You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zsytri_rook.c 32 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle_() continue;
  234. #define myceiling_(w) {ceil(w)}
  235. #define myhuge_(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static doublecomplex c_b1 = {1.,0.};
  485. static doublecomplex c_b2 = {0.,0.};
  486. static integer c__1 = 1;
  487. /* > \brief \b ZSYTRI_ROOK */
  488. /* =========== DOCUMENTATION =========== */
  489. /* Online html documentation available at */
  490. /* http://www.netlib.org/lapack/explore-html/ */
  491. /* > \htmlonly */
  492. /* > Download ZSYTRI_ROOK + dependencies */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsytri_
  494. rook.f"> */
  495. /* > [TGZ]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsytri_
  497. rook.f"> */
  498. /* > [ZIP]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsytri_
  500. rook.f"> */
  501. /* > [TXT]</a> */
  502. /* > \endhtmlonly */
  503. /* Definition: */
  504. /* =========== */
  505. /* SUBROUTINE ZSYTRI_ROOK( UPLO, N, A, LDA, IPIV, WORK, INFO ) */
  506. /* CHARACTER UPLO */
  507. /* INTEGER INFO, LDA, N */
  508. /* INTEGER IPIV( * ) */
  509. /* COMPLEX*16 A( LDA, * ), WORK( * ) */
  510. /* > \par Purpose: */
  511. /* ============= */
  512. /* > */
  513. /* > \verbatim */
  514. /* > */
  515. /* > ZSYTRI_ROOK computes the inverse of a complex symmetric */
  516. /* > matrix A using the factorization A = U*D*U**T or A = L*D*L**T */
  517. /* > computed by ZSYTRF_ROOK. */
  518. /* > \endverbatim */
  519. /* Arguments: */
  520. /* ========== */
  521. /* > \param[in] UPLO */
  522. /* > \verbatim */
  523. /* > UPLO is CHARACTER*1 */
  524. /* > Specifies whether the details of the factorization are stored */
  525. /* > as an upper or lower triangular matrix. */
  526. /* > = 'U': Upper triangular, form is A = U*D*U**T; */
  527. /* > = 'L': Lower triangular, form is A = L*D*L**T. */
  528. /* > \endverbatim */
  529. /* > */
  530. /* > \param[in] N */
  531. /* > \verbatim */
  532. /* > N is INTEGER */
  533. /* > The order of the matrix A. N >= 0. */
  534. /* > \endverbatim */
  535. /* > */
  536. /* > \param[in,out] A */
  537. /* > \verbatim */
  538. /* > A is COMPLEX*16 array, dimension (LDA,N) */
  539. /* > On entry, the block diagonal matrix D and the multipliers */
  540. /* > used to obtain the factor U or L as computed by ZSYTRF_ROOK. */
  541. /* > */
  542. /* > On exit, if INFO = 0, the (symmetric) inverse of the original */
  543. /* > matrix. If UPLO = 'U', the upper triangular part of the */
  544. /* > inverse is formed and the part of A below the diagonal is not */
  545. /* > referenced; if UPLO = 'L' the lower triangular part of the */
  546. /* > inverse is formed and the part of A above the diagonal is */
  547. /* > not referenced. */
  548. /* > \endverbatim */
  549. /* > */
  550. /* > \param[in] LDA */
  551. /* > \verbatim */
  552. /* > LDA is INTEGER */
  553. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  554. /* > \endverbatim */
  555. /* > */
  556. /* > \param[in] IPIV */
  557. /* > \verbatim */
  558. /* > IPIV is INTEGER array, dimension (N) */
  559. /* > Details of the interchanges and the block structure of D */
  560. /* > as determined by ZSYTRF_ROOK. */
  561. /* > \endverbatim */
  562. /* > */
  563. /* > \param[out] WORK */
  564. /* > \verbatim */
