You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlahef_rk.c 63 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static doublecomplex c_b1 = {1.,0.};
  485. static integer c__1 = 1;
  486. /* > \brief \b ZLAHEF_RK computes a partial factorization of a complex Hermitian indefinite matrix using bound
  487. ed Bunch-Kaufman (rook) diagonal pivoting method. */
  488. /* =========== DOCUMENTATION =========== */
  489. /* Online html documentation available at */
  490. /* http://www.netlib.org/lapack/explore-html/ */
  491. /* > \htmlonly */
  492. /* > Download ZLAHEF_RK + dependencies */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlahef_
  494. rk.f"> */
  495. /* > [TGZ]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlahef_
  497. rk.f"> */
  498. /* > [ZIP]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlahef_
  500. rk.f"> */
  501. /* > [TXT]</a> */
  502. /* > \endhtmlonly */
  503. /* Definition: */
  504. /* =========== */
  505. /* SUBROUTINE ZLAHEF_RK( UPLO, N, NB, KB, A, LDA, E, IPIV, W, LDW, */
  506. /* INFO ) */
  507. /* CHARACTER UPLO */
  508. /* INTEGER INFO, KB, LDA, LDW, N, NB */
  509. /* INTEGER IPIV( * ) */
  510. /* COMPLEX*16 A( LDA, * ), E( * ), W( LDW, * ) */
  511. /* > \par Purpose: */
  512. /* ============= */
  513. /* > */
  514. /* > \verbatim */
  515. /* > ZLAHEF_RK computes a partial factorization of a complex Hermitian */
  516. /* > matrix A using the bounded Bunch-Kaufman (rook) diagonal */
  517. /* > pivoting method. The partial factorization has the form: */
  518. /* > */
  519. /* > A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or: */
  520. /* > ( 0 U22 ) ( 0 D ) ( U12**H U22**H ) */
  521. /* > */
  522. /* > A = ( L11 0 ) ( D 0 ) ( L11**H L21**H ) if UPLO = 'L', */
  523. /* > ( L21 I ) ( 0 A22 ) ( 0 I ) */
  524. /* > */
  525. /* > where the order of D is at most NB. The actual order is returned in */
  526. /* > the argument KB, and is either NB or NB-1, or N if N <= NB. */
  527. /* > */
  528. /* > ZLAHEF_RK is an auxiliary routine called by ZHETRF_RK. It uses */
  529. /* > blocked code (calling Level 3 BLAS) to update the submatrix */
  530. /* > A11 (if UPLO = 'U') or A22 (if UPLO = 'L'). */
  531. /* > \endverbatim */
  532. /* Arguments: */
  533. /* ========== */
  534. /* > \param[in] UPLO */
  535. /* > \verbatim */
  536. /* > UPLO is CHARACTER*1 */
  537. /* > Specifies whether the upper or lower triangular part of the */
  538. /* > Hermitian matrix A is stored: */
  539. /* > = 'U': Upper triangular */
  540. /* > = 'L': Lower triangular */
  541. /* > \endverbatim */
  542. /* > */
  543. /* > \param[in] N */
  544. /* > \verbatim */
  545. /* > N is INTEGER */
  546. /* > The order of the matrix A. N >= 0. */
  547. /* > \endverbatim */
  548. /* > */
  549. /* > \param[in] NB */
  550. /* > \verbatim */
  551. /* > NB is INTEGER */
  552. /* > The maximum number of columns of the matrix A that should be */
  553. /* > factored. NB should be at least 2 to allow for 2-by-2 pivot */
  554. /* > blocks. */
  555. /* > \endverbatim */
  556. /* > */
  557. /* > \param[out] KB */
  558. /* > \verbatim */
  559. /* > KB is INTEGER */
  560. /* > The number of columns of A that were actually factored. */
  561. /* > KB is either NB-1 or NB, or N if N <= NB. */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in,out] A */
  565. /* > \verbatim */
  566. /* > A is COMPLEX*16 array, dimension (LDA,N) */
  567. /* > On entry, the Hermitian matrix A. */
  568. /* > If UPLO = 'U': the leading N-by-N upper triangular part */
  569. /* > of A contains the upper triangular part of the matrix A, */
  570. /* > and the strictly lower triangular part of A is not */
  571. /* > referenced. */
  572. /* > */
  573. /* > If UPLO = 'L': the leading N-by-N lower triangular part */
  574. /* > of A contains the lower triangular part of the matrix A, */
  575. /* > and the strictly upper triangular part of A is not */
  576. /* > referenced. */
  577. /* > */
  578. /* > On exit, contains: */
  579. /* > a) ONLY diagonal elements of the Hermitian block diagonal */
  580. /* > matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); */
  581. /* > (superdiagonal (or subdiagonal) elements of D */
  582. /* > are stored on exit in array E), and */
  583. /* > b) If UPLO = 'U': factor U in the superdiagonal part of A. */
  584. /* > If UPLO = 'L': factor L in the subdiagonal part of A. */
  585. /* > \endverbatim */
  586. /* > */
  587. /* > \param[in] LDA */
  588. /* > \verbatim */
  589. /* > LDA is INTEGER */
  590. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  591. /* > \endverbatim */
  592. /* > */
  593. /* > \param[out] E */
  594. /* > \verbatim */
  595. /* > E is COMPLEX*16 array, dimension (N) */
  596. /* > On exit, contains the superdiagonal (or subdiagonal) */
  597. /* > elements of the Hermitian block diagonal matrix D */
  598. /* > with 1-by-1 or 2-by-2 diagonal blocks, where */
  599. /* > If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0; */
