You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sgtts2.c 15 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  217. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  218. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  219. #define sig_die(s, kill) { exit(1); }
  220. #define s_stop(s, n) {exit(0);}
  221. #define z_abs(z) (cabs(Cd(z)))
  222. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  223. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  224. #define myexit_() break;
  225. #define mycycle() continue;
  226. #define myceiling(w) {ceil(w)}
  227. #define myhuge(w) {HUGE_VAL}
  228. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  229. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  230. /* -- translated by f2c (version 20000121).
  231. You must link the resulting object file with the libraries:
  232. -lf2c -lm (in that order)
  233. */
  234. /* > \brief \b SGTTS2 solves a system of linear equations with a tridiagonal matrix using the LU factorization
  235. computed by sgttrf. */
  236. /* =========== DOCUMENTATION =========== */
  237. /* Online html documentation available at */
  238. /* http://www.netlib.org/lapack/explore-html/ */
  239. /* > \htmlonly */
  240. /* > Download SGTTS2 + dependencies */
  241. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgtts2.
  242. f"> */
  243. /* > [TGZ]</a> */
  244. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgtts2.
  245. f"> */
  246. /* > [ZIP]</a> */
  247. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgtts2.
  248. f"> */
  249. /* > [TXT]</a> */
  250. /* > \endhtmlonly */
  251. /* Definition: */
  252. /* =========== */
  253. /* SUBROUTINE SGTTS2( ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB ) */
  254. /* INTEGER ITRANS, LDB, N, NRHS */
  255. /* INTEGER IPIV( * ) */
  256. /* REAL B( LDB, * ), D( * ), DL( * ), DU( * ), DU2( * ) */
  257. /* > \par Purpose: */
  258. /* ============= */
  259. /* > */
  260. /* > \verbatim */
  261. /* > */
  262. /* > SGTTS2 solves one of the systems of equations */
  263. /* > A*X = B or A**T*X = B, */
  264. /* > with a tridiagonal matrix A using the LU factorization computed */
  265. /* > by SGTTRF. */
  266. /* > \endverbatim */
  267. /* Arguments: */
  268. /* ========== */
  269. /* > \param[in] ITRANS */
  270. /* > \verbatim */
  271. /* > ITRANS is INTEGER */
  272. /* > Specifies the form of the system of equations. */
  273. /* > = 0: A * X = B (No transpose) */
  274. /* > = 1: A**T* X = B (Transpose) */
  275. /* > = 2: A**T* X = B (Conjugate transpose = Transpose) */
  276. /* > \endverbatim */
  277. /* > */
  278. /* > \param[in] N */
  279. /* > \verbatim */
  280. /* > N is INTEGER */
  281. /* > The order of the matrix A. */
  282. /* > \endverbatim */
  283. /* > */
  284. /* > \param[in] NRHS */
  285. /* > \verbatim */
  286. /* > NRHS is INTEGER */
  287. /* > The number of right hand sides, i.e., the number of columns */
  288. /* > of the matrix B. NRHS >= 0. */
  289. /* > \endverbatim */
  290. /* > */
  291. /* > \param[in] DL */
  292. /* > \verbatim */
  293. /* > DL is REAL array, dimension (N-1) */
  294. /* > The (n-1) multipliers that define the matrix L from the */
  295. /* > LU factorization of A. */
  296. /* > \endverbatim */
  297. /* > */
  298. /* > \param[in] D */
