You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dtprfb.c 44 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static doublereal c_b12 = 1.;
  485. static doublereal c_b20 = 0.;
  486. static doublereal c_b27 = -1.;
  487. /* > \brief \b DTPRFB applies a real or complex "triangular-pentagonal" blocked reflector to a real or complex
  488. matrix, which is composed of two blocks. */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download DTPRFB + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtprfb.
  495. f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtprfb.
  498. f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtprfb.
  501. f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE DTPRFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, L, */
  507. /* V, LDV, T, LDT, A, LDA, B, LDB, WORK, LDWORK ) */
  508. /* CHARACTER DIRECT, SIDE, STOREV, TRANS */
  509. /* INTEGER K, L, LDA, LDB, LDT, LDV, LDWORK, M, N */
  510. /* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), T( LDT, * ), */
  511. /* $ V( LDV, * ), WORK( LDWORK, * ) */
  512. /* > \par Purpose: */
  513. /* ============= */
  514. /* > */
  515. /* > \verbatim */
  516. /* > */
  517. /* > DTPRFB applies a real "triangular-pentagonal" block reflector H or its */
  518. /* > transpose H**T to a real matrix C, which is composed of two */
  519. /* > blocks A and B, either from the left or right. */
  520. /* > */
  521. /* > \endverbatim */
  522. /* Arguments: */
  523. /* ========== */
  524. /* > \param[in] SIDE */
  525. /* > \verbatim */
  526. /* > SIDE is CHARACTER*1 */
  527. /* > = 'L': apply H or H**T from the Left */
  528. /* > = 'R': apply H or H**T from the Right */
  529. /* > \endverbatim */
  530. /* > */
  531. /* > \param[in] TRANS */
  532. /* > \verbatim */
  533. /* > TRANS is CHARACTER*1 */
  534. /* > = 'N': apply H (No transpose) */
  535. /* > = 'T': apply H**T (Transpose) */
  536. /* > \endverbatim */
  537. /* > */
  538. /* > \param[in] DIRECT */
  539. /* > \verbatim */
  540. /* > DIRECT is CHARACTER*1 */
  541. /* > Indicates how H is formed from a product of elementary */
  542. /* > reflectors */
  543. /* > = 'F': H = H(1) H(2) . . . H(k) (Forward) */
  544. /* > = 'B': H = H(k) . . . H(2) H(1) (Backward) */
  545. /* > \endverbatim */
  546. /* > */
  547. /* > \param[in] STOREV */
  548. /* > \verbatim */
  549. /* > STOREV is CHARACTER*1 */
  550. /* > Indicates how the vectors which define the elementary */
  551. /* > reflectors are stored: */
  552. /* > = 'C': Columns */
  553. /* > = 'R': Rows */
  554. /* > \endverbatim */
  555. /* > */
  556. /* > \param[in] M */
  557. /* > \verbatim */
  558. /* > M is INTEGER */
  559. /* > The number of rows of the matrix B. */
  560. /* > M >= 0. */
  561. /* > \endverbatim */
  562. /* > */
  563. /* > \param[in] N */
  564. /* > \verbatim */
  565. /* > N is INTEGER */
  566. /* > The number of columns of the matrix B. */
  567. /* > N >= 0. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in] K */
  571. /* > \verbatim */
  572. /* > K is INTEGER */
  573. /* > The order of the matrix T, i.e. the number of elementary */
  574. /* > reflectors whose product defines the block reflector. */
  575. /* > K >= 0. */
  576. /* > \endverbatim */
  577. /* > */
  578. /* > \param[in] L */
  579. /* > \verbatim */
  580. /* > L is INTEGER */
  581. /* > The order of the trapezoidal part of V. */
  582. /* > K >= L >= 0. See Further Details. */
  583. /* > \endverbatim */
  584. /* > */
  585. /* > \param[in] V */
  586. /* > \verbatim */
  587. /* > V is DOUBLE PRECISION array, dimension */
  588. /* > (LDV,K) if STOREV = 'C' */
  589. /* > (LDV,M) if STOREV = 'R' and SIDE = 'L' */
  590. /* > (LDV,N) if STOREV = 'R' and SIDE = 'R' */
  591. /* > The pentagonal matrix V, which contains the elementary reflectors */
  592. /* > H(1), H(2), ..., H(K). See Further Details. */
  593. /* > \endverbatim */
  594. /* > */
  595. /* > \param[in] LDV */
  596. /* > \verbatim */
  597. /* > LDV is INTEGER */