  600. /* > If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0. */
  601. /* > */
  602. /* > NOTE: For 1-by-1 diagonal block D(k), where */
  603. /* > 1 <= k <= N, the element E(k) is set to 0 in both */
  604. /* > UPLO = 'U' or UPLO = 'L' cases. */
  605. /* > \endverbatim */
  606. /* > */
  607. /* > \param[out] IPIV */
  608. /* > \verbatim */
  609. /* > IPIV is INTEGER array, dimension (N) */
  610. /* > IPIV describes the permutation matrix P in the factorization */
  611. /* > of matrix A as follows. The absolute value of IPIV(k) */
  612. /* > represents the index of row and column that were */
  613. /* > interchanged with the k-th row and column. The value of UPLO */
  614. /* > describes the order in which the interchanges were applied. */
  615. /* > Also, the sign of IPIV represents the block structure of */
  616. /* > the Hermitian block diagonal matrix D with 1-by-1 or 2-by-2 */
  617. /* > diagonal blocks which correspond to 1 or 2 interchanges */
  618. /* > at each factorization step. */
  619. /* > */
  620. /* > If UPLO = 'U', */
  621. /* > ( in factorization order, k decreases from N to 1 ): */
  622. /* > a) A single positive entry IPIV(k) > 0 means: */
  623. /* > D(k,k) is a 1-by-1 diagonal block. */
  624. /* > If IPIV(k) != k, rows and columns k and IPIV(k) were */
  625. /* > interchanged in the submatrix A(1:N,N-KB+1:N); */
  626. /* > If IPIV(k) = k, no interchange occurred. */
  627. /* > */
  628. /* > */
  629. /* > b) A pair of consecutive negative entries */
  630. /* > IPIV(k) < 0 and IPIV(k-1) < 0 means: */
  631. /* > D(k-1:k,k-1:k) is a 2-by-2 diagonal block. */
  632. /* > (NOTE: negative entries in IPIV appear ONLY in pairs). */
  633. /* > 1) If -IPIV(k) != k, rows and columns */
  634. /* > k and -IPIV(k) were interchanged */
  635. /* > in the matrix A(1:N,N-KB+1:N). */
  636. /* > If -IPIV(k) = k, no interchange occurred. */
  637. /* > 2) If -IPIV(k-1) != k-1, rows and columns */
  638. /* > k-1 and -IPIV(k-1) were interchanged */
  639. /* > in the submatrix A(1:N,N-KB+1:N). */
  640. /* > If -IPIV(k-1) = k-1, no interchange occurred. */
  641. /* > */
  642. /* > c) In both cases a) and b) is always ABS( IPIV(k) ) <= k. */
  643. /* > */
  644. /* > d) NOTE: Any entry IPIV(k) is always NONZERO on output. */
  645. /* > */
  646. /* > If UPLO = 'L', */
  647. /* > ( in factorization order, k increases from 1 to N ): */
  648. /* > a) A single positive entry IPIV(k) > 0 means: */
  649. /* > D(k,k) is a 1-by-1 diagonal block. */
  650. /* > If IPIV(k) != k, rows and columns k and IPIV(k) were */
  651. /* > interchanged in the submatrix A(1:N,1:KB). */
  652. /* > If IPIV(k) = k, no interchange occurred. */
  653. /* > */
  654. /* > b) A pair of consecutive negative entries */
  655. /* > IPIV(k) < 0 and IPIV(k+1) < 0 means: */
  656. /* > D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
  657. /* > (NOTE: negative entries in IPIV appear ONLY in pairs). */
  658. /* > 1) If -IPIV(k) != k, rows and columns */
  659. /* > k and -IPIV(k) were interchanged */
  660. /* > in the submatrix A(1:N,1:KB). */
  661. /* > If -IPIV(k) = k, no interchange occurred. */
  662. /* > 2) If -IPIV(k+1) != k+1, rows and columns */
  663. /* > k-1 and -IPIV(k-1) were interchanged */
  664. /* > in the submatrix A(1:N,1:KB). */
  665. /* > If -IPIV(k+1) = k+1, no interchange occurred. */
  666. /* > */
  667. /* > c) In both cases a) and b) is always ABS( IPIV(k) ) >= k. */
  668. /* > */
  669. /* > d) NOTE: Any entry IPIV(k) is always NONZERO on output. */
  670. /* > \endverbatim */
  671. /* > */
  672. /* > \param[out] W */
  673. /* > \verbatim */
  674. /* > W is COMPLEX*16 array, dimension (LDW,NB) */
  675. /* > \endverbatim */
  676. /* > */
  677. /* > \param[in] LDW */
  678. /* > \verbatim */
  679. /* > LDW is INTEGER */
  680. /* > The leading dimension of the array W. LDW >= f2cmax(1,N). */
  681. /* > \endverbatim */
  682. /* > */
  683. /* > \param[out] INFO */
  684. /* > \verbatim */
  685. /* > INFO is INTEGER */
  686. /* > = 0: successful exit */
  687. /* > */
  688. /* > < 0: If INFO = -k, the k-th argument had an illegal value */
  689. /* > */
  690. /* > > 0: If INFO = k, the matrix A is singular, because: */
  691. /* > If UPLO = 'U': column k in the upper */
  692. /* > triangular part of A contains all zeros. */
  693. /* > If UPLO = 'L': column k in the lower */
  694. /* > triangular part of A contains all zeros. */
  695. /* > */
  696. /* > Therefore D(k,k) is exactly zero, and superdiagonal */
  697. /* > elements of column k of U (or subdiagonal elements of */
  698. /* > column k of L ) are all zeros. The factorization has */
  699. /* > been completed, but the block diagonal matrix D is */
  700. /* > exactly singular, and division by zero will occur if */
  701. /* > it is used to solve a system of equations. */
  702. /* > */
  703. /* > NOTE: INFO only stores the first occurrence of */
  704. /* > a singularity, any subsequent occurrence of singularity */
