \verbatim */
  604. /* > KL is INTEGER */
  605. /* > The number of subdiagonals within the band of A. KL >= 0. */
  606. /* > \endverbatim */
  607. /* > */
  608. /* > \param[in] KU */
  609. /* > \verbatim */
  610. /* > KU is INTEGER */
  611. /* > The number of superdiagonals within the band of A. KU >= 0. */
  612. /* > \endverbatim */
  613. /* > */
  614. /* > \param[in] NRHS */
  615. /* > \verbatim */
  616. /* > NRHS is INTEGER */
  617. /* > The number of right hand sides, i.e., the number of columns */
  618. /* > of the matrices B and X. NRHS >= 0. */
  619. /* > \endverbatim */
  620. /* > */
  621. /* > \param[in,out] AB */
  622. /* > \verbatim */
  623. /* > AB is COMPLEX*16 array, dimension (LDAB,N) */
  624. /* > On entry, the matrix A in band storage, in rows 1 to KL+KU+1. */
  625. /* > The j-th column of A is stored in the j-th column of the */
  626. /* > array AB as follows: */
  627. /* > AB(KU+1+i-j,j) = A(i,j) for f2cmax(1,j-KU)<=i<=f2cmin(N,j+kl) */
  628. /* > */
  629. /* > If FACT = 'F' and EQUED is not 'N', then A must have been */
  630. /* > equilibrated by the scaling factors in R and/or C. AB is not */
  631. /* > modified if FACT = 'F' or 'N', or if FACT = 'E' and */
  632. /* > EQUED = 'N' on exit. */
  633. /* > */
  634. /* > On exit, if EQUED .ne. 'N', A is scaled as follows: */
  635. /* > EQUED = 'R': A := diag(R) * A */
  636. /* > EQUED = 'C': A := A * diag(C) */
  637. /* > EQUED = 'B': A := diag(R) * A * diag(C). */
  638. /* > \endverbatim */
  639. /* > */
  640. /* > \param[in] LDAB */
  641. /* > \verbatim */
  642. /* > LDAB is INTEGER */
  643. /* > The leading dimension of the array AB. LDAB >= KL+KU+1. */
  644. /* > \endverbatim */
  645. /* > */
  646. /* > \param[in,out] AFB */
  647. /* > \verbatim */
  648. /* > AFB is COMPLEX*16 array, dimension (LDAFB,N) */
  649. /* > If FACT = 'F', then AFB is an input argument and on entry */
  650. /* > contains details of the LU factorization of the band matrix */
  651. /* > A, as computed by ZGBTRF. U is stored as an upper triangular */
  652. /* > band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, */
  653. /* > and the multipliers used during the factorization are stored */
  654. /* > in rows KL+KU+2 to 2*KL+KU+1. If EQUED .ne. 'N', then AFB is */
  655. /* > the factored form of the equilibrated matrix A. */
  656. /* > */
  657. /* > If FACT = 'N', then AFB is an output argument and on exit */
  658. /* > returns details of the LU factorization of A. */
  659. /* > */
  660. /* > If FACT = 'E', then AFB is an output argument and on exit */
  661. /* > returns details of the LU factorization of the equilibrated */
  662. /* > matrix A (see the description of AB for the form of the */
  663. /* > equilibrated matrix). */
  664. /* > \endverbatim */
  665. /* > */
  666. /* > \param[in] LDAFB */
  667. /* > \verbatim */
  668. /* > LDAFB is INTEGER */
  669. /* > The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1. */
  670. /* > \endverbatim */
  671. /* > */
  672. /* > \param[in,out] IPIV */
  673. /* > \verbatim */
  674. /* > IPIV is INTEGER array, dimension (N) */
  675. /* > If FACT = 'F', then IPIV is an input argument and on entry */
  676. /* > contains the pivot indices from the factorization A = L*U */
  677. /* > as computed by ZGBTRF; row i of the matrix was interchanged */
  678. /* > with row IPIV(i). */
  679. /* > */
  680. /* > If FACT = 'N', then IPIV is an output argument and on exit */
  681. /* > contains the pivot indices from the factorization A = L*U */
  682. /* > of the original matrix A. */
  683. /* > */
  684. /* > If FACT = 'E', then IPIV is an output argument and on exit */
  685. /* > contains the pivot indices from the factorization A = L*U */
  686. /* > of the equilibrated matrix A. */
  687. /* > \endverbatim */
  688. /* > */