  598. /* > The leading dimension of the array V. */
  599. /* > If STOREV = 'C' and SIDE = 'L', LDV >= f2cmax(1,M); */
  600. /* > if STOREV = 'C' and SIDE = 'R', LDV >= f2cmax(1,N); */
  601. /* > if STOREV = 'R', LDV >= K. */
  602. /* > \endverbatim */
  603. /* > */
  604. /* > \param[in] T */
  605. /* > \verbatim */
  606. /* > T is DOUBLE PRECISION array, dimension (LDT,K) */
  607. /* > The triangular K-by-K matrix T in the representation of the */
  608. /* > block reflector. */
  609. /* > \endverbatim */
  610. /* > */
  611. /* > \param[in] LDT */
  612. /* > \verbatim */
  613. /* > LDT is INTEGER */
  614. /* > The leading dimension of the array T. */
  615. /* > LDT >= K. */
  616. /* > \endverbatim */
  617. /* > */
  618. /* > \param[in,out] A */
  619. /* > \verbatim */
  620. /* > A is DOUBLE PRECISION array, dimension */
  621. /* > (LDA,N) if SIDE = 'L' or (LDA,K) if SIDE = 'R' */
  622. /* > On entry, the K-by-N or M-by-K matrix A. */
  623. /* > On exit, A is overwritten by the corresponding block of */
  624. /* > H*C or H**T*C or C*H or C*H**T. See Further Details. */
  625. /* > \endverbatim */
  626. /* > */
  627. /* > \param[in] LDA */
  628. /* > \verbatim */
  629. /* > LDA is INTEGER */
  630. /* > The leading dimension of the array A. */
  631. /* > If SIDE = 'L', LDA >= f2cmax(1,K); */
  632. /* > If SIDE = 'R', LDA >= f2cmax(1,M). */
  633. /* > \endverbatim */
  634. /* > */
  635. /* > \param[in,out] B */
  636. /* > \verbatim */
  637. /* > B is DOUBLE PRECISION array, dimension (LDB,N) */
  638. /* > On entry, the M-by-N matrix B. */
  639. /* > On exit, B is overwritten by the corresponding block of */
  640. /* > H*C or H**T*C or C*H or C*H**T. See Further Details. */
  641. /* > \endverbatim */
  642. /* > */
  643. /* > \param[in] LDB */
  644. /* > \verbatim */
  645. /* > LDB is INTEGER */
  646. /* > The leading dimension of the array B. */
  647. /* > LDB >= f2cmax(1,M). */
  648. /* > \endverbatim */
  649. /* > */
  650. /* > \param[out] WORK */
  651. /* > \verbatim */
  652. /* > WORK is DOUBLE PRECISION array, dimension */
  653. /* > (LDWORK,N) if SIDE = 'L', */
  654. /* > (LDWORK,K) if SIDE = 'R'. */
  655. /* > \endverbatim */
  656. /* > */
  657. /* > \param[in] LDWORK */
  658. /* > \verbatim */
  659. /* > LDWORK is INTEGER */
  660. /* > The leading dimension of the array WORK. */
  661. /* > If SIDE = 'L', LDWORK >= K; */
  662. /* > if SIDE = 'R', LDWORK >= M. */
  663. /* > \endverbatim */
  664. /* Authors: */
  665. /* ======== */
  666. /* > \author Univ. of Tennessee */
  667. /* > \author Univ. of California Berkeley */
  668. /* > \author Univ. of Colorado Denver */
  669. /* > \author NAG Ltd. */
  670. /* > \date December 2016 */
  671. /* > \ingroup doubleOTHERauxiliary */
  672. /* > \par Further Details: */
  673. /* ===================== */
  674. /* > */
  675. /* > \verbatim */
  676. /* > */
  677. /* > The matrix C is a composite matrix formed from blocks A and B. */
  678. /* > The block B is of size M-by-N; if SIDE = 'R', A is of size M-by-K, */
  679. /* > and if SIDE = 'L', A is of size K-by-N. */
  680. /* > */
  681. /* > If SIDE = 'R' and DIRECT = 'F', C = [A B]. */
  682. /* > */
  683. /* > If SIDE = 'L' and DIRECT = 'F', C = [A] */
  684. /* > [B]. */
  685. /* > */
  686. /* > If SIDE = 'R' and DIRECT = 'B', C = [B A]. */
  687. /* > */
  688. /* > If SIDE = 'L' and DIRECT = 'B', C = [B] */
  689. /* > [A]. */
  690. /* > */
  691. /* > The pentagonal matrix V is composed of a rectangular block V1 and a */
  692. /* > trapezoidal block V2. The size of the trapezoidal block is determined by */
  693. /* > the parameter L, where 0<=L<=K. If L=K, the V2 block of V is triangular; */
  694. /* > if L=0, there is no trapezoidal block, thus V = V1 is rectangular. */
  695. /* > */
  696. /* > If DIRECT = 'F' and STOREV = 'C': V = [V1] */
  697. /* > [V2] */
  698. /* > - V2 is upper trapezoidal (first L rows of K-by-K upper triangular) */
  699. /* > */
  700. /* > If DIRECT = 'F' and STOREV = 'R': V = [V1 V2] */