  705. /* > is not stored in INFO even though the factorization */
  706. /* > always completes. */
  707. /* > \endverbatim */
  708. /* Authors: */
  709. /* ======== */
  710. /* > \author Univ. of Tennessee */
  711. /* > \author Univ. of California Berkeley */
  712. /* > \author Univ. of Colorado Denver */
  713. /* > \author NAG Ltd. */
  714. /* > \date December 2016 */
  715. /* > \ingroup complex16HEcomputational */
  716. /* > \par Contributors: */
  717. /* ================== */
  718. /* > */
  719. /* > \verbatim */
  720. /* > */
  721. /* > December 2016, Igor Kozachenko, */
  722. /* > Computer Science Division, */
  723. /* > University of California, Berkeley */
  724. /* > */
  725. /* > September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, */
  726. /* > School of Mathematics, */
  727. /* > University of Manchester */
  728. /* > */
  729. /* > \endverbatim */
  730. /* ===================================================================== */
  731. /* Subroutine */ void zlahef_rk_(char *uplo, integer *n, integer *nb, integer
  732. *kb, doublecomplex *a, integer *lda, doublecomplex *e, integer *ipiv,
  733. doublecomplex *w, integer *ldw, integer *info)
  734. {
  735. /* System generated locals */
  736. integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3, i__4, i__5;
  737. doublereal d__1, d__2;
  738. doublecomplex z__1, z__2, z__3, z__4, z__5;
  739. /* Local variables */
  740. logical done;
  741. integer imax, jmax, j, k, p;
  742. doublereal t, alpha;
  743. extern logical lsame_(char *, char *);
  744. doublereal dtemp, sfmin;
  745. integer itemp;
  746. extern /* Subroutine */ void zgemm_(char *, char *, integer *, integer *,
  747. integer *, doublecomplex *, doublecomplex *, integer *,
  748. doublecomplex *, integer *, doublecomplex *, doublecomplex *,
  749. integer *);
  750. integer kstep;
  751. extern /* Subroutine */ void zgemv_(char *, integer *, integer *,
  752. doublecomplex *, doublecomplex *, integer *, doublecomplex *,
  753. integer *, doublecomplex *, doublecomplex *, integer *);
  754. doublereal r1;
  755. extern /* Subroutine */ void zcopy_(integer *, doublecomplex *, integer *,
  756. doublecomplex *, integer *), zswap_(integer *, doublecomplex *,
  757. integer *, doublecomplex *, integer *);
  758. doublecomplex d11, d21, d22;
  759. integer jb, ii, jj, kk;
  760. extern doublereal dlamch_(char *);
  761. integer kp;
  762. doublereal absakk;
  763. integer kw;
  764. extern /* Subroutine */ void zdscal_(integer *, doublereal *,
  765. doublecomplex *, integer *);
  766. doublereal colmax;
  767. extern /* Subroutine */ void zlacgv_(integer *, doublecomplex *, integer *)
  768. ;
  769. extern integer izamax_(integer *, doublecomplex *, integer *);
  770. doublereal rowmax;
  771. integer kkw;
  772. /* -- LAPACK computational routine (version 3.7.0) -- */
  773. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  774. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  775. /* December 2016 */
  776. /* ===================================================================== */
  777. /* Parameter adjustments */
  778. a_dim1 = *lda;
  779. a_offset = 1 + a_dim1 * 1;
  780. a -= a_offset;
  781. --e;
  782. --ipiv;
  783. w_dim1 = *ldw;
  784. w_offset = 1 + w_dim1 * 1;
  785. w -= w_offset;
  786. /* Function Body */
  787. *info = 0;
  788. /* Initialize ALPHA for use in choosing pivot block size. */
  789. alpha = (sqrt(17.) + 1.) / 8.;
  790. /* Compute machine safe minimum */
  791. sfmin = dlamch_("S");
  792. if (lsame_(uplo, "U")) {
  793. /* Factorize the trailing columns of A using the upper triangle */
  794. /* of A and working backwards, and compute the matrix W = U12*D */
  795. /* for use in updating A11 (note that conjg(W) is actually stored) */
  796. /* Initialize the first entry of array E, where superdiagonal */
  797. /* elements of D are stored */
  798. e[1].r = 0., e[1].i = 0.;
  799. /* K is the main loop index, decreasing from N in steps of 1 or 2 */
  800. k = *n;
  801. L10:
  802. /* KW is the column of W which corresponds to column K of A */
  803. kw = *nb + k - *n;
  804. /* Exit from loop */
  805. if (k <= *n - *nb + 1 && *nb < *n || k < 1) {
  806. goto L30;
  807. }
  808. kstep = 1;
  809. p = k;
  810. /* Copy column K of A to column KW of W and update it */
  811. if (k > 1) {
  812. i__1 = k - 1;
  813. zcopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &w[kw * w_dim1 + 1], &
  814. c__1);
  815. }
  816. i__1 = k + kw * w_dim1;
  817. i__2 = k + k * a_dim1;
  818. d__1 = a[i__2].r;
  819. w[i__1].r = d__1, w[i__1].i = 0.;
  820. if (k < *n) {
  821. i__1 = *n - k;
  822. z__1.r = -1., z__1.i = 0.;
  823. zgemv_("No transpose", &k, &i__1, &z__1, &a[(k + 1) * a_dim1 + 1],
  824. lda, &w[k + (kw + 1) * w_dim1], ldw, &c_b1, &w[kw *
  825. w_dim1 + 1], &c__1);
  826. i__1 = k + kw * w_dim1;
  827. i__2 = k + kw * w_dim1;
  828. d__1 = w[i__2].r;
  829. w[i__1].r = d__1, w[i__1].i = 0.;
  830. }
  831. /* Determine rows and columns to be interchanged and whether */