  689. /* > \param[in,out] EQUED */
  690. /* > \verbatim */
  691. /* > EQUED is CHARACTER*1 */
  692. /* > Specifies the form of equilibration that was done. */
  693. /* > = 'N': No equilibration (always true if FACT = 'N'). */
  694. /* > = 'R': Row equilibration, i.e., A has been premultiplied by */
  695. /* > diag(R). */
  696. /* > = 'C': Column equilibration, i.e., A has been postmultiplied */
  697. /* > by diag(C). */
  698. /* > = 'B': Both row and column equilibration, i.e., A has been */
  699. /* > replaced by diag(R) * A * diag(C). */
  700. /* > EQUED is an input argument if FACT = 'F'; otherwise, it is an */
  701. /* > output argument. */
  702. /* > \endverbatim */
  703. /* > */
  704. /* > \param[in,out] R */
  705. /* > \verbatim */
  706. /* > R is DOUBLE PRECISION array, dimension (N) */
  707. /* > The row scale factors for A. If EQUED = 'R' or 'B', A is */
  708. /* > multiplied on the left by diag(R); if EQUED = 'N' or 'C', R */
  709. /* > is not accessed. R is an input argument if FACT = 'F'; */
  710. /* > otherwise, R is an output argument. If FACT = 'F' and */
  711. /* > EQUED = 'R' or 'B', each element of R must be positive. */
  712. /* > \endverbatim */
  713. /* > */
  714. /* > \param[in,out] C */
  715. /* > \verbatim */
  716. /* > C is DOUBLE PRECISION array, dimension (N) */
  717. /* > The column scale factors for A. If EQUED = 'C' or 'B', A is */
  718. /* > multiplied on the right by diag(C); if EQUED = 'N' or 'R', C */
  719. /* > is not accessed. C is an input argument if FACT = 'F'; */
  720. /* > otherwise, C is an output argument. If FACT = 'F' and */
  721. /* > EQUED = 'C' or 'B', each element of C must be positive. */
  722. /* > \endverbatim */
  723. /* > */
  724. /* > \param[in,out] B */
  725. /* > \verbatim */
  726. /* > B is COMPLEX*16 array, dimension (LDB,NRHS) */
  727. /* > On entry, the right hand side matrix B. */
  728. /* > On exit, */
  729. /* > if EQUED = 'N', B is not modified; */
  730. /* > if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by */
  731. /* > diag(R)*B; */
  732. /* > if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is */
  733. /* > overwritten by diag(C)*B. */
  734. /* > \endverbatim */
  735. /* > */
  736. /* > \param[in] LDB */
  737. /* > \verbatim */
  738. /* > LDB is INTEGER */
  739. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  740. /* > \endverbatim */
  741. /* > */
  742. /* > \param[out] X */
  743. /* > \verbatim */
  744. /* > X is COMPLEX*16 array, dimension (LDX,NRHS) */
  745. /* > If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X */
  746. /* > to the original system of equations. Note that A and B are */
  747. /* > modified on exit if EQUED .ne. 'N', and the solution to the */
  748. /* > equilibrated system is inv(diag(C))*X if TRANS = 'N' and */
  749. /* > EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C' */
  750. /* > and EQUED = 'R' or 'B'. */
  751. /* > \endverbatim */
  752. /* > */
  753. /* > \param[in] LDX */
  754. /* > \verbatim */
  755. /* > LDX is INTEGER */
  756. /* > The leading dimension of the array X. LDX >= f2cmax(1,N). */
  757. /* > \endverbatim */
  758. /* > */
  759. /* > \param[out] RCOND */
  760. /* > \verbatim */
  761. /* > RCOND is DOUBLE PRECISION */
  762. /* > The estimate of the reciprocal condition number of the matrix */
  763. /* > A after equilibration (if done). If RCOND is less than the */
  764. /* > machine precision (in particular, if RCOND = 0), the matrix */
  765. /* > is singular to working precision. This condition is */
  766. /* > indicated by a return code of INFO > 0. */
  767. /* > \endverbatim */
  768. /* > */
  769. /* > \param[out] FERR */
  770. /* > \verbatim */
  771. /* > FERR is DOUBLE PRECISION array, dimension (NRHS) */
  772. /* > The estimated forward error bound for each solution vector */