  565. /* > WORK is COMPLEX*16 array, dimension (N) */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[out] INFO */
  569. /* > \verbatim */
  570. /* > INFO is INTEGER */
  571. /* > = 0: successful exit */
  572. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  573. /* > > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its */
  574. /* > inverse could not be computed. */
  575. /* > \endverbatim */
  576. /* Authors: */
  577. /* ======== */
  578. /* > \author Univ. of Tennessee */
  579. /* > \author Univ. of California Berkeley */
  580. /* > \author Univ. of Colorado Denver */
  581. /* > \author NAG Ltd. */
  582. /* > \date December 2016 */
  583. /* > \ingroup complex16SYcomputational */
  584. /* > \par Contributors: */
  585. /* ================== */
  586. /* > */
  587. /* > \verbatim */
  588. /* > */
  589. /* > December 2016, Igor Kozachenko, */
  590. /* > Computer Science Division, */
  591. /* > University of California, Berkeley */
  592. /* > */
  593. /* > September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, */
  594. /* > School of Mathematics, */
  595. /* > University of Manchester */
  596. /* > */
  597. /* > \endverbatim */
  598. /* ===================================================================== */
  599. /* Subroutine */ void zsytri_rook_(char *uplo, integer *n, doublecomplex *a,
  600. integer *lda, integer *ipiv, doublecomplex *work, integer *info)
  601. {
  602. /* System generated locals */
  603. integer a_dim1, a_offset, i__1, i__2, i__3;
  604. doublecomplex z__1, z__2, z__3;
  605. /* Local variables */
  606. doublecomplex temp, akkp1, d__;
  607. integer k;
  608. doublecomplex t;
  609. extern logical lsame_(char *, char *);
  610. integer kstep;
  611. logical upper;
  612. extern /* Subroutine */ void zcopy_(integer *, doublecomplex *, integer *,
  613. doublecomplex *, integer *);
  614. extern /* Double Complex */ VOID zdotu_(doublecomplex *, integer *,
  615. doublecomplex *, integer *, doublecomplex *, integer *);
  616. extern /* Subroutine */ void zswap_(integer *, doublecomplex *, integer *,
  617. doublecomplex *, integer *), zsymv_(char *, integer *,
  618. doublecomplex *, doublecomplex *, integer *, doublecomplex *,
  619. integer *, doublecomplex *, doublecomplex *, integer *);
  620. doublecomplex ak;
  621. integer kp;
  622. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  623. doublecomplex akp1;
  624. /* -- LAPACK computational routine (version 3.7.0) -- */
  625. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  626. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  627. /* December 2016 */
  628. /* ===================================================================== */
  629. /* Test the input parameters. */
  630. /* Parameter adjustments */
  631. a_dim1 = *lda;
  632. a_offset = 1 + a_dim1 * 1;
  633. a -= a_offset;
  634. --ipiv;
  635. --work;
  636. /* Function Body */
  637. *info = 0;
  638. upper = lsame_(uplo, "U");
  639. if (! upper && ! lsame_(uplo, "L")) {
  640. *info = -1;
  641. } else if (*n < 0) {
  642. *info = -2;
  643. } else if (*lda < f2cmax(1,*n)) {
  644. *info = -4;
  645. }
  646. if (*info != 0) {
  647. i__1 = -(*info);
  648. xerbla_("ZSYTRI_ROOK", &i__1, (ftnlen)11);
  649. return;
  650. }
  651. /* Quick return if possible */
  652. if (*n == 0) {
  653. return;
  654. }
  655. /* Check that the diagonal matrix D is nonsingular. */