  832. /* a 1-by-1 or 2-by-2 pivot block will be used */
  833. i__1 = k + kw * w_dim1;
  834. absakk = (d__1 = w[i__1].r, abs(d__1));
  835. /* IMAX is the row-index of the largest off-diagonal element in */
  836. /* column K, and COLMAX is its absolute value. */
  837. /* Determine both COLMAX and IMAX. */
  838. if (k > 1) {
  839. i__1 = k - 1;
  840. imax = izamax_(&i__1, &w[kw * w_dim1 + 1], &c__1);
  841. i__1 = imax + kw * w_dim1;
  842. colmax = (d__1 = w[i__1].r, abs(d__1)) + (d__2 = d_imag(&w[imax +
  843. kw * w_dim1]), abs(d__2));
  844. } else {
  845. colmax = 0.;
  846. }
  847. if (f2cmax(absakk,colmax) == 0.) {
  848. /* Column K is zero or underflow: set INFO and continue */
  849. if (*info == 0) {
  850. *info = k;
  851. }
  852. kp = k;
  853. i__1 = k + k * a_dim1;
  854. i__2 = k + kw * w_dim1;
  855. d__1 = w[i__2].r;
  856. a[i__1].r = d__1, a[i__1].i = 0.;
  857. if (k > 1) {
  858. i__1 = k - 1;
  859. zcopy_(&i__1, &w[kw * w_dim1 + 1], &c__1, &a[k * a_dim1 + 1],
  860. &c__1);
  861. }
  862. /* Set E( K ) to zero */
  863. if (k > 1) {
  864. i__1 = k;
  865. e[i__1].r = 0., e[i__1].i = 0.;
  866. }
  867. } else {
  868. /* ============================================================ */
  869. /* BEGIN pivot search */
  870. /* Case(1) */
  871. /* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX */
  872. /* (used to handle NaN and Inf) */
  873. if (! (absakk < alpha * colmax)) {
  874. /* no interchange, use 1-by-1 pivot block */
  875. kp = k;
  876. } else {
  877. /* Lop until pivot found */
  878. done = FALSE_;
  879. L12:
  880. /* BEGIN pivot search loop body */
  881. /* Copy column IMAX to column KW-1 of W and update it */
  882. if (imax > 1) {
  883. i__1 = imax - 1;
  884. zcopy_(&i__1, &a[imax * a_dim1 + 1], &c__1, &w[(kw - 1) *
  885. w_dim1 + 1], &c__1);
  886. }
  887. i__1 = imax + (kw - 1) * w_dim1;
  888. i__2 = imax + imax * a_dim1;
  889. d__1 = a[i__2].r;
  890. w[i__1].r = d__1, w[i__1].i = 0.;
  891. i__1 = k - imax;
  892. zcopy_(&i__1, &a[imax + (imax + 1) * a_dim1], lda, &w[imax +
  893. 1 + (kw - 1) * w_dim1], &c__1);
  894. i__1 = k - imax;
  895. zlacgv_(&i__1, &w[imax + 1 + (kw - 1) * w_dim1], &c__1);
  896. if (k < *n) {
  897. i__1 = *n - k;
  898. z__1.r = -1., z__1.i = 0.;
  899. zgemv_("No transpose", &k, &i__1, &z__1, &a[(k + 1) *
  900. a_dim1 + 1], lda, &w[imax + (kw + 1) * w_dim1],
  901. ldw, &c_b1, &w[(kw - 1) * w_dim1 + 1], &c__1);
  902. i__1 = imax + (kw - 1) * w_dim1;
  903. i__2 = imax + (kw - 1) * w_dim1;
  904. d__1 = w[i__2].r;
  905. w[i__1].r = d__1, w[i__1].i = 0.;
  906. }
  907. /* JMAX is the column-index of the largest off-diagonal */
  908. /* element in row IMAX, and ROWMAX is its absolute value. */
  909. /* Determine both ROWMAX and JMAX. */
  910. if (imax != k) {
  911. i__1 = k - imax;
  912. jmax = imax + izamax_(&i__1, &w[imax + 1 + (kw - 1) *
  913. w_dim1], &c__1);
  914. i__1 = jmax + (kw - 1) * w_dim1;
  915. rowmax = (d__1 = w[i__1].r, abs(d__1)) + (d__2 = d_imag(&
  916. w[jmax + (kw - 1) * w_dim1]), abs(d__2));
  917. } else {
  918. rowmax = 0.;
  919. }
  920. if (imax > 1) {
  921. i__1 = imax - 1;
  922. itemp = izamax_(&i__1, &w[(kw - 1) * w_dim1 + 1], &c__1);
  923. i__1 = itemp + (kw - 1) * w_dim1;
  924. dtemp = (d__1 = w[i__1].r, abs(d__1)) + (d__2 = d_imag(&w[
  925. itemp + (kw - 1) * w_dim1]), abs(d__2));
  926. if (dtemp > rowmax) {
  927. rowmax = dtemp;
  928. jmax = itemp;
  929. }
  930. }
  931. /* Case(2) */
  932. /* Equivalent to testing for */
  933. /* ABS( REAL( W( IMAX,KW-1 ) ) ).GE.ALPHA*ROWMAX */
  934. /* (used to handle NaN and Inf) */
  935. i__1 = imax + (kw - 1) * w_dim1;
  936. if (! ((d__1 = w[i__1].r, abs(d__1)) < alpha * rowmax)) {
  937. /* interchange rows and columns K and IMAX, */
  938. /* use 1-by-1 pivot block */
  939. kp = imax;
  940. /* copy column KW-1 of W to column KW of W */
  941. zcopy_(&k, &w[(kw - 1) * w_dim1 + 1], &c__1, &w[kw *
  942. w_dim1 + 1], &c__1);
  943. done = TRUE_;
  944. /* Case(3) */
  945. /* Equivalent to testing for ROWMAX.EQ.COLMAX, */
  946. /* (used to handle NaN and Inf) */
  947. } else if (p == jmax || rowmax <= colmax) {
  948. /* interchange rows and columns K-1 and IMAX, */
  949. /* use 2-by-2 pivot block */
  950. kp = imax;
  951. kstep = 2;
  952. done = TRUE_;
  953. /* Case(4) */
  954. } else {
  955. /* Pivot not found: set params and repeat */
  956. p = imax;
  957. colmax = rowmax;
  958. imax = jmax;
  959. /* Copy updated JMAXth (next IMAXth) column to Kth of W */
  960. zcopy_(&k, &w[(kw - 1) * w_dim1 + 1], &c__1, &w[kw *
  961. w_dim1 + 1], &c__1);
  962. }
  963. /* END pivot search loop body */
  964. if (! done) {
  965. goto L12;
  966. }
  967. }
  968. /* END pivot search */
  969. /* ============================================================ */
  970. /* KK is the column of A where pivoting step stopped */
  971. kk = k - kstep + 1;
  972. /* KKW is the column of W which corresponds to column KK of A */
  973. kkw = *nb + kk - *n;