  773. /* > X(j) (the j-th column of the solution matrix X). */
  774. /* > If XTRUE is the true solution corresponding to X(j), FERR(j) */
  775. /* > is an estimated upper bound for the magnitude of the largest */
  776. /* > element in (X(j) - XTRUE) divided by the magnitude of the */
  777. /* > largest element in X(j). The estimate is as reliable as */
  778. /* > the estimate for RCOND, and is almost always a slight */
  779. /* > overestimate of the true error. */
  780. /* > \endverbatim */
  781. /* > */
  782. /* > \param[out] BERR */
  783. /* > \verbatim */
  784. /* > BERR is DOUBLE PRECISION array, dimension (NRHS) */
  785. /* > The componentwise relative backward error of each solution */
  786. /* > vector X(j) (i.e., the smallest relative change in */
  787. /* > any element of A or B that makes X(j) an exact solution). */
  788. /* > \endverbatim */
  789. /* > */
  790. /* > \param[out] WORK */
  791. /* > \verbatim */
  792. /* > WORK is COMPLEX*16 array, dimension (2*N) */
  793. /* > \endverbatim */
  794. /* > */
  795. /* > \param[out] RWORK */
  796. /* > \verbatim */
  797. /* > RWORK is DOUBLE PRECISION array, dimension (N) */
  798. /* > On exit, RWORK(1) contains the reciprocal pivot growth */
  799. /* > factor norm(A)/norm(U). The "f2cmax absolute element" norm is */
  800. /* > used. If RWORK(1) is much less than 1, then the stability */
  801. /* > of the LU factorization of the (equilibrated) matrix A */
  802. /* > could be poor. This also means that the solution X, condition */
  803. /* > estimator RCOND, and forward error bound FERR could be */
  804. /* > unreliable. If factorization fails with 0<INFO<=N, then */
  805. /* > RWORK(1) contains the reciprocal pivot growth factor for the */
  806. /* > leading INFO columns of A. */
  807. /* > \endverbatim */
  808. /* > */
  809. /* > \param[out] INFO */
  810. /* > \verbatim */
  811. /* > INFO is INTEGER */
  812. /* > = 0: successful exit */
  813. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  814. /* > > 0: if INFO = i, and i is */
  815. /* > <= N: U(i,i) is exactly zero. The factorization */
  816. /* > has been completed, but the factor U is exactly */
  817. /* > singular, so the solution and error bounds */
  818. /* > could not be computed. RCOND = 0 is returned. */
  819. /* > = N+1: U is nonsingular, but RCOND is less than machine */
  820. /* > precision, meaning that the matrix is singular */
  821. /* > to working precision. Nevertheless, the */
  822. /* > solution and error bounds are computed because */
  823. /* > there are a number of situations where the */
  824. /* > computed solution can be more accurate than the */
  825. /* > value of RCOND would suggest. */
  826. /* > \endverbatim */
  827. /* Authors: */
  828. /* ======== */
  829. /* > \author Univ. of Tennessee */
  830. /* > \author Univ. of California Berkeley */
  831. /* > \author Univ. of Colorado Denver */
  832. /* > \author NAG Ltd. */
  833. /* > \date April 2012 */
  834. /* > \ingroup complex16GBsolve */
  835. /* ===================================================================== */
  836. /* Subroutine */ void zgbsvx_(char *fact, char *trans, integer *n, integer *kl,
  837. integer *ku, integer *nrhs, doublecomplex *ab, integer *ldab,
  838. doublecomplex *afb, integer *ldafb, integer *ipiv, char *equed,
  839. doublereal *r__, doublereal *c__, doublecomplex *b, integer *ldb,
  840. doublecomplex *x, integer *ldx, doublereal *rcond, doublereal *ferr,
  841. doublereal *berr, doublecomplex *work, doublereal *rwork, integer *
  842. info)
  843. {
  844. /* System generated locals */
  845. integer ab_dim1, ab_offset, afb_dim1, afb_offset, b_dim1, b_offset,
  846. x_dim1, x_offset, i__1, i__2, i__3, i__4, i__5;
  847. doublereal d__1, d__2;
  848. doublecomplex z__1;
  849. /* Local variables */