  701. /* > */
  702. /* > - V2 is lower trapezoidal (first L columns of K-by-K lower triangular) */
  703. /* > */
  704. /* > If DIRECT = 'B' and STOREV = 'C': V = [V2] */
  705. /* > [V1] */
  706. /* > - V2 is lower trapezoidal (last L rows of K-by-K lower triangular) */
  707. /* > */
  708. /* > If DIRECT = 'B' and STOREV = 'R': V = [V2 V1] */
  709. /* > */
  710. /* > - V2 is upper trapezoidal (last L columns of K-by-K upper triangular) */
  711. /* > */
  712. /* > If STOREV = 'C' and SIDE = 'L', V is M-by-K with V2 L-by-K. */
  713. /* > */
  714. /* > If STOREV = 'C' and SIDE = 'R', V is N-by-K with V2 L-by-K. */
  715. /* > */
  716. /* > If STOREV = 'R' and SIDE = 'L', V is K-by-M with V2 K-by-L. */
  717. /* > */
  718. /* > If STOREV = 'R' and SIDE = 'R', V is K-by-N with V2 K-by-L. */
  719. /* > \endverbatim */
  720. /* > */
  721. /* ===================================================================== */
  722. /* Subroutine */ void dtprfb_(char *side, char *trans, char *direct, char *
  723. storev, integer *m, integer *n, integer *k, integer *l, doublereal *v,
  724. integer *ldv, doublereal *t, integer *ldt, doublereal *a, integer *
  725. lda, doublereal *b, integer *ldb, doublereal *work, integer *ldwork)
  726. {
  727. /* System generated locals */
  728. integer a_dim1, a_offset, b_dim1, b_offset, t_dim1, t_offset, v_dim1,
  729. v_offset, work_dim1, work_offset, i__1, i__2;
  730. /* Local variables */
  731. logical left, backward;
  732. integer i__, j;
  733. extern /* Subroutine */ void dgemm_(char *, char *, integer *, integer *,
  734. integer *, doublereal *, doublereal *, integer *, doublereal *,
  735. integer *, doublereal *, doublereal *, integer *);
  736. extern logical lsame_(char *, char *);
  737. logical right;
  738. extern /* Subroutine */ void dtrmm_(char *, char *, char *, char *,
  739. integer *, integer *, doublereal *, doublereal *, integer *,
  740. doublereal *, integer *);
  741. integer kp, mp, np;
  742. logical column, row, forward;
  743. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  744. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  745. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  746. /* December 2016 */
  747. /* ========================================================================== */
  748. /* Quick return if possible */
  749. /* Parameter adjustments */
  750. v_dim1 = *ldv;
  751. v_offset = 1 + v_dim1 * 1;
  752. v -= v_offset;
  753. t_dim1 = *ldt;
  754. t_offset = 1 + t_dim1 * 1;
  755. t -= t_offset;
  756. a_dim1 = *lda;
  757. a_offset = 1 + a_dim1 * 1;
  758. a -= a_offset;
  759. b_dim1 = *ldb;
  760. b_offset = 1 + b_dim1 * 1;
  761. b -= b_offset;
  762. work_dim1 = *ldwork;
  763. work_offset = 1 + work_dim1 * 1;
  764. work -= work_offset;
  765. /* Function Body */
  766. if (*m <= 0 || *n <= 0 || *k <= 0 || *l < 0) {
  767. return;
  768. }
  769. if (lsame_(storev, "C")) {
  770. column = TRUE_;
  771. row = FALSE_;
  772. } else if (lsame_(storev, "R")) {
  773. column = FALSE_;
  774. row = TRUE_;
  775. } else {
  776. column = FALSE_;
  777. row = FALSE_;
  778. }
  779. if (lsame_(side, "L")) {
  780. left = TRUE_;
  781. right = FALSE_;
  782. } else if (lsame_(side, "R")) {
  783. left = FALSE_;
  784. right = TRUE_;
  785. } else {
  786. left = FALSE_;
  787. right = FALSE_;
  788. }
  789. if (lsame_(direct, "F")) {
  790. forward = TRUE_;
  791. backward = FALSE_;
  792. } else if (lsame_(direct, "B")) {
  793. forward = FALSE_;
  794. backward = TRUE_;
  795. } else {
  796. forward = FALSE_;
  797. backward = FALSE_;
  798. }
  799. /* --------------------------------------------------------------------------- */
  800. if (column && forward && left) {
  801. /* --------------------------------------------------------------------------- */
  802. /* Let W = [ I ] (K-by-K) */
  803. /* [ V ] (M-by-K) */
  804. /* Form H C or H**T C where C = [ A ] (K-by-N) */
  805. /* [ B ] (M-by-N) */
  806. /* H = I - W T W**T or H**T = I - W T**T W**T */