  974. /* Interchange rows and columns P and K. */
  975. /* Updated column P is already stored in column KW of W. */
  976. if (kstep == 2 && p != k) {
  977. /* Copy non-updated column K to column P of submatrix A */
  978. /* at step K. No need to copy element into columns */
  979. /* K and K-1 of A for 2-by-2 pivot, since these columns */
  980. /* will be later overwritten. */
  981. i__1 = p + p * a_dim1;
  982. i__2 = k + k * a_dim1;
  983. d__1 = a[i__2].r;
  984. a[i__1].r = d__1, a[i__1].i = 0.;
  985. i__1 = k - 1 - p;
  986. zcopy_(&i__1, &a[p + 1 + k * a_dim1], &c__1, &a[p + (p + 1) *
  987. a_dim1], lda);
  988. i__1 = k - 1 - p;
  989. zlacgv_(&i__1, &a[p + (p + 1) * a_dim1], lda);
  990. if (p > 1) {
  991. i__1 = p - 1;
  992. zcopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &a[p * a_dim1 +
  993. 1], &c__1);
  994. }
  995. /* Interchange rows K and P in the last K+1 to N columns of A */
  996. /* (columns K and K-1 of A for 2-by-2 pivot will be */
  997. /* later overwritten). Interchange rows K and P */
  998. /* in last KKW to NB columns of W. */
  999. if (k < *n) {
  1000. i__1 = *n - k;
  1001. zswap_(&i__1, &a[k + (k + 1) * a_dim1], lda, &a[p + (k +
  1002. 1) * a_dim1], lda);
  1003. }
  1004. i__1 = *n - kk + 1;
  1005. zswap_(&i__1, &w[k + kkw * w_dim1], ldw, &w[p + kkw * w_dim1],
  1006. ldw);
  1007. }
  1008. /* Interchange rows and columns KP and KK. */
  1009. /* Updated column KP is already stored in column KKW of W. */
  1010. if (kp != kk) {
  1011. /* Copy non-updated column KK to column KP of submatrix A */
  1012. /* at step K. No need to copy element into column K */
  1013. /* (or K and K-1 for 2-by-2 pivot) of A, since these columns */
  1014. /* will be later overwritten. */
  1015. i__1 = kp + kp * a_dim1;
  1016. i__2 = kk + kk * a_dim1;
  1017. d__1 = a[i__2].r;
  1018. a[i__1].r = d__1, a[i__1].i = 0.;
  1019. i__1 = kk - 1 - kp;
  1020. zcopy_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + (kp +
  1021. 1) * a_dim1], lda);
  1022. i__1 = kk - 1 - kp;
  1023. zlacgv_(&i__1, &a[kp + (kp + 1) * a_dim1], lda);
  1024. if (kp > 1) {
  1025. i__1 = kp - 1;
  1026. zcopy_(&i__1, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1
  1027. + 1], &c__1);
  1028. }
  1029. /* Interchange rows KK and KP in last K+1 to N columns of A */
  1030. /* (columns K (or K and K-1 for 2-by-2 pivot) of A will be */
  1031. /* later overwritten). Interchange rows KK and KP */
  1032. /* in last KKW to NB columns of W. */
  1033. if (k < *n) {
  1034. i__1 = *n - k;
  1035. zswap_(&i__1, &a[kk + (k + 1) * a_dim1], lda, &a[kp + (k
  1036. + 1) * a_dim1], lda);
  1037. }
  1038. i__1 = *n - kk + 1;
  1039. zswap_(&i__1, &w[kk + kkw * w_dim1], ldw, &w[kp + kkw *
  1040. w_dim1], ldw);
  1041. }
  1042. if (kstep == 1) {
  1043. /* 1-by-1 pivot block D(k): column kw of W now holds */
  1044. /* W(kw) = U(k)*D(k), */
  1045. /* where U(k) is the k-th column of U */
  1046. /* (1) Store subdiag. elements of column U(k) */
  1047. /* and 1-by-1 block D(k) in column k of A. */
  1048. /* (NOTE: Diagonal element U(k,k) is a UNIT element */
  1049. /* and not stored) */
  1050. /* A(k,k) := D(k,k) = W(k,kw) */
  1051. /* A(1:k-1,k) := U(1:k-1,k) = W(1:k-1,kw)/D(k,k) */
  1052. /* (NOTE: No need to use for Hermitian matrix */
  1053. /* A( K, K ) = REAL( W( K, K) ) to separately copy diagonal */
  1054. /* element D(k,k) from W (potentially saves only one load)) */
  1055. zcopy_(&k, &w[kw * w_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &
  1056. c__1);
  1057. if (k > 1) {
  1058. /* (NOTE: No need to check if A(k,k) is NOT ZERO, */
  1059. /* since that was ensured earlier in pivot search: */
  1060. /* case A(k,k) = 0 falls into 2x2 pivot case(3)) */
  1061. /* Handle division by a small number */
  1062. i__1 = k + k * a_dim1;
  1063. t = a[i__1].r;
  1064. if (abs(t) >= sfmin) {
  1065. r1 = 1. / t;
  1066. i__1 = k - 1;
  1067. zdscal_(&i__1, &r1, &a[k * a_dim1 + 1], &c__1);
  1068. } else {
  1069. i__1 = k - 1;
  1070. for (ii = 1; ii <= i__1; ++ii) {
  1071. i__2 = ii + k * a_dim1;
  1072. i__3 = ii + k * a_dim1;
  1073. z__1.r = a[i__3].r / t, z__1.i = a[i__3].i / t;
  1074. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1075. /* L14: */
  1076. }
  1077. }
  1078. /* (2) Conjugate column W(kw) */
  1079. i__1 = k - 1;
  1080. zlacgv_(&i__1, &w[kw * w_dim1 + 1], &c__1);
  1081. /* Store the superdiagonal element of D in array E */
  1082. i__1 = k;
  1083. e[i__1].r = 0., e[i__1].i = 0.;
  1084. }
  1085. } else {
  1086. /* 2-by-2 pivot block D(k): columns kw and kw-1 of W now hold */
  1087. /* ( W(kw-1) W(kw) ) = ( U(k-1) U(k) )*D(k) */
  1088. /* where U(k) and U(k-1) are the k-th and (k-1)-th columns */
  1089. /* of U */
  1090. /* (1) Store U(1:k-2,k-1) and U(1:k-2,k) and 2-by-2 */
  1091. /* block D(k-1:k,k-1:k) in columns k-1 and k of A. */
  1092. /* (NOTE: 2-by-2 diagonal block U(k-1:k,k-1:k) is a UNIT */
  1093. /* block and not stored) */
  1094. /* A(k-1:k,k-1:k) := D(k-1:k,k-1:k) = W(k-1:k,kw-1:kw) */