  656. if (upper) {
  657. /* Upper triangular storage: examine D from bottom to top */
  658. for (*info = *n; *info >= 1; --(*info)) {
  659. i__1 = *info + *info * a_dim1;
  660. if (ipiv[*info] > 0 && (a[i__1].r == 0. && a[i__1].i == 0.)) {
  661. return;
  662. }
  663. /* L10: */
  664. }
  665. } else {
  666. /* Lower triangular storage: examine D from top to bottom. */
  667. i__1 = *n;
  668. for (*info = 1; *info <= i__1; ++(*info)) {
  669. i__2 = *info + *info * a_dim1;
  670. if (ipiv[*info] > 0 && (a[i__2].r == 0. && a[i__2].i == 0.)) {
  671. return;
  672. }
  673. /* L20: */
  674. }
  675. }
  676. *info = 0;
  677. if (upper) {
  678. /* Compute inv(A) from the factorization A = U*D*U**T. */
  679. /* K is the main loop index, increasing from 1 to N in steps of */
  680. /* 1 or 2, depending on the size of the diagonal blocks. */
  681. k = 1;
  682. L30:
  683. /* If K > N, exit from loop. */
  684. if (k > *n) {
  685. goto L40;
  686. }
  687. if (ipiv[k] > 0) {
  688. /* 1 x 1 diagonal block */
  689. /* Invert the diagonal block. */
  690. i__1 = k + k * a_dim1;
  691. z_div(&z__1, &c_b1, &a[k + k * a_dim1]);
  692. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  693. /* Compute column K of the inverse. */
  694. if (k > 1) {
  695. i__1 = k - 1;
  696. zcopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &work[1], &c__1);
  697. i__1 = k - 1;
  698. z__1.r = -1., z__1.i = 0.;
  699. zsymv_(uplo, &i__1, &z__1, &a[a_offset], lda, &work[1], &c__1,
  700. &c_b2, &a[k * a_dim1 + 1], &c__1);
  701. i__1 = k + k * a_dim1;
  702. i__2 = k + k * a_dim1;
  703. i__3 = k - 1;
  704. zdotu_(&z__2, &i__3, &work[1], &c__1, &a[k * a_dim1 + 1], &
  705. c__1);
  706. z__1.r = a[i__2].r - z__2.r, z__1.i = a[i__2].i - z__2.i;
  707. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  708. }
  709. kstep = 1;
  710. } else {
  711. /* 2 x 2 diagonal block */
  712. /* Invert the diagonal block. */
  713. i__1 = k + (k + 1) * a_dim1;
  714. t.r = a[i__1].r, t.i = a[i__1].i;
  715. z_div(&z__1, &a[k + k * a_dim1], &t);
  716. ak.r = z__1.r, ak.i = z__1.i;
  717. z_div(&z__1, &a[k + 1 + (k + 1) * a_dim1], &t);
  718. akp1.r = z__1.r, akp1.i = z__1.i;
  719. z_div(&z__1, &a[k + (k + 1) * a_dim1], &t);
  720. akkp1.r = z__1.r, akkp1.i = z__1.i;
  721. z__3.r = ak.r * akp1.r - ak.i * akp1.i, z__3.i = ak.r * akp1.i +
  722. ak.i * akp1.r;
  723. z__2.r = z__3.r - 1., z__2.i = z__3.i + 0.;
  724. z__1.r = t.r * z__2.r - t.i * z__2.i, z__1.i = t.r * z__2.i + t.i
  725. * z__2.r;
  726. d__.r = z__1.r, d__.i = z__1.i;
  727. i__1 = k + k * a_dim1;
  728. z_div(&z__1, &akp1, &d__);
  729. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  730. i__1 = k + 1 + (k + 1) * a_dim1;
  731. z_div(&z__1, &ak, &d__);
  732. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  733. i__1 = k + (k + 1) * a_dim1;
  734. z__2.r = -akkp1.r, z__2.i = -akkp1.i;
  735. z_div(&z__1, &z__2, &d__);
  736. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  737. /* Compute columns K and K+1 of the inverse. */
  738. if (k > 1) {
  739. i__1 = k - 1;
  740. zcopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &work[1], &c__1);
  741. i__1 = k - 1;
  742. z__1.r = -1., z__1.i = 0.;
  743. zsymv_(uplo, &i__1, &z__1, &a[a_offset], lda, &work[1], &c__1,
  744. &c_b2, &a[k * a_dim1 + 1], &c__1);
  745. i__1 = k + k * a_dim1;