  850. doublereal amax;
  851. char norm[1];
  852. integer i__, j;
  853. extern logical lsame_(char *, char *);
  854. doublereal rcmin, rcmax, anorm;
  855. logical equil;
  856. integer j1, j2;
  857. extern /* Subroutine */ void zcopy_(integer *, doublecomplex *, integer *,
  858. doublecomplex *, integer *);
  859. extern doublereal dlamch_(char *);
  860. doublereal colcnd;
  861. logical nofact;
  862. extern doublereal zlangb_(char *, integer *, integer *, integer *,
  863. doublecomplex *, integer *, doublereal *);
  864. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  865. extern void zlaqgb_(
  866. integer *, integer *, integer *, integer *, doublecomplex *,
  867. integer *, doublereal *, doublereal *, doublereal *, doublereal *,
  868. doublereal *, char *);
  869. doublereal bignum;
  870. extern /* Subroutine */ void zgbcon_(char *, integer *, integer *, integer
  871. *, doublecomplex *, integer *, integer *, doublereal *,
  872. doublereal *, doublecomplex *, doublereal *, integer *);
  873. integer infequ;
  874. logical colequ;
  875. extern doublereal zlantb_(char *, char *, char *, integer *, integer *,
  876. doublecomplex *, integer *, doublereal *);
  877. doublereal rowcnd;
  878. extern /* Subroutine */ void zgbequ_(integer *, integer *, integer *,
  879. integer *, doublecomplex *, integer *, doublereal *, doublereal *,
  880. doublereal *, doublereal *, doublereal *, integer *), zgbrfs_(
  881. char *, integer *, integer *, integer *, integer *, doublecomplex
  882. *, integer *, doublecomplex *, integer *, integer *,
  883. doublecomplex *, integer *, doublecomplex *, integer *,
  884. doublereal *, doublereal *, doublecomplex *, doublereal *,
  885. integer *), zgbtrf_(integer *, integer *, integer *,
  886. integer *, doublecomplex *, integer *, integer *, integer *);
  887. logical notran;
  888. extern /* Subroutine */ void zlacpy_(char *, integer *, integer *,
  889. doublecomplex *, integer *, doublecomplex *, integer *);
  890. doublereal smlnum;
  891. extern /* Subroutine */ void zgbtrs_(char *, integer *, integer *, integer
  892. *, integer *, doublecomplex *, integer *, integer *,
  893. doublecomplex *, integer *, integer *);
  894. logical rowequ;
  895. doublereal rpvgrw;
  896. /* -- LAPACK driver routine (version 3.7.0) -- */
  897. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  898. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  899. /* April 2012 */
  900. /* ===================================================================== */
  901. /* Moved setting of INFO = N+1 so INFO does not subsequently get */
  902. /* overwritten. Sven, 17 Mar 05. */
  903. /* ===================================================================== */
  904. /* Parameter adjustments */
  905. ab_dim1 = *ldab;
  906. ab_offset = 1 + ab_dim1 * 1;
  907. ab -= ab_offset;
  908. afb_dim1 = *ldafb;
  909. afb_offset = 1 + afb_dim1 * 1;
  910. afb -= afb_offset;
  911. --ipiv;
  912. --r__;
  913. --c__;
  914. b_dim1 = *ldb;
  915. b_offset = 1 + b_dim1 * 1;
  916. b -= b_offset;
  917. x_dim1 = *ldx;
  918. x_offset = 1 + x_dim1 * 1;
  919. x -= x_offset;
  920. --ferr;
  921. --berr;
  922. --work;
  923. --rwork;
  924. /* Function Body */
  925. *info = 0;
  926. nofact = lsame_(fact, "N");
  927. equil = lsame_(fact, "E");
  928. notran = lsame_(trans, "N");
  929. if (nofact || equil) {
  930. *(unsigned char *)equed = 'N';
  931. rowequ = FALSE_;
  932. colequ = FALSE_;
  933. } else {
  934. rowequ = lsame_(equed, "R") || lsame_(equed,
  935. "B");
  936. colequ = lsame_(equed, "C") || lsame_(equed,
  937. "B");
  938. smlnum = dlamch_("Safe minimum");
  939. bignum = 1. / smlnum;
  940. }
  941. /* Test the input parameters. */
  942. if (! nofact && ! equil && ! lsame_(fact, "F")) {
  943. *info = -1;
  944. } else if (! notran && ! lsame_(trans, "T") && !