  1095. /* A(1:k-2,k-1:k) := U(1:k-2,k:k-1:k) = */
  1096. /* = W(1:k-2,kw-1:kw) * ( D(k-1:k,k-1:k)**(-1) ) */
  1097. if (k > 2) {
  1098. /* Factor out the columns of the inverse of 2-by-2 pivot */
  1099. /* block D, so that each column contains 1, to reduce the */
  1100. /* number of FLOPS when we multiply panel */
  1101. /* ( W(kw-1) W(kw) ) by this inverse, i.e. by D**(-1). */
  1102. /* D**(-1) = ( d11 cj(d21) )**(-1) = */
  1103. /* ( d21 d22 ) */
  1104. /* = 1/(d11*d22-|d21|**2) * ( ( d22) (-cj(d21) ) ) = */
  1105. /* ( (-d21) ( d11 ) ) */
  1106. /* = 1/(|d21|**2) * 1/((d11/cj(d21))*(d22/d21)-1) * */
  1107. /* * ( d21*( d22/d21 ) conj(d21)*( - 1 ) ) = */
  1108. /* ( ( -1 ) ( d11/conj(d21) ) ) */
  1109. /* = 1/(|d21|**2) * 1/(D22*D11-1) * */
  1110. /* * ( d21*( D11 ) conj(d21)*( -1 ) ) = */
  1111. /* ( ( -1 ) ( D22 ) ) */
  1112. /* = (1/|d21|**2) * T * ( d21*( D11 ) conj(d21)*( -1 ) ) = */
  1113. /* ( ( -1 ) ( D22 ) ) */
  1114. /* = ( (T/conj(d21))*( D11 ) (T/d21)*( -1 ) ) = */
  1115. /* ( ( -1 ) ( D22 ) ) */
  1116. /* Handle division by a small number. (NOTE: order of */
  1117. /* operations is important) */
  1118. /* = ( T*(( D11 )/conj(D21)) T*(( -1 )/D21 ) ) */
  1119. /* ( (( -1 ) ) (( D22 ) ) ), */
  1120. /* where D11 = d22/d21, */
  1121. /* D22 = d11/conj(d21), */
  1122. /* D21 = d21, */
  1123. /* T = 1/(D22*D11-1). */
  1124. /* (NOTE: No need to check for division by ZERO, */
  1125. /* since that was ensured earlier in pivot search: */
  1126. /* (a) d21 != 0 in 2x2 pivot case(4), */
  1127. /* since |d21| should be larger than |d11| and |d22|; */
  1128. /* (b) (D22*D11 - 1) != 0, since from (a), */
  1129. /* both |D11| < 1, |D22| < 1, hence |D22*D11| << 1.) */
  1130. i__1 = k - 1 + kw * w_dim1;
  1131. d21.r = w[i__1].r, d21.i = w[i__1].i;
  1132. d_cnjg(&z__2, &d21);
  1133. z_div(&z__1, &w[k + kw * w_dim1], &z__2);
  1134. d11.r = z__1.r, d11.i = z__1.i;
  1135. z_div(&z__1, &w[k - 1 + (kw - 1) * w_dim1], &d21);
  1136. d22.r = z__1.r, d22.i = z__1.i;
  1137. z__1.r = d11.r * d22.r - d11.i * d22.i, z__1.i = d11.r *
  1138. d22.i + d11.i * d22.r;
  1139. t = 1. / (z__1.r - 1.);
  1140. /* Update elements in columns A(k-1) and A(k) as */
  1141. /* dot products of rows of ( W(kw-1) W(kw) ) and columns */
  1142. /* of D**(-1) */
  1143. i__1 = k - 2;
  1144. for (j = 1; j <= i__1; ++j) {
  1145. i__2 = j + (k - 1) * a_dim1;
  1146. i__3 = j + (kw - 1) * w_dim1;
  1147. z__4.r = d11.r * w[i__3].r - d11.i * w[i__3].i,
  1148. z__4.i = d11.r * w[i__3].i + d11.i * w[i__3]
  1149. .r;
  1150. i__4 = j + kw * w_dim1;
  1151. z__3.r = z__4.r - w[i__4].r, z__3.i = z__4.i - w[i__4]
  1152. .i;
  1153. z_div(&z__2, &z__3, &d21);
  1154. z__1.r = t * z__2.r, z__1.i = t * z__2.i;
  1155. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1156. i__2 = j + k * a_dim1;
  1157. i__3 = j + kw * w_dim1;
  1158. z__4.r = d22.r * w[i__3].r - d22.i * w[i__3].i,
  1159. z__4.i = d22.r * w[i__3].i + d22.i * w[i__3]
  1160. .r;
  1161. i__4 = j + (kw - 1) * w_dim1;
  1162. z__3.r = z__4.r - w[i__4].r, z__3.i = z__4.i - w[i__4]
  1163. .i;
  1164. d_cnjg(&z__5, &d21);
  1165. z_div(&z__2, &z__3, &z__5);
  1166. z__1.r = t * z__2.r, z__1.i = t * z__2.i;
  1167. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1168. /* L20: */
  1169. }
  1170. }
  1171. /* Copy diagonal elements of D(K) to A, */
  1172. /* copy superdiagonal element of D(K) to E(K) and */
  1173. /* ZERO out superdiagonal entry of A */
  1174. i__1 = k - 1 + (k - 1) * a_dim1;
  1175. i__2 = k - 1 + (kw - 1) * w_dim1;
  1176. a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
  1177. i__1 = k - 1 + k * a_dim1;
  1178. a[i__1].r = 0., a[i__1].i = 0.;
  1179. i__1 = k + k * a_dim1;
  1180. i__2 = k + kw * w_dim1;
  1181. a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
  1182. i__1 = k;
  1183. i__2 = k - 1 + kw * w_dim1;
  1184. e[i__1].r = w[i__2].r, e[i__1].i = w[i__2].i;
  1185. i__1 = k - 1;
  1186. e[i__1].r = 0., e[i__1].i = 0.;
  1187. /* (2) Conjugate columns W(kw) and W(kw-1) */
  1188. i__1 = k - 1;
  1189. zlacgv_(&i__1, &w[kw * w_dim1 + 1], &c__1);
  1190. i__1 = k - 2;
  1191. zlacgv_(&i__1, &w[(kw - 1) * w_dim1 + 1], &c__1);
  1192. }
  1193. /* End column K is nonsingular */
  1194. }
  1195. /* Store details of the interchanges in IPIV */
  1196. if (kstep == 1) {
  1197. ipiv[k] = kp;
  1198. } else {
  1199. ipiv[k] = -p;
  1200. ipiv[k - 1] = -kp;
  1201. }
  1202. /* Decrease K and return to the start of the main loop */
  1203. k -= kstep;
  1204. goto L10;
  1205. L30:
  1206. /* Update the upper triangle of A11 (= A(1:k,1:k)) as */
  1207. /* A11 := A11 - U12*D*U12**H = A11 - U12*W**H */
  1208. /* computing blocks of NB columns at a time (note that conjg(W) is */
  1209. /* actually stored) */
  1210. i__1 = -(*nb);
  1211. for (j = (k - 1) / *nb * *nb + 1; i__1 < 0 ? j >= 1 : j <= 1; j +=
  1212. i__1) {
  1213. /* Computing MIN */
  1214. i__2 = *nb, i__3 = k - j + 1;
  1215. jb = f2cmin(i__2,i__3);