  807. /* A = A - T (A + V**T B) or A = A - T**T (A + V**T B) */
  808. /* B = B - V T (A + V**T B) or B = B - V T**T (A + V**T B) */
  809. /* --------------------------------------------------------------------------- */
  810. /* Computing MIN */
  811. i__1 = *m - *l + 1;
  812. mp = f2cmin(i__1,*m);
  813. /* Computing MIN */
  814. i__1 = *l + 1;
  815. kp = f2cmin(i__1,*k);
  816. i__1 = *n;
  817. for (j = 1; j <= i__1; ++j) {
  818. i__2 = *l;
  819. for (i__ = 1; i__ <= i__2; ++i__) {
  820. work[i__ + j * work_dim1] = b[*m - *l + i__ + j * b_dim1];
  821. }
  822. }
  823. dtrmm_("L", "U", "T", "N", l, n, &c_b12, &v[mp + v_dim1], ldv, &work[
  824. work_offset], ldwork);
  825. i__1 = *m - *l;
  826. dgemm_("T", "N", l, n, &i__1, &c_b12, &v[v_offset], ldv, &b[b_offset],
  827. ldb, &c_b12, &work[work_offset], ldwork);
  828. i__1 = *k - *l;
  829. dgemm_("T", "N", &i__1, n, m, &c_b12, &v[kp * v_dim1 + 1], ldv, &b[
  830. b_offset], ldb, &c_b20, &work[kp + work_dim1], ldwork);
  831. i__1 = *n;
  832. for (j = 1; j <= i__1; ++j) {
  833. i__2 = *k;
  834. for (i__ = 1; i__ <= i__2; ++i__) {
  835. work[i__ + j * work_dim1] += a[i__ + j * a_dim1];
  836. }
  837. }
  838. dtrmm_("L", "U", trans, "N", k, n, &c_b12, &t[t_offset], ldt, &work[
  839. work_offset], ldwork);
  840. i__1 = *n;
  841. for (j = 1; j <= i__1; ++j) {
  842. i__2 = *k;
  843. for (i__ = 1; i__ <= i__2; ++i__) {
  844. a[i__ + j * a_dim1] -= work[i__ + j * work_dim1];
  845. }
  846. }
  847. i__1 = *m - *l;
  848. dgemm_("N", "N", &i__1, n, k, &c_b27, &v[v_offset], ldv, &work[
  849. work_offset], ldwork, &c_b12, &b[b_offset], ldb);
  850. i__1 = *k - *l;
  851. dgemm_("N", "N", l, n, &i__1, &c_b27, &v[mp + kp * v_dim1], ldv, &
  852. work[kp + work_dim1], ldwork, &c_b12, &b[mp + b_dim1], ldb);
  853. dtrmm_("L", "U", "N", "N", l, n, &c_b12, &v[mp + v_dim1], ldv, &work[
  854. work_offset], ldwork);
  855. i__1 = *n;
  856. for (j = 1; j <= i__1; ++j) {
  857. i__2 = *l;
  858. for (i__ = 1; i__ <= i__2; ++i__) {
  859. b[*m - *l + i__ + j * b_dim1] -= work[i__ + j * work_dim1];
  860. }
  861. }
  862. /* --------------------------------------------------------------------------- */
  863. } else if (column && forward && right) {
  864. /* --------------------------------------------------------------------------- */
  865. /* Let W = [ I ] (K-by-K) */
  866. /* [ V ] (N-by-K) */
  867. /* Form C H or C H**T where C = [ A B ] (A is M-by-K, B is M-by-N) */
  868. /* H = I - W T W**T or H**T = I - W T**T W**T */
  869. /* A = A - (A + B V) T or A = A - (A + B V) T**T */
  870. /* B = B - (A + B V) T V**T or B = B - (A + B V) T**T V**T */
  871. /* --------------------------------------------------------------------------- */
  872. /* Computing MIN */
  873. i__1 = *n - *l + 1;
  874. np = f2cmin(i__1,*n);
  875. /* Computing MIN */
  876. i__1 = *l + 1;
  877. kp = f2cmin(i__1,*k);
  878. i__1 = *l;
  879. for (j = 1; j <= i__1; ++j) {
  880. i__2 = *m;
  881. for (i__ = 1; i__ <= i__2; ++i__) {
  882. work[i__ + j * work_dim1] = b[i__ + (*n - *l + j) * b_dim1];
  883. }
  884. }
  885. dtrmm_("R", "U", "N", "N", m, l, &c_b12, &v[np + v_dim1], ldv, &work[
  886. work_offset], ldwork);
  887. i__1 = *n - *l;
  888. dgemm_("N", "N", m, l, &i__1, &c_b12, &b[b_offset], ldb, &v[v_offset],
  889. ldv, &c_b12, &work[work_offset], ldwork);
  890. i__1 = *k - *l;
  891. dgemm_("N", "N", m, &i__1, n, &c_b12, &b[b_offset], ldb, &v[kp *
  892. v_dim1 + 1], ldv, &c_b20, &work[kp * work_dim1 + 1], ldwork);
  893. i__1 = *k;
  894. for (j = 1; j <= i__1; ++j) {
  895. i__2 = *m;
  896. for (i__ = 1; i__ <= i__2; ++i__) {
  897. work[i__ + j * work_dim1] += a[i__ + j * a_dim1];
  898. }
  899. }
  900. dtrmm_("R", "U", trans, "N", m, k, &c_b12, &t[t_offset], ldt, &work[
  901. work_offset], ldwork);
  902. i__1 = *k;
  903. for (j = 1; j <= i__1; ++j) {
  904. i__2 = *m;
  905. for (i__ = 1; i__ <= i__2; ++i__) {
  906. a[i__ + j * a_dim1] -= work[i__ + j * work_dim1];
  907. }
  908. }
  909. i__1 = *n - *l;
  910. dgemm_("N", "T", m, &i__1, k, &c_b27, &work[work_offset], ldwork, &v[