  746. i__2 = k + k * a_dim1;
  747. i__3 = k - 1;
  748. zdotu_(&z__2, &i__3, &work[1], &c__1, &a[k * a_dim1 + 1], &
  749. c__1);
  750. z__1.r = a[i__2].r - z__2.r, z__1.i = a[i__2].i - z__2.i;
  751. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  752. i__1 = k + (k + 1) * a_dim1;
  753. i__2 = k + (k + 1) * a_dim1;
  754. i__3 = k - 1;
  755. zdotu_(&z__2, &i__3, &a[k * a_dim1 + 1], &c__1, &a[(k + 1) *
  756. a_dim1 + 1], &c__1);
  757. z__1.r = a[i__2].r - z__2.r, z__1.i = a[i__2].i - z__2.i;
  758. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  759. i__1 = k - 1;
  760. zcopy_(&i__1, &a[(k + 1) * a_dim1 + 1], &c__1, &work[1], &
  761. c__1);
  762. i__1 = k - 1;
  763. z__1.r = -1., z__1.i = 0.;
  764. zsymv_(uplo, &i__1, &z__1, &a[a_offset], lda, &work[1], &c__1,
  765. &c_b2, &a[(k + 1) * a_dim1 + 1], &c__1);
  766. i__1 = k + 1 + (k + 1) * a_dim1;
  767. i__2 = k + 1 + (k + 1) * a_dim1;
  768. i__3 = k - 1;
  769. zdotu_(&z__2, &i__3, &work[1], &c__1, &a[(k + 1) * a_dim1 + 1]
  770. , &c__1);
  771. z__1.r = a[i__2].r - z__2.r, z__1.i = a[i__2].i - z__2.i;
  772. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  773. }
  774. kstep = 2;
  775. }
  776. if (kstep == 1) {
  777. /* Interchange rows and columns K and IPIV(K) in the leading */
  778. /* submatrix A(1:k+1,1:k+1) */
  779. kp = ipiv[k];
  780. if (kp != k) {
  781. if (kp > 1) {
  782. i__1 = kp - 1;
  783. zswap_(&i__1, &a[k * a_dim1 + 1], &c__1, &a[kp * a_dim1 +
  784. 1], &c__1);
  785. }
  786. i__1 = k - kp - 1;
  787. zswap_(&i__1, &a[kp + 1 + k * a_dim1], &c__1, &a[kp + (kp + 1)
  788. * a_dim1], lda);
  789. i__1 = k + k * a_dim1;
  790. temp.r = a[i__1].r, temp.i = a[i__1].i;
  791. i__1 = k + k * a_dim1;
  792. i__2 = kp + kp * a_dim1;
  793. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  794. i__1 = kp + kp * a_dim1;
  795. a[i__1].r = temp.r, a[i__1].i = temp.i;
  796. }
  797. } else {
  798. /* Interchange rows and columns K and K+1 with -IPIV(K) and */
  799. /* -IPIV(K+1)in the leading submatrix A(1:k+1,1:k+1) */
  800. kp = -ipiv[k];
  801. if (kp != k) {
  802. if (kp > 1) {
  803. i__1 = kp - 1;
  804. zswap_(&i__1, &a[k * a_dim1 + 1], &c__1, &a[kp * a_dim1 +
  805. 1], &c__1);
  806. }
  807. i__1 = k - kp - 1;
  808. zswap_(&i__1, &a[kp + 1 + k * a_dim1], &c__1, &a[kp + (kp + 1)
  809. * a_dim1], lda);
  810. i__1 = k + k * a_dim1;
  811. temp.r = a[i__1].r, temp.i = a[i__1].i;
  812. i__1 = k + k * a_dim1;
  813. i__2 = kp + kp * a_dim1;
  814. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  815. i__1 = kp + kp * a_dim1;
  816. a[i__1].r = temp.r, a[i__1].i = temp.i;
  817. i__1 = k + (k + 1) * a_dim1;
  818. temp.r = a[i__1].r, temp.i = a[i__1].i;
  819. i__1 = k + (k + 1) * a_dim1;
  820. i__2 = kp + (k + 1) * a_dim1;
  821. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  822. i__1 = kp + (k + 1) * a_dim1;
  823. a[i__1].r = temp.r, a[i__1].i = temp.i;
  824. }
  825. ++k;
  826. kp = -ipiv[k];
  827. if (kp != k) {
  828. if (kp > 1) {
  829. i__1 = kp - 1;
  830. zswap_(&i__1, &a[k * a_dim1 + 1], &c__1, &a[kp * a_dim1 +
  831. 1], &c__1);
  832. }
  833. i__1 = k - kp - 1;
  834. zswap_(&i__1, &a[kp + 1 + k * a_dim1], &c__1, &a[kp + (kp + 1)
  835. * a_dim1], lda);
  836. i__1 = k + k * a_dim1;
  837. temp.r = a[i__1].r, temp.i = a[i__1].i;
  838. i__1 = k + k * a_dim1;
  839. i__2 = kp + kp * a_dim1;