  299. /* > \verbatim */
  300. /* > D is REAL array, dimension (N) */
  301. /* > The n diagonal elements of the upper triangular matrix U from */
  302. /* > the LU factorization of A. */
  303. /* > \endverbatim */
  304. /* > */
  305. /* > \param[in] DU */
  306. /* > \verbatim */
  307. /* > DU is REAL array, dimension (N-1) */
  308. /* > The (n-1) elements of the first super-diagonal of U. */
  309. /* > \endverbatim */
  310. /* > */
  311. /* > \param[in] DU2 */
  312. /* > \verbatim */
  313. /* > DU2 is REAL array, dimension (N-2) */
  314. /* > The (n-2) elements of the second super-diagonal of U. */
  315. /* > \endverbatim */
  316. /* > */
  317. /* > \param[in] IPIV */
  318. /* > \verbatim */
  319. /* > IPIV is INTEGER array, dimension (N) */
  320. /* > The pivot indices; for 1 <= i <= n, row i of the matrix was */
  321. /* > interchanged with row IPIV(i). IPIV(i) will always be either */
  322. /* > i or i+1; IPIV(i) = i indicates a row interchange was not */
  323. /* > required. */
  324. /* > \endverbatim */
  325. /* > */
  326. /* > \param[in,out] B */
  327. /* > \verbatim */
  328. /* > B is REAL array, dimension (LDB,NRHS) */
  329. /* > On entry, the matrix of right hand side vectors B. */
  330. /* > On exit, B is overwritten by the solution vectors X. */
  331. /* > \endverbatim */
  332. /* > */
  333. /* > \param[in] LDB */
  334. /* > \verbatim */
  335. /* > LDB is INTEGER */
  336. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  337. /* > \endverbatim */
  338. /* Authors: */
  339. /* ======== */
  340. /* > \author Univ. of Tennessee */
  341. /* > \author Univ. of California Berkeley */
  342. /* > \author Univ. of Colorado Denver */
  343. /* > \author NAG Ltd. */
  344. /* > \date December 2016 */
  345. /* > \ingroup realGTcomputational */
  346. /* ===================================================================== */
  347. /* Subroutine */ void sgtts2_(integer *itrans, integer *n, integer *nrhs, real
  348. *dl, real *d__, real *du, real *du2, integer *ipiv, real *b, integer *
  349. ldb)
  350. {
  351. /* System generated locals */
  352. integer b_dim1, b_offset, i__1, i__2;
  353. /* Local variables */
  354. real temp;
  355. integer i__, j, ip;
  356. /* -- LAPACK computational routine (version 3.7.0) -- */
  357. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  358. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  359. /* December 2016 */
  360. /* ===================================================================== */
  361. /* Quick return if possible */
  362. /* Parameter adjustments */
  363. --dl;
  364. --d__;
  365. --du;
  366. --du2;
  367. --ipiv;
  368. b_dim1 = *ldb;
  369. b_offset = 1 + b_dim1 * 1;
  370. b -= b_offset;
  371. /* Function Body */
  372. if (*n == 0 || *nrhs == 0) {
  373. return;
  374. }
  375. if (*itrans == 0) {
  376. /* Solve A*X = B using the LU factorization of A, */
  377. /* overwriting each right hand side vector with its solution. */
  378. if (*nrhs <= 1) {
  379. j = 1;
  380. L10:
  381. /* Solve L*x = b. */
  382. i__1 = *n - 1;
  383. for (i__ = 1; i__ <= i__1; ++i__) {
  384. ip = ipiv[i__];
  385. temp = b[i__ + 1 - ip + i__ + j * b_dim1] - dl[i__] * b[ip +
  386. j * b_dim1];
  387. b[i__ + j * b_dim1] = b[ip + j * b_dim1];
  388. b[i__ + 1 + j * b_dim1] = temp;