  911. v_offset], ldv, &c_b12, &b[b_offset], ldb);
  912. i__1 = *k - *l;
  913. dgemm_("N", "T", m, l, &i__1, &c_b27, &work[kp * work_dim1 + 1],
  914. ldwork, &v[np + kp * v_dim1], ldv, &c_b12, &b[np * b_dim1 + 1]
  915. , ldb);
  916. dtrmm_("R", "U", "T", "N", m, l, &c_b12, &v[np + v_dim1], ldv, &work[
  917. work_offset], ldwork);
  918. i__1 = *l;
  919. for (j = 1; j <= i__1; ++j) {
  920. i__2 = *m;
  921. for (i__ = 1; i__ <= i__2; ++i__) {
  922. b[i__ + (*n - *l + j) * b_dim1] -= work[i__ + j * work_dim1];
  923. }
  924. }
  925. /* --------------------------------------------------------------------------- */
  926. } else if (column && backward && left) {
  927. /* --------------------------------------------------------------------------- */
  928. /* Let W = [ V ] (M-by-K) */
  929. /* [ I ] (K-by-K) */
  930. /* Form H C or H**T C where C = [ B ] (M-by-N) */
  931. /* [ A ] (K-by-N) */
  932. /* H = I - W T W**T or H**T = I - W T**T W**T */
  933. /* A = A - T (A + V**T B) or A = A - T**T (A + V**T B) */
  934. /* B = B - V T (A + V**T B) or B = B - V T**T (A + V**T B) */
  935. /* --------------------------------------------------------------------------- */
  936. /* Computing MIN */
  937. i__1 = *l + 1;
  938. mp = f2cmin(i__1,*m);
  939. /* Computing MIN */
  940. i__1 = *k - *l + 1;
  941. kp = f2cmin(i__1,*k);
  942. i__1 = *n;
  943. for (j = 1; j <= i__1; ++j) {
  944. i__2 = *l;
  945. for (i__ = 1; i__ <= i__2; ++i__) {
  946. work[*k - *l + i__ + j * work_dim1] = b[i__ + j * b_dim1];
  947. }
  948. }
  949. dtrmm_("L", "L", "T", "N", l, n, &c_b12, &v[kp * v_dim1 + 1], ldv, &
  950. work[kp + work_dim1], ldwork);
  951. i__1 = *m - *l;
  952. dgemm_("T", "N", l, n, &i__1, &c_b12, &v[mp + kp * v_dim1], ldv, &b[
  953. mp + b_dim1], ldb, &c_b12, &work[kp + work_dim1], ldwork);
  954. i__1 = *k - *l;
  955. dgemm_("T", "N", &i__1, n, m, &c_b12, &v[v_offset], ldv, &b[b_offset],
  956. ldb, &c_b20, &work[work_offset], ldwork);
  957. i__1 = *n;
  958. for (j = 1; j <= i__1; ++j) {
  959. i__2 = *k;
  960. for (i__ = 1; i__ <= i__2; ++i__) {
  961. work[i__ + j * work_dim1] += a[i__ + j * a_dim1];
  962. }
  963. }
  964. dtrmm_("L", "L", trans, "N", k, n, &c_b12, &t[t_offset], ldt, &work[
  965. work_offset], ldwork);
  966. i__1 = *n;
  967. for (j = 1; j <= i__1; ++j) {
  968. i__2 = *k;
  969. for (i__ = 1; i__ <= i__2; ++i__) {
  970. a[i__ + j * a_dim1] -= work[i__ + j * work_dim1];
  971. }
  972. }
  973. i__1 = *m - *l;
  974. dgemm_("N", "N", &i__1, n, k, &c_b27, &v[mp + v_dim1], ldv, &work[
  975. work_offset], ldwork, &c_b12, &b[mp + b_dim1], ldb);
  976. i__1 = *k - *l;
  977. dgemm_("N", "N", l, n, &i__1, &c_b27, &v[v_offset], ldv, &work[
  978. work_offset], ldwork, &c_b12, &b[b_offset], ldb);
  979. dtrmm_("L", "L", "N", "N", l, n, &c_b12, &v[kp * v_dim1 + 1], ldv, &
  980. work[kp + work_dim1], ldwork);
  981. i__1 = *n;
  982. for (j = 1; j <= i__1; ++j) {
  983. i__2 = *l;
  984. for (i__ = 1; i__ <= i__2; ++i__) {
  985. b[i__ + j * b_dim1] -= work[*k - *l + i__ + j * work_dim1];
  986. }
  987. }
  988. /* --------------------------------------------------------------------------- */
  989. } else if (column && backward && right) {
  990. /* --------------------------------------------------------------------------- */
  991. /* Let W = [ V ] (N-by-K) */
  992. /* [ I ] (K-by-K) */
  993. /* Form C H or C H**T where C = [ B A ] (B is M-by-N, A is M-by-K) */
  994. /* H = I - W T W**T or H**T = I - W T**T W**T */
  995. /* A = A - (A + B V) T or A = A - (A + B V) T**T */
  996. /* B = B - (A + B V) T V**T or B = B - (A + B V) T**T V**T */
  997. /* --------------------------------------------------------------------------- */
  998. /* Computing MIN */
  999. i__1 = *l + 1;
  1000. np = f2cmin(i__1,*n);
  1001. /* Computing MIN */
  1002. i__1 = *k - *l + 1;
  1003. kp = f2cmin(i__1,*k);
  1004. i__1 = *l;
  1005. for (j = 1; j <= i__1; ++j) {
  1006. i__2 = *m;
  1007. for (i__ = 1; i__ <= i__2; ++i__) {