  945. lsame_(trans, "C")) {
  946. *info = -2;
  947. } else if (*n < 0) {
  948. *info = -3;
  949. } else if (*kl < 0) {
  950. *info = -4;
  951. } else if (*ku < 0) {
  952. *info = -5;
  953. } else if (*nrhs < 0) {
  954. *info = -6;
  955. } else if (*ldab < *kl + *ku + 1) {
  956. *info = -8;
  957. } else if (*ldafb < (*kl << 1) + *ku + 1) {
  958. *info = -10;
  959. } else if (lsame_(fact, "F") && ! (rowequ || colequ
  960. || lsame_(equed, "N"))) {
  961. *info = -12;
  962. } else {
  963. if (rowequ) {
  964. rcmin = bignum;
  965. rcmax = 0.;
  966. i__1 = *n;
  967. for (j = 1; j <= i__1; ++j) {
  968. /* Computing MIN */
  969. d__1 = rcmin, d__2 = r__[j];
  970. rcmin = f2cmin(d__1,d__2);
  971. /* Computing MAX */
  972. d__1 = rcmax, d__2 = r__[j];
  973. rcmax = f2cmax(d__1,d__2);
  974. /* L10: */
  975. }
  976. if (rcmin <= 0.) {
  977. *info = -13;
  978. } else if (*n > 0) {
  979. rowcnd = f2cmax(rcmin,smlnum) / f2cmin(rcmax,bignum);
  980. } else {
  981. rowcnd = 1.;
  982. }
  983. }
  984. if (colequ && *info == 0) {
  985. rcmin = bignum;
  986. rcmax = 0.;
  987. i__1 = *n;
  988. for (j = 1; j <= i__1; ++j) {
  989. /* Computing MIN */
  990. d__1 = rcmin, d__2 = c__[j];
  991. rcmin = f2cmin(d__1,d__2);
  992. /* Computing MAX */
  993. d__1 = rcmax, d__2 = c__[j];
  994. rcmax = f2cmax(d__1,d__2);
  995. /* L20: */
  996. }
  997. if (rcmin <= 0.) {
  998. *info = -14;
  999. } else if (*n > 0) {
  1000. colcnd = f2cmax(rcmin,smlnum) / f2cmin(rcmax,bignum);
  1001. } else {
  1002. colcnd = 1.;
  1003. }
  1004. }
  1005. if (*info == 0) {
  1006. if (*ldb < f2cmax(1,*n)) {
  1007. *info = -16;
  1008. } else if (*ldx < f2cmax(1,*n)) {
  1009. *info = -18;
  1010. }
  1011. }
  1012. }
  1013. if (*info != 0) {
  1014. i__1 = -(*info);
  1015. xerbla_("ZGBSVX", &i__1, (ftnlen)6);
  1016. return;
  1017. }
  1018. if (equil) {
  1019. /* Compute row and column scalings to equilibrate the matrix A. */
  1020. zgbequ_(n, n, kl, ku, &ab[ab_offset], ldab, &r__[1], &c__[1], &rowcnd,
  1021. &colcnd, &amax, &infequ);
  1022. if (infequ == 0) {
  1023. /* Equilibrate the matrix. */
  1024. zlaqgb_(n, n, kl, ku, &ab[ab_offset], ldab, &r__[1], &c__[1], &
  1025. rowcnd, &colcnd, &amax, equed);
  1026. rowequ = lsame_(equed, "R") || lsame_(equed,
  1027. "B");
  1028. colequ = lsame_(equed, "C") || lsame_(equed,
  1029. "B");
  1030. }
  1031. }
  1032. /* Scale the right hand side. */
  1033. if (notran) {
  1034. if (rowequ) {
  1035. i__1 = *nrhs;
  1036. for (j = 1; j <= i__1; ++j) {
  1037. i__2 = *n;
  1038. for (i__ = 1; i__ <= i__2; ++i__) {