  840. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  841. i__1 = kp + kp * a_dim1;
  842. a[i__1].r = temp.r, a[i__1].i = temp.i;
  843. }
  844. }
  845. ++k;
  846. goto L30;
  847. L40:
  848. ;
  849. } else {
  850. /* Compute inv(A) from the factorization A = L*D*L**T. */
  851. /* K is the main loop index, increasing from 1 to N in steps of */
  852. /* 1 or 2, depending on the size of the diagonal blocks. */
  853. k = *n;
  854. L50:
  855. /* If K < 1, exit from loop. */
  856. if (k < 1) {
  857. goto L60;
  858. }
  859. if (ipiv[k] > 0) {
  860. /* 1 x 1 diagonal block */
  861. /* Invert the diagonal block. */
  862. i__1 = k + k * a_dim1;
  863. z_div(&z__1, &c_b1, &a[k + k * a_dim1]);
  864. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  865. /* Compute column K of the inverse. */
  866. if (k < *n) {
  867. i__1 = *n - k;
  868. zcopy_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &work[1], &c__1);
  869. i__1 = *n - k;
  870. z__1.r = -1., z__1.i = 0.;
  871. zsymv_(uplo, &i__1, &z__1, &a[k + 1 + (k + 1) * a_dim1], lda,
  872. &work[1], &c__1, &c_b2, &a[k + 1 + k * a_dim1], &c__1);
  873. i__1 = k + k * a_dim1;
  874. i__2 = k + k * a_dim1;
  875. i__3 = *n - k;
  876. zdotu_(&z__2, &i__3, &work[1], &c__1, &a[k + 1 + k * a_dim1],
  877. &c__1);
  878. z__1.r = a[i__2].r - z__2.r, z__1.i = a[i__2].i - z__2.i;
  879. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  880. }
  881. kstep = 1;
  882. } else {
  883. /* 2 x 2 diagonal block */
  884. /* Invert the diagonal block. */
  885. i__1 = k + (k - 1) * a_dim1;
  886. t.r = a[i__1].r, t.i = a[i__1].i;
  887. z_div(&z__1, &a[k - 1 + (k - 1) * a_dim1], &t);
  888. ak.r = z__1.r, ak.i = z__1.i;
  889. z_div(&z__1, &a[k + k * a_dim1], &t);
  890. akp1.r = z__1.r, akp1.i = z__1.i;
  891. z_div(&z__1, &a[k + (k - 1) * a_dim1], &t);
  892. akkp1.r = z__1.r, akkp1.i = z__1.i;
  893. z__3.r = ak.r * akp1.r - ak.i * akp1.i, z__3.i = ak.r * akp1.i +
  894. ak.i * akp1.r;
  895. z__2.r = z__3.r - 1., z__2.i = z__3.i + 0.;
  896. z__1.r = t.r * z__2.r - t.i * z__2.i, z__1.i = t.r * z__2.i + t.i
  897. * z__2.r;
  898. d__.r = z__1.r, d__.i = z__1.i;
  899. i__1 = k - 1 + (k - 1) * a_dim1;
  900. z_div(&z__1, &akp1, &d__);
  901. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  902. i__1 = k + k * a_dim1;
  903. z_div(&z__1, &ak, &d__);
  904. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  905. i__1 = k + (k - 1) * a_dim1;
  906. z__2.r = -akkp1.r, z__2.i = -akkp1.i;
  907. z_div(&z__1, &z__2, &d__);
  908. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  909. /* Compute columns K-1 and K of the inverse. */
  910. if (k < *n) {
  911. i__1 = *n - k;
  912. zcopy_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &work[1], &c__1);
  913. i__1 = *n - k;
  914. z__1.r = -1., z__1.i = 0.;
  915. zsymv_(uplo, &i__1, &z__1, &a[k + 1 + (k + 1) * a_dim1], lda,
  916. &work[1], &c__1, &c_b2, &a[k + 1 + k * a_dim1], &c__1);
  917. i__1 = k + k * a_dim1;
  918. i__2 = k + k * a_dim1;
  919. i__3 = *n - k;
  920. zdotu_(&z__2, &i__3, &work[1], &c__1, &a[k + 1 + k * a_dim1],
  921. &c__1);
  922. z__1.r = a[i__2].r - z__2.r, z__1.i = a[i__2].i - z__2.i;
  923. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  924. i__1 = k + (k - 1) * a_dim1;
  925. i__2 = k + (k - 1) * a_dim1;
  926. i__3 = *n - k;
  927. zdotu_(&z__2, &i__3, &a[k + 1 + k * a_dim1], &c__1, &a[k + 1