  1008. work[i__ + (*k - *l + j) * work_dim1] = b[i__ + j * b_dim1];
  1009. }
  1010. }
  1011. dtrmm_("R", "L", "N", "N", m, l, &c_b12, &v[kp * v_dim1 + 1], ldv, &
  1012. work[kp * work_dim1 + 1], ldwork);
  1013. i__1 = *n - *l;
  1014. dgemm_("N", "N", m, l, &i__1, &c_b12, &b[np * b_dim1 + 1], ldb, &v[np
  1015. + kp * v_dim1], ldv, &c_b12, &work[kp * work_dim1 + 1],
  1016. ldwork);
  1017. i__1 = *k - *l;
  1018. dgemm_("N", "N", m, &i__1, n, &c_b12, &b[b_offset], ldb, &v[v_offset],
  1019. ldv, &c_b20, &work[work_offset], ldwork);
  1020. i__1 = *k;
  1021. for (j = 1; j <= i__1; ++j) {
  1022. i__2 = *m;
  1023. for (i__ = 1; i__ <= i__2; ++i__) {
  1024. work[i__ + j * work_dim1] += a[i__ + j * a_dim1];
  1025. }
  1026. }
  1027. dtrmm_("R", "L", trans, "N", m, k, &c_b12, &t[t_offset], ldt, &work[
  1028. work_offset], ldwork);
  1029. i__1 = *k;
  1030. for (j = 1; j <= i__1; ++j) {
  1031. i__2 = *m;
  1032. for (i__ = 1; i__ <= i__2; ++i__) {
  1033. a[i__ + j * a_dim1] -= work[i__ + j * work_dim1];
  1034. }
  1035. }
  1036. i__1 = *n - *l;
  1037. dgemm_("N", "T", m, &i__1, k, &c_b27, &work[work_offset], ldwork, &v[
  1038. np + v_dim1], ldv, &c_b12, &b[np * b_dim1 + 1], ldb);
  1039. i__1 = *k - *l;
  1040. dgemm_("N", "T", m, l, &i__1, &c_b27, &work[work_offset], ldwork, &v[
  1041. v_offset], ldv, &c_b12, &b[b_offset], ldb);
  1042. dtrmm_("R", "L", "T", "N", m, l, &c_b12, &v[kp * v_dim1 + 1], ldv, &
  1043. work[kp * work_dim1 + 1], ldwork);
  1044. i__1 = *l;
  1045. for (j = 1; j <= i__1; ++j) {
  1046. i__2 = *m;
  1047. for (i__ = 1; i__ <= i__2; ++i__) {
  1048. b[i__ + j * b_dim1] -= work[i__ + (*k - *l + j) * work_dim1];
  1049. }
  1050. }
  1051. /* --------------------------------------------------------------------------- */
  1052. } else if (row && forward && left) {
  1053. /* --------------------------------------------------------------------------- */
  1054. /* Let W = [ I V ] ( I is K-by-K, V is K-by-M ) */
  1055. /* Form H C or H**T C where C = [ A ] (K-by-N) */
  1056. /* [ B ] (M-by-N) */
  1057. /* H = I - W**T T W or H**T = I - W**T T**T W */
  1058. /* A = A - T (A + V B) or A = A - T**T (A + V B) */
  1059. /* B = B - V**T T (A + V B) or B = B - V**T T**T (A + V B) */
  1060. /* --------------------------------------------------------------------------- */
  1061. /* Computing MIN */
  1062. i__1 = *m - *l + 1;
  1063. mp = f2cmin(i__1,*m);
  1064. /* Computing MIN */
  1065. i__1 = *l + 1;
  1066. kp = f2cmin(i__1,*k);
  1067. i__1 = *n;
  1068. for (j = 1; j <= i__1; ++j) {
  1069. i__2 = *l;
  1070. for (i__ = 1; i__ <= i__2; ++i__) {
  1071. work[i__ + j * work_dim1] = b[*m - *l + i__ + j * b_dim1];
  1072. }
  1073. }
  1074. dtrmm_("L", "L", "N", "N", l, n, &c_b12, &v[mp * v_dim1 + 1], ldv, &
  1075. work[work_offset], ldb);
  1076. i__1 = *m - *l;
  1077. dgemm_("N", "N", l, n, &i__1, &c_b12, &v[v_offset], ldv, &b[b_offset],
  1078. ldb, &c_b12, &work[work_offset], ldwork);
  1079. i__1 = *k - *l;
  1080. dgemm_("N", "N", &i__1, n, m, &c_b12, &v[kp + v_dim1], ldv, &b[
  1081. b_offset], ldb, &c_b20, &work[kp + work_dim1], ldwork);
  1082. i__1 = *n;
  1083. for (j = 1; j <= i__1; ++j) {
  1084. i__2 = *k;
  1085. for (i__ = 1; i__ <= i__2; ++i__) {
  1086. work[i__ + j * work_dim1] += a[i__ + j * a_dim1];
  1087. }
  1088. }
  1089. dtrmm_("L", "U", trans, "N", k, n, &c_b12, &t[t_offset], ldt, &work[
  1090. work_offset], ldwork);
  1091. i__1 = *n;
  1092. for (j = 1; j <= i__1; ++j) {
  1093. i__2 = *k;
  1094. for (i__ = 1; i__ <= i__2; ++i__) {
  1095. a[i__ + j * a_dim1] -= work[i__ + j * work_dim1];
  1096. }
  1097. }
  1098. i__1 = *m - *l;
  1099. dgemm_("T", "N", &i__1, n, k, &c_b27, &v[v_offset], ldv, &work[
  1100. work_offset], ldwork, &c_b12, &b[b_offset], ldb);
  1101. i__1 = *k - *l;
  1102. dgemm_("T", "N", l, n, &i__1, &c_b27, &v[kp + mp * v_dim1], ldv, &
  1103. work[kp + work_dim1], ldwork, &c_b12, &b[mp + b_dim1], ldb);
  1104. dtrmm_("L", "L", "T", "N", l, n, &c_b12, &v[mp * v_dim1 + 1], ldv, &
  1105. work[work_offset], ldwork);