  1216. /* Update the upper triangle of the diagonal block */
  1217. i__2 = j + jb - 1;
  1218. for (jj = j; jj <= i__2; ++jj) {
  1219. i__3 = jj + jj * a_dim1;
  1220. i__4 = jj + jj * a_dim1;
  1221. d__1 = a[i__4].r;
  1222. a[i__3].r = d__1, a[i__3].i = 0.;
  1223. i__3 = jj - j + 1;
  1224. i__4 = *n - k;
  1225. z__1.r = -1., z__1.i = 0.;
  1226. zgemv_("No transpose", &i__3, &i__4, &z__1, &a[j + (k + 1) *
  1227. a_dim1], lda, &w[jj + (kw + 1) * w_dim1], ldw, &c_b1,
  1228. &a[j + jj * a_dim1], &c__1);
  1229. i__3 = jj + jj * a_dim1;
  1230. i__4 = jj + jj * a_dim1;
  1231. d__1 = a[i__4].r;
  1232. a[i__3].r = d__1, a[i__3].i = 0.;
  1233. /* L40: */
  1234. }
  1235. /* Update the rectangular superdiagonal block */
  1236. if (j >= 2) {
  1237. i__2 = j - 1;
  1238. i__3 = *n - k;
  1239. z__1.r = -1., z__1.i = 0.;
  1240. zgemm_("No transpose", "Transpose", &i__2, &jb, &i__3, &z__1,
  1241. &a[(k + 1) * a_dim1 + 1], lda, &w[j + (kw + 1) *
  1242. w_dim1], ldw, &c_b1, &a[j * a_dim1 + 1], lda);
  1243. }
  1244. /* L50: */
  1245. }
  1246. /* Set KB to the number of columns factorized */
  1247. *kb = *n - k;
  1248. } else {
  1249. /* Factorize the leading columns of A using the lower triangle */
  1250. /* of A and working forwards, and compute the matrix W = L21*D */
  1251. /* for use in updating A22 (note that conjg(W) is actually stored) */
  1252. /* Initialize the unused last entry of the subdiagonal array E. */
  1253. i__1 = *n;
  1254. e[i__1].r = 0., e[i__1].i = 0.;
  1255. /* K is the main loop index, increasing from 1 in steps of 1 or 2 */
  1256. k = 1;
  1257. L70:
  1258. /* Exit from loop */
  1259. if (k >= *nb && *nb < *n || k > *n) {
  1260. goto L90;
  1261. }
  1262. kstep = 1;
  1263. p = k;
  1264. /* Copy column K of A to column K of W and update column K of W */
  1265. i__1 = k + k * w_dim1;
  1266. i__2 = k + k * a_dim1;
  1267. d__1 = a[i__2].r;
  1268. w[i__1].r = d__1, w[i__1].i = 0.;
  1269. if (k < *n) {
  1270. i__1 = *n - k;
  1271. zcopy_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &w[k + 1 + k *
  1272. w_dim1], &c__1);
  1273. }
  1274. if (k > 1) {
  1275. i__1 = *n - k + 1;
  1276. i__2 = k - 1;
  1277. z__1.r = -1., z__1.i = 0.;
  1278. zgemv_("No transpose", &i__1, &i__2, &z__1, &a[k + a_dim1], lda, &
  1279. w[k + w_dim1], ldw, &c_b1, &w[k + k * w_dim1], &c__1);
  1280. i__1 = k + k * w_dim1;
  1281. i__2 = k + k * w_dim1;
  1282. d__1 = w[i__2].r;
  1283. w[i__1].r = d__1, w[i__1].i = 0.;
  1284. }
  1285. /* Determine rows and columns to be interchanged and whether */
  1286. /* a 1-by-1 or 2-by-2 pivot block will be used */
  1287. i__1 = k + k * w_dim1;
  1288. absakk = (d__1 = w[i__1].r, abs(d__1));
  1289. /* IMAX is the row-index of the largest off-diagonal element in */
  1290. /* column K, and COLMAX is its absolute value. */
  1291. /* Determine both COLMAX and IMAX. */
  1292. if (k < *n) {
  1293. i__1 = *n - k;
  1294. imax = k + izamax_(&i__1, &w[k + 1 + k * w_dim1], &c__1);
  1295. i__1 = imax + k * w_dim1;
  1296. colmax = (d__1 = w[i__1].r, abs(d__1)) + (d__2 = d_imag(&w[imax +
  1297. k * w_dim1]), abs(d__2));
  1298. } else {
  1299. colmax = 0.;
  1300. }
  1301. if (f2cmax(absakk,colmax) == 0.) {
  1302. /* Column K is zero or underflow: set INFO and continue */
  1303. if (*info == 0) {
  1304. *info = k;
  1305. }
  1306. kp = k;
  1307. i__1 = k + k * a_dim1;
  1308. i__2 = k + k * w_dim1;
  1309. d__1 = w[i__2].r;
  1310. a[i__1].r = d__1, a[i__1].i = 0.;
  1311. if (k < *n) {
  1312. i__1 = *n - k;
  1313. zcopy_(&i__1, &w[k + 1 + k * w_dim1], &c__1, &a[k + 1 + k *
  1314. a_dim1], &c__1);
  1315. }
  1316. /* Set E( K ) to zero */
  1317. if (k < *n) {
  1318. i__1 = k;
  1319. e[i__1].r = 0., e[i__1].i = 0.;
  1320. }
  1321. } else {
  1322. /* ============================================================ */
  1323. /* BEGIN pivot search */
  1324. /* Case(1) */
  1325. /* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX */
  1326. /* (used to handle NaN and Inf) */
  1327. if (! (absakk < alpha * colmax)) {
  1328. /* no interchange, use 1-by-1 pivot block */
  1329. kp = k;
  1330. } else {
  1331. done = FALSE_;
  1332. /* Loop until pivot found */
  1333. L72:
  1334. /* BEGIN pivot search loop body */
  1335. /* Copy column IMAX to column k+1 of W and update it */
  1336. i__1 = imax - k;
  1337. zcopy_(&i__1, &a[imax + k * a_dim1], lda, &w[k + (k + 1) *
  1338. w_dim1], &c__1);
  1339. i__1 = imax - k;
  1340. zlacgv_(&i__1, &w[k + (k + 1) * w_dim1], &c__1);
  1341. i__1 = imax + (k + 1) * w_dim1;
  1342. i__2 = imax + imax * a_dim1;
  1343. d__1 = a[i__2].r;
  1344. w[i__1].r = d__1, w[i__1].i = 0.;
  1345. if (imax < *n) {
  1346. i__1 = *n - imax;
  1347. zcopy_(&i__1, &a[imax + 1 + imax * a_dim1], &c__1, &w[
  1348. imax + 1 + (k + 1) * w_dim1], &c__1);
  1349. }
  1350. if (k > 1) {
  1351. i__1 = *n - k + 1;
  1352. i__2 = k - 1;
  1353. z__1.r = -1., z__1.i = 0.;
  1354. zgemv_("No transpose", &i__1, &i__2, &z__1, &a[k + a_dim1]
  1355. , lda, &w[imax + w_dim1], ldw, &c_b1, &w[k + (k +