  1039. i__3 = i__ + j * b_dim1;
  1040. i__4 = i__;
  1041. i__5 = i__ + j * b_dim1;
  1042. z__1.r = r__[i__4] * b[i__5].r, z__1.i = r__[i__4] * b[
  1043. i__5].i;
  1044. b[i__3].r = z__1.r, b[i__3].i = z__1.i;
  1045. /* L30: */
  1046. }
  1047. /* L40: */
  1048. }
  1049. }
  1050. } else if (colequ) {
  1051. i__1 = *nrhs;
  1052. for (j = 1; j <= i__1; ++j) {
  1053. i__2 = *n;
  1054. for (i__ = 1; i__ <= i__2; ++i__) {
  1055. i__3 = i__ + j * b_dim1;
  1056. i__4 = i__;
  1057. i__5 = i__ + j * b_dim1;
  1058. z__1.r = c__[i__4] * b[i__5].r, z__1.i = c__[i__4] * b[i__5]
  1059. .i;
  1060. b[i__3].r = z__1.r, b[i__3].i = z__1.i;
  1061. /* L50: */
  1062. }
  1063. /* L60: */
  1064. }
  1065. }
  1066. if (nofact || equil) {
  1067. /* Compute the LU factorization of the band matrix A. */
  1068. i__1 = *n;
  1069. for (j = 1; j <= i__1; ++j) {
  1070. /* Computing MAX */
  1071. i__2 = j - *ku;
  1072. j1 = f2cmax(i__2,1);
  1073. /* Computing MIN */
  1074. i__2 = j + *kl;
  1075. j2 = f2cmin(i__2,*n);
  1076. i__2 = j2 - j1 + 1;
  1077. zcopy_(&i__2, &ab[*ku + 1 - j + j1 + j * ab_dim1], &c__1, &afb[*
  1078. kl + *ku + 1 - j + j1 + j * afb_dim1], &c__1);
  1079. /* L70: */
  1080. }
  1081. zgbtrf_(n, n, kl, ku, &afb[afb_offset], ldafb, &ipiv[1], info);
  1082. /* Return if INFO is non-zero. */
  1083. if (*info > 0) {
  1084. /* Compute the reciprocal pivot growth factor of the */
  1085. /* leading rank-deficient INFO columns of A. */
  1086. anorm = 0.;
  1087. i__1 = *info;
  1088. for (j = 1; j <= i__1; ++j) {
  1089. /* Computing MAX */
  1090. i__2 = *ku + 2 - j;
  1091. /* Computing MIN */
  1092. i__4 = *n + *ku + 1 - j, i__5 = *kl + *ku + 1;
  1093. i__3 = f2cmin(i__4,i__5);
  1094. for (i__ = f2cmax(i__2,1); i__ <= i__3; ++i__) {
  1095. /* Computing MAX */
  1096. d__1 = anorm, d__2 = z_abs(&ab[i__ + j * ab_dim1]);
  1097. anorm = f2cmax(d__1,d__2);
  1098. /* L80: */
  1099. }
  1100. /* L90: */
  1101. }
  1102. /* Computing MIN */
  1103. i__3 = *info - 1, i__2 = *kl + *ku;
  1104. i__1 = f2cmin(i__3,i__2);
  1105. /* Computing MAX */
  1106. i__4 = 1, i__5 = *kl + *ku + 2 - *info;
  1107. rpvgrw = zlantb_("M", "U", "N", info, &i__1, &afb[f2cmax(i__4,i__5)
  1108. + afb_dim1], ldafb, &rwork[1]);
  1109. if (rpvgrw == 0.) {
  1110. rpvgrw = 1.;
  1111. } else {
  1112. rpvgrw = anorm / rpvgrw;
  1113. }
  1114. rwork[1] = rpvgrw;
  1115. *rcond = 0.;
  1116. return;
  1117. }
  1118. }
  1119. /* Compute the norm of the matrix A and the */
  1120. /* reciprocal pivot growth factor RPVGRW. */
  1121. if (notran) {
  1122. *(unsigned char *)norm = '1';
  1123. } else {