  1106. i__1 = *n;
  1107. for (j = 1; j <= i__1; ++j) {
  1108. i__2 = *l;
  1109. for (i__ = 1; i__ <= i__2; ++i__) {
  1110. b[*m - *l + i__ + j * b_dim1] -= work[i__ + j * work_dim1];
  1111. }
  1112. }
  1113. /* --------------------------------------------------------------------------- */
  1114. } else if (row && forward && right) {
  1115. /* --------------------------------------------------------------------------- */
  1116. /* Let W = [ I V ] ( I is K-by-K, V is K-by-N ) */
  1117. /* Form C H or C H**T where C = [ A B ] (A is M-by-K, B is M-by-N) */
  1118. /* H = I - W**T T W or H**T = I - W**T T**T W */
  1119. /* A = A - (A + B V**T) T or A = A - (A + B V**T) T**T */
  1120. /* B = B - (A + B V**T) T V or B = B - (A + B V**T) T**T V */
  1121. /* --------------------------------------------------------------------------- */
  1122. /* Computing MIN */
  1123. i__1 = *n - *l + 1;
  1124. np = f2cmin(i__1,*n);
  1125. /* Computing MIN */
  1126. i__1 = *l + 1;
  1127. kp = f2cmin(i__1,*k);
  1128. i__1 = *l;
  1129. for (j = 1; j <= i__1; ++j) {
  1130. i__2 = *m;
  1131. for (i__ = 1; i__ <= i__2; ++i__) {
  1132. work[i__ + j * work_dim1] = b[i__ + (*n - *l + j) * b_dim1];
  1133. }
  1134. }
  1135. dtrmm_("R", "L", "T", "N", m, l, &c_b12, &v[np * v_dim1 + 1], ldv, &
  1136. work[work_offset], ldwork);
  1137. i__1 = *n - *l;
  1138. dgemm_("N", "T", m, l, &i__1, &c_b12, &b[b_offset], ldb, &v[v_offset],
  1139. ldv, &c_b12, &work[work_offset], ldwork);
  1140. i__1 = *k - *l;
  1141. dgemm_("N", "T", m, &i__1, n, &c_b12, &b[b_offset], ldb, &v[kp +
  1142. v_dim1], ldv, &c_b20, &work[kp * work_dim1 + 1], ldwork);
  1143. i__1 = *k;
  1144. for (j = 1; j <= i__1; ++j) {
  1145. i__2 = *m;
  1146. for (i__ = 1; i__ <= i__2; ++i__) {
  1147. work[i__ + j * work_dim1] += a[i__ + j * a_dim1];
  1148. }
  1149. }
  1150. dtrmm_("R", "U", trans, "N", m, k, &c_b12, &t[t_offset], ldt, &work[
  1151. work_offset], ldwork);
  1152. i__1 = *k;
  1153. for (j = 1; j <= i__1; ++j) {
  1154. i__2 = *m;
  1155. for (i__ = 1; i__ <= i__2; ++i__) {
  1156. a[i__ + j * a_dim1] -= work[i__ + j * work_dim1];
  1157. }
  1158. }
  1159. i__1 = *n - *l;
  1160. dgemm_("N", "N", m, &i__1, k, &c_b27, &work[work_offset], ldwork, &v[
  1161. v_offset], ldv, &c_b12, &b[b_offset], ldb);
  1162. i__1 = *k - *l;
  1163. dgemm_("N", "N", m, l, &i__1, &c_b27, &work[kp * work_dim1 + 1],
  1164. ldwork, &v[kp + np * v_dim1], ldv, &c_b12, &b[np * b_dim1 + 1]
  1165. , ldb);
  1166. dtrmm_("R", "L", "N", "N", m, l, &c_b12, &v[np * v_dim1 + 1], ldv, &
  1167. work[work_offset], ldwork);
  1168. i__1 = *l;
  1169. for (j = 1; j <= i__1; ++j) {
  1170. i__2 = *m;
  1171. for (i__ = 1; i__ <= i__2; ++i__) {
  1172. b[i__ + (*n - *l + j) * b_dim1] -= work[i__ + j * work_dim1];
  1173. }
  1174. }
  1175. /* --------------------------------------------------------------------------- */
  1176. } else if (row && backward && left) {
  1177. /* --------------------------------------------------------------------------- */
  1178. /* Let W = [ V I ] ( I is K-by-K, V is K-by-M ) */
  1179. /* Form H C or H**T C where C = [ B ] (M-by-N) */
  1180. /* [ A ] (K-by-N) */
  1181. /* H = I - W**T T W or H**T = I - W**T T**T W */
  1182. /* A = A - T (A + V B) or A = A - T**T (A + V B) */
  1183. /* B = B - V**T T (A + V B) or B = B - V**T T**T (A + V B) */
  1184. /* --------------------------------------------------------------------------- */
  1185. /* Computing MIN */
  1186. i__1 = *l + 1;
  1187. mp = f2cmin(i__1,*m);
  1188. /* Computing MIN */
  1189. i__1 = *k - *l + 1;
  1190. kp = f2cmin(i__1,*k);
  1191. i__1 = *n;
  1192. for (j = 1; j <= i__1; ++j) {
  1193. i__2 = *l;
  1194. for (i__ = 1; i__ <= i__2; ++i__) {
  1195. work[*k - *l + i__ + j * work_dim1] = b[i__ + j * b_dim1];
  1196. }
  1197. }
  1198. dtrmm_("L", "U", "N", "N", l, n, &c_b12, &v[kp + v_dim1], ldv, &work[
  1199. kp + work_dim1], ldwork);
  1200. i__1 = *m - *l;
  1201. dgemm_("N", "N", l, n, &i__1, &c_b12, &v[kp + mp * v_dim1], ldv, &b[