  928. + (k - 1) * a_dim1], &c__1);
  929. z__1.r = a[i__2].r - z__2.r, z__1.i = a[i__2].i - z__2.i;
  930. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  931. i__1 = *n - k;
  932. zcopy_(&i__1, &a[k + 1 + (k - 1) * a_dim1], &c__1, &work[1], &
  933. c__1);
  934. i__1 = *n - k;
  935. z__1.r = -1., z__1.i = 0.;
  936. zsymv_(uplo, &i__1, &z__1, &a[k + 1 + (k + 1) * a_dim1], lda,
  937. &work[1], &c__1, &c_b2, &a[k + 1 + (k - 1) * a_dim1],
  938. &c__1);
  939. i__1 = k - 1 + (k - 1) * a_dim1;
  940. i__2 = k - 1 + (k - 1) * a_dim1;
  941. i__3 = *n - k;
  942. zdotu_(&z__2, &i__3, &work[1], &c__1, &a[k + 1 + (k - 1) *
  943. a_dim1], &c__1);
  944. z__1.r = a[i__2].r - z__2.r, z__1.i = a[i__2].i - z__2.i;
  945. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  946. }
  947. kstep = 2;
  948. }
  949. if (kstep == 1) {
  950. /* Interchange rows and columns K and IPIV(K) in the trailing */
  951. /* submatrix A(k-1:n,k-1:n) */
  952. kp = ipiv[k];
  953. if (kp != k) {
  954. if (kp < *n) {
  955. i__1 = *n - kp;
  956. zswap_(&i__1, &a[kp + 1 + k * a_dim1], &c__1, &a[kp + 1 +
  957. kp * a_dim1], &c__1);
  958. }
  959. i__1 = kp - k - 1;
  960. zswap_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &a[kp + (k + 1) *
  961. a_dim1], lda);
  962. i__1 = k + k * a_dim1;
  963. temp.r = a[i__1].r, temp.i = a[i__1].i;
  964. i__1 = k + k * a_dim1;
  965. i__2 = kp + kp * a_dim1;
  966. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  967. i__1 = kp + kp * a_dim1;
  968. a[i__1].r = temp.r, a[i__1].i = temp.i;
  969. }
  970. } else {
  971. /* Interchange rows and columns K and K-1 with -IPIV(K) and */
  972. /* -IPIV(K-1) in the trailing submatrix A(k-1:n,k-1:n) */
  973. kp = -ipiv[k];
  974. if (kp != k) {
  975. if (kp < *n) {
  976. i__1 = *n - kp;
  977. zswap_(&i__1, &a[kp + 1 + k * a_dim1], &c__1, &a[kp + 1 +
  978. kp * a_dim1], &c__1);
  979. }
  980. i__1 = kp - k - 1;
  981. zswap_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &a[kp + (k + 1) *
  982. a_dim1], lda);
  983. i__1 = k + k * a_dim1;
  984. temp.r = a[i__1].r, temp.i = a[i__1].i;
  985. i__1 = k + k * a_dim1;
  986. i__2 = kp + kp * a_dim1;
  987. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  988. i__1 = kp + kp * a_dim1;
  989. a[i__1].r = temp.r, a[i__1].i = temp.i;
  990. i__1 = k + (k - 1) * a_dim1;
  991. temp.r = a[i__1].r, temp.i = a[i__1].i;
  992. i__1 = k + (k - 1) * a_dim1;
  993. i__2 = kp + (k - 1) * a_dim1;
  994. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  995. i__1 = kp + (k - 1) * a_dim1;
  996. a[i__1].r = temp.r, a[i__1].i = temp.i;
  997. }
  998. --k;
  999. kp = -ipiv[k];
  1000. if (kp != k) {
  1001. if (kp < *n) {
  1002. i__1 = *n - kp;
  1003. zswap_(&i__1, &a[kp + 1 + k * a_dim1], &c__1, &a[kp + 1 +
  1004. kp * a_dim1], &c__1);
  1005. }
  1006. i__1 = kp - k - 1;
  1007. zswap_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &a[kp + (k + 1) *
  1008. a_dim1], lda);
  1009. i__1 = k + k * a_dim1;
  1010. temp.r = a[i__1].r, temp.i = a[i__1].i;
  1011. i__1 = k + k * a_dim1;
  1012. i__2 = kp + kp * a_dim1;
  1013. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  1014. i__1 = kp + kp * a_dim1;
  1015. a[i__1].r = temp.r, a[i__1].i = temp.i;
  1016. }
  1017. }
  1018. --k;
  1019. goto L50;
  1020. L60:
  1021. ;
  1022. }
  1023. return;
  1024. /* End of ZSYTRI_ROOK */
  1025. } /* zsytri_rook__ */