  1124. *(unsigned char *)norm = 'I';
  1125. }
  1126. anorm = zlangb_(norm, n, kl, ku, &ab[ab_offset], ldab, &rwork[1]);
  1127. i__1 = *kl + *ku;
  1128. rpvgrw = zlantb_("M", "U", "N", n, &i__1, &afb[afb_offset], ldafb, &rwork[
  1129. 1]);
  1130. if (rpvgrw == 0.) {
  1131. rpvgrw = 1.;
  1132. } else {
  1133. rpvgrw = zlangb_("M", n, kl, ku, &ab[ab_offset], ldab, &rwork[1]) / rpvgrw;
  1134. }
  1135. /* Compute the reciprocal of the condition number of A. */
  1136. zgbcon_(norm, n, kl, ku, &afb[afb_offset], ldafb, &ipiv[1], &anorm, rcond,
  1137. &work[1], &rwork[1], info);
  1138. /* Compute the solution matrix X. */
  1139. zlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
  1140. zgbtrs_(trans, n, kl, ku, nrhs, &afb[afb_offset], ldafb, &ipiv[1], &x[
  1141. x_offset], ldx, info);
  1142. /* Use iterative refinement to improve the computed solution and */
  1143. /* compute error bounds and backward error estimates for it. */
  1144. zgbrfs_(trans, n, kl, ku, nrhs, &ab[ab_offset], ldab, &afb[afb_offset],
  1145. ldafb, &ipiv[1], &b[b_offset], ldb, &x[x_offset], ldx, &ferr[1], &
  1146. berr[1], &work[1], &rwork[1], info);
  1147. /* Transform the solution matrix X to a solution of the original */
  1148. /* system. */
  1149. if (notran) {
  1150. if (colequ) {
  1151. i__1 = *nrhs;
  1152. for (j = 1; j <= i__1; ++j) {
  1153. i__3 = *n;
  1154. for (i__ = 1; i__ <= i__3; ++i__) {
  1155. i__2 = i__ + j * x_dim1;
  1156. i__4 = i__;
  1157. i__5 = i__ + j * x_dim1;
  1158. z__1.r = c__[i__4] * x[i__5].r, z__1.i = c__[i__4] * x[
  1159. i__5].i;
  1160. x[i__2].r = z__1.r, x[i__2].i = z__1.i;
  1161. /* L100: */
  1162. }
  1163. /* L110: */
  1164. }
  1165. i__1 = *nrhs;
  1166. for (j = 1; j <= i__1; ++j) {
  1167. ferr[j] /= colcnd;
  1168. /* L120: */
  1169. }
  1170. }
  1171. } else if (rowequ) {
  1172. i__1 = *nrhs;
  1173. for (j = 1; j <= i__1; ++j) {
  1174. i__3 = *n;
  1175. for (i__ = 1; i__ <= i__3; ++i__) {
  1176. i__2 = i__ + j * x_dim1;
  1177. i__4 = i__;
  1178. i__5 = i__ + j * x_dim1;
  1179. z__1.r = r__[i__4] * x[i__5].r, z__1.i = r__[i__4] * x[i__5]
  1180. .i;
  1181. x[i__2].r = z__1.r, x[i__2].i = z__1.i;
  1182. /* L130: */
  1183. }
  1184. /* L140: */
  1185. }
  1186. i__1 = *nrhs;
  1187. for (j = 1; j <= i__1; ++j) {
  1188. ferr[j] /= rowcnd;
  1189. /* L150: */
  1190. }
  1191. }
  1192. /* Set INFO = N+1 if the matrix is singular to working precision. */
  1193. if (*rcond < dlamch_("Epsilon")) {
  1194. *info = *n + 1;
  1195. }
  1196. rwork[1] = rpvgrw;
  1197. return;
  1198. /* End of ZGBSVX */
  1199. } /* zgbsvx_ */