  389. /* L20: */
  390. }
  391. /* Solve U*x = b. */
  392. b[*n + j * b_dim1] /= d__[*n];
  393. if (*n > 1) {
  394. b[*n - 1 + j * b_dim1] = (b[*n - 1 + j * b_dim1] - du[*n - 1]
  395. * b[*n + j * b_dim1]) / d__[*n - 1];
  396. }
  397. for (i__ = *n - 2; i__ >= 1; --i__) {
  398. b[i__ + j * b_dim1] = (b[i__ + j * b_dim1] - du[i__] * b[i__
  399. + 1 + j * b_dim1] - du2[i__] * b[i__ + 2 + j * b_dim1]
  400. ) / d__[i__];
  401. /* L30: */
  402. }
  403. if (j < *nrhs) {
  404. ++j;
  405. goto L10;
  406. }
  407. } else {
  408. i__1 = *nrhs;
  409. for (j = 1; j <= i__1; ++j) {
  410. /* Solve L*x = b. */
  411. i__2 = *n - 1;
  412. for (i__ = 1; i__ <= i__2; ++i__) {
  413. if (ipiv[i__] == i__) {
  414. b[i__ + 1 + j * b_dim1] -= dl[i__] * b[i__ + j *
  415. b_dim1];
  416. } else {
  417. temp = b[i__ + j * b_dim1];
  418. b[i__ + j * b_dim1] = b[i__ + 1 + j * b_dim1];
  419. b[i__ + 1 + j * b_dim1] = temp - dl[i__] * b[i__ + j *
  420. b_dim1];
  421. }
  422. /* L40: */
  423. }
  424. /* Solve U*x = b. */
  425. b[*n + j * b_dim1] /= d__[*n];
  426. if (*n > 1) {
  427. b[*n - 1 + j * b_dim1] = (b[*n - 1 + j * b_dim1] - du[*n
  428. - 1] * b[*n + j * b_dim1]) / d__[*n - 1];
  429. }
  430. for (i__ = *n - 2; i__ >= 1; --i__) {
  431. b[i__ + j * b_dim1] = (b[i__ + j * b_dim1] - du[i__] * b[
  432. i__ + 1 + j * b_dim1] - du2[i__] * b[i__ + 2 + j *
  433. b_dim1]) / d__[i__];
  434. /* L50: */
  435. }
  436. /* L60: */
  437. }
  438. }
  439. } else {
  440. /* Solve A**T * X = B. */
  441. if (*nrhs <= 1) {
  442. /* Solve U**T*x = b. */
  443. j = 1;
  444. L70:
  445. b[j * b_dim1 + 1] /= d__[1];
  446. if (*n > 1) {
  447. b[j * b_dim1 + 2] = (b[j * b_dim1 + 2] - du[1] * b[j * b_dim1
  448. + 1]) / d__[2];
  449. }
  450. i__1 = *n;
  451. for (i__ = 3; i__ <= i__1; ++i__) {
  452. b[i__ + j * b_dim1] = (b[i__ + j * b_dim1] - du[i__ - 1] * b[
  453. i__ - 1 + j * b_dim1] - du2[i__ - 2] * b[i__ - 2 + j *
  454. b_dim1]) / d__[i__];
  455. /* L80: */
  456. }
  457. /* Solve L**T*x = b. */
  458. for (i__ = *n - 1; i__ >= 1; --i__) {
  459. ip = ipiv[i__];
  460. temp = b[i__ + j * b_dim1] - dl[i__] * b[i__ + 1 + j * b_dim1]
  461. ;
  462. b[i__ + j * b_dim1] = b[ip + j * b_dim1];
  463. b[ip + j * b_dim1] = temp;
  464. /* L90: */
  465. }
  466. if (j < *nrhs) {
  467. ++j;
  468. goto L70;
  469. }
  470. } else {
  471. i__1 = *nrhs;
  472. for (j = 1; j <= i__1; ++j) {
  473. /* Solve U**T*x = b. */
  474. b[j * b_dim1 + 1] /= d__[1];
  475. if (*n > 1) {
  476. b[j * b_dim1 + 2] = (b[j * b_dim1 + 2] - du[1] * b[j *
  477. b_dim1 + 1]) / d__[2];
  478. }
  479. i__2 = *n;
  480. for (i__ = 3; i__ <= i__2; ++i__) {
  481. b[i__ + j * b_dim1] = (b[i__ + j * b_dim1] - du[i__ - 1] *
  482. b[i__ - 1 + j * b_dim1] - du2[i__ - 2] * b[i__ -
  483. 2 + j * b_dim1]) / d__[i__];
  484. /* L100: */
  485. }
  486. for (i__ = *n - 1; i__ >= 1; --i__) {
  487. if (ipiv[i__] == i__) {
  488. b[i__ + j * b_dim1] -= dl[i__] * b[i__ + 1 + j *
  489. b_dim1];
  490. } else {
  491. temp = b[i__ + 1 + j * b_dim1];
  492. b[i__ + 1 + j * b_dim1] = b[i__ + j * b_dim1] - dl[
  493. i__] * temp;
  494. b[i__ + j * b_dim1] = temp;
  495. }
  496. /* L110: */
  497. }
  498. /* L120: */
  499. }
  500. }
  501. }
  502. /* End of SGTTS2 */
  503. return;
  504. } /* sgtts2_ */