  1202. mp + b_dim1], ldb, &c_b12, &work[kp + work_dim1], ldwork);
  1203. i__1 = *k - *l;
  1204. dgemm_("N", "N", &i__1, n, m, &c_b12, &v[v_offset], ldv, &b[b_offset],
  1205. ldb, &c_b20, &work[work_offset], ldwork);
  1206. i__1 = *n;
  1207. for (j = 1; j <= i__1; ++j) {
  1208. i__2 = *k;
  1209. for (i__ = 1; i__ <= i__2; ++i__) {
  1210. work[i__ + j * work_dim1] += a[i__ + j * a_dim1];
  1211. }
  1212. }
  1213. dtrmm_("L", "L ", trans, "N", k, n, &c_b12, &t[t_offset], ldt, &work[
  1214. work_offset], ldwork);
  1215. i__1 = *n;
  1216. for (j = 1; j <= i__1; ++j) {
  1217. i__2 = *k;
  1218. for (i__ = 1; i__ <= i__2; ++i__) {
  1219. a[i__ + j * a_dim1] -= work[i__ + j * work_dim1];
  1220. }
  1221. }
  1222. i__1 = *m - *l;
  1223. dgemm_("T", "N", &i__1, n, k, &c_b27, &v[mp * v_dim1 + 1], ldv, &work[
  1224. work_offset], ldwork, &c_b12, &b[mp + b_dim1], ldb);
  1225. i__1 = *k - *l;
  1226. dgemm_("T", "N", l, n, &i__1, &c_b27, &v[v_offset], ldv, &work[
  1227. work_offset], ldwork, &c_b12, &b[b_offset], ldb);
  1228. dtrmm_("L", "U", "T", "N", l, n, &c_b12, &v[kp + v_dim1], ldv, &work[
  1229. kp + work_dim1], ldwork);
  1230. i__1 = *n;
  1231. for (j = 1; j <= i__1; ++j) {
  1232. i__2 = *l;
  1233. for (i__ = 1; i__ <= i__2; ++i__) {
  1234. b[i__ + j * b_dim1] -= work[*k - *l + i__ + j * work_dim1];
  1235. }
  1236. }
  1237. /* --------------------------------------------------------------------------- */
  1238. } else if (row && backward && right) {
  1239. /* --------------------------------------------------------------------------- */
  1240. /* Let W = [ V I ] ( I is K-by-K, V is K-by-N ) */
  1241. /* Form C H or C H**T where C = [ B A ] (A is M-by-K, B is M-by-N) */
  1242. /* H = I - W**T T W or H**T = I - W**T T**T W */
  1243. /* A = A - (A + B V**T) T or A = A - (A + B V**T) T**T */
  1244. /* B = B - (A + B V**T) T V or B = B - (A + B V**T) T**T V */
  1245. /* --------------------------------------------------------------------------- */
  1246. /* Computing MIN */
  1247. i__1 = *l + 1;
  1248. np = f2cmin(i__1,*n);
  1249. /* Computing MIN */
  1250. i__1 = *k - *l + 1;
  1251. kp = f2cmin(i__1,*k);
  1252. i__1 = *l;
  1253. for (j = 1; j <= i__1; ++j) {
  1254. i__2 = *m;
  1255. for (i__ = 1; i__ <= i__2; ++i__) {
  1256. work[i__ + (*k - *l + j) * work_dim1] = b[i__ + j * b_dim1];
  1257. }
  1258. }
  1259. dtrmm_("R", "U", "T", "N", m, l, &c_b12, &v[kp + v_dim1], ldv, &work[
  1260. kp * work_dim1 + 1], ldwork);
  1261. i__1 = *n - *l;
  1262. dgemm_("N", "T", m, l, &i__1, &c_b12, &b[np * b_dim1 + 1], ldb, &v[kp
  1263. + np * v_dim1], ldv, &c_b12, &work[kp * work_dim1 + 1],
  1264. ldwork);
  1265. i__1 = *k - *l;
  1266. dgemm_("N", "T", m, &i__1, n, &c_b12, &b[b_offset], ldb, &v[v_offset],
  1267. ldv, &c_b20, &work[work_offset], ldwork);
  1268. i__1 = *k;
  1269. for (j = 1; j <= i__1; ++j) {
  1270. i__2 = *m;
  1271. for (i__ = 1; i__ <= i__2; ++i__) {
  1272. work[i__ + j * work_dim1] += a[i__ + j * a_dim1];
  1273. }
  1274. }
  1275. dtrmm_("R", "L", trans, "N", m, k, &c_b12, &t[t_offset], ldt, &work[
  1276. work_offset], ldwork);
  1277. i__1 = *k;
  1278. for (j = 1; j <= i__1; ++j) {
  1279. i__2 = *m;
  1280. for (i__ = 1; i__ <= i__2; ++i__) {
  1281. a[i__ + j * a_dim1] -= work[i__ + j * work_dim1];
  1282. }
  1283. }
  1284. i__1 = *n - *l;
  1285. dgemm_("N", "N", m, &i__1, k, &c_b27, &work[work_offset], ldwork, &v[
  1286. np * v_dim1 + 1], ldv, &c_b12, &b[np * b_dim1 + 1], ldb);
  1287. i__1 = *k - *l;
  1288. dgemm_("N", "N", m, l, &i__1, &c_b27, &work[work_offset], ldwork, &v[
  1289. v_offset], ldv, &c_b12, &b[b_offset], ldb);
  1290. dtrmm_("R", "U", "N", "N", m, l, &c_b12, &v[kp + v_dim1], ldv, &work[
  1291. kp * work_dim1 + 1], ldwork);
  1292. i__1 = *l;
  1293. for (j = 1; j <= i__1; ++j) {
  1294. i__2 = *m;
  1295. for (i__ = 1; i__ <= i__2; ++i__) {
  1296. b[i__ + j * b_dim1] -= work[i__ + (*k - *l + j) * work_dim1];
  1297. }
  1298. }
  1299. }
  1300. return;
  1301. /* End of DTPRFB */
  1302. } /* dtprfb_ */