  1356. 1) * w_dim1], &c__1);
  1357. i__1 = imax + (k + 1) * w_dim1;
  1358. i__2 = imax + (k + 1) * w_dim1;
  1359. d__1 = w[i__2].r;
  1360. w[i__1].r = d__1, w[i__1].i = 0.;
  1361. }
  1362. /* JMAX is the column-index of the largest off-diagonal */
  1363. /* element in row IMAX, and ROWMAX is its absolute value. */
  1364. /* Determine both ROWMAX and JMAX. */
  1365. if (imax != k) {
  1366. i__1 = imax - k;
  1367. jmax = k - 1 + izamax_(&i__1, &w[k + (k + 1) * w_dim1], &
  1368. c__1);
  1369. i__1 = jmax + (k + 1) * w_dim1;
  1370. rowmax = (d__1 = w[i__1].r, abs(d__1)) + (d__2 = d_imag(&
  1371. w[jmax + (k + 1) * w_dim1]), abs(d__2));
  1372. } else {
  1373. rowmax = 0.;
  1374. }
  1375. if (imax < *n) {
  1376. i__1 = *n - imax;
  1377. itemp = imax + izamax_(&i__1, &w[imax + 1 + (k + 1) *
  1378. w_dim1], &c__1);
  1379. i__1 = itemp + (k + 1) * w_dim1;
  1380. dtemp = (d__1 = w[i__1].r, abs(d__1)) + (d__2 = d_imag(&w[
  1381. itemp + (k + 1) * w_dim1]), abs(d__2));
  1382. if (dtemp > rowmax) {
  1383. rowmax = dtemp;
  1384. jmax = itemp;
  1385. }
  1386. }
  1387. /* Case(2) */
  1388. /* Equivalent to testing for */
  1389. /* ABS( REAL( W( IMAX,K+1 ) ) ).GE.ALPHA*ROWMAX */
  1390. /* (used to handle NaN and Inf) */
  1391. i__1 = imax + (k + 1) * w_dim1;
  1392. if (! ((d__1 = w[i__1].r, abs(d__1)) < alpha * rowmax)) {
  1393. /* interchange rows and columns K and IMAX, */
  1394. /* use 1-by-1 pivot block */
  1395. kp = imax;
  1396. /* copy column K+1 of W to column K of W */
  1397. i__1 = *n - k + 1;
  1398. zcopy_(&i__1, &w[k + (k + 1) * w_dim1], &c__1, &w[k + k *
  1399. w_dim1], &c__1);
  1400. done = TRUE_;
  1401. /* Case(3) */
  1402. /* Equivalent to testing for ROWMAX.EQ.COLMAX, */
  1403. /* (used to handle NaN and Inf) */
  1404. } else if (p == jmax || rowmax <= colmax) {
  1405. /* interchange rows and columns K+1 and IMAX, */
  1406. /* use 2-by-2 pivot block */
  1407. kp = imax;
  1408. kstep = 2;
  1409. done = TRUE_;
  1410. /* Case(4) */
  1411. } else {
  1412. /* Pivot not found: set params and repeat */
  1413. p = imax;
  1414. colmax = rowmax;
  1415. imax = jmax;
  1416. /* Copy updated JMAXth (next IMAXth) column to Kth of W */
  1417. i__1 = *n - k + 1;
  1418. zcopy_(&i__1, &w[k + (k + 1) * w_dim1], &c__1, &w[k + k *
  1419. w_dim1], &c__1);
  1420. }
  1421. /* End pivot search loop body */
  1422. if (! done) {
  1423. goto L72;
  1424. }
  1425. }
  1426. /* END pivot search */
  1427. /* ============================================================ */
  1428. /* KK is the column of A where pivoting step stopped */
  1429. kk = k + kstep - 1;
  1430. /* Interchange rows and columns P and K (only for 2-by-2 pivot). */
  1431. /* Updated column P is already stored in column K of W. */
  1432. if (kstep == 2 && p != k) {
  1433. /* Copy non-updated column KK-1 to column P of submatrix A */
  1434. /* at step K. No need to copy element into columns */
  1435. /* K and K+1 of A for 2-by-2 pivot, since these columns */
  1436. /* will be later overwritten. */
  1437. i__1 = p + p * a_dim1;
  1438. i__2 = k + k * a_dim1;
  1439. d__1 = a[i__2].r;
  1440. a[i__1].r = d__1, a[i__1].i = 0.;
  1441. i__1 = p - k - 1;
  1442. zcopy_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &a[p + (k + 1) *
  1443. a_dim1], lda);
  1444. i__1 = p - k - 1;
  1445. zlacgv_(&i__1, &a[p + (k + 1) * a_dim1], lda);
  1446. if (p < *n) {
  1447. i__1 = *n - p;
  1448. zcopy_(&i__1, &a[p + 1 + k * a_dim1], &c__1, &a[p + 1 + p
  1449. * a_dim1], &c__1);
  1450. }
  1451. /* Interchange rows K and P in first K-1 columns of A */
  1452. /* (columns K and K+1 of A for 2-by-2 pivot will be */
  1453. /* later overwritten). Interchange rows K and P */
  1454. /* in first KK columns of W. */
  1455. if (k > 1) {
  1456. i__1 = k - 1;
  1457. zswap_(&i__1, &a[k + a_dim1], lda, &a[p + a_dim1], lda);
  1458. }
  1459. zswap_(&kk, &w[k + w_dim1], ldw, &w[p + w_dim1], ldw);
  1460. }
  1461. /* Interchange rows and columns KP and KK. */
  1462. /* Updated column KP is already stored in column KK of W. */
  1463. if (kp != kk) {
  1464. /* Copy non-updated column KK to column KP of submatrix A */
  1465. /* at step K. No need to copy element into column K */
  1466. /* (or K and K+1 for 2-by-2 pivot) of A, since these columns */
  1467. /* will be later overwritten. */
  1468. i__1 = kp + kp * a_dim1;
  1469. i__2 = kk + kk * a_dim1;
  1470. d__1 = a[i__2].r;
  1471. a[i__1].r = d__1, a[i__1].i = 0.;
  1472. i__1 = kp - kk - 1;
  1473. zcopy_(&i__1, &a[kk + 1 + kk * a_dim1], &c__1, &a[kp + (kk +
  1474. 1) * a_dim1], lda);
  1475. i__1 = kp - kk - 1;
  1476. zlacgv_(&i__1, &a[kp + (kk + 1) * a_dim1], lda);
  1477. if (kp < *n) {
  1478. i__1 = *n - kp;
  1479. zcopy_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + 1
  1480. + kp * a_dim1], &c__1);
  1481. }
  1482. /* Interchange rows KK and KP in first K-1 columns of A */
  1483. /* (column K (or K and K+1 for 2-by-2 pivot) of A will be */
  1484. /* later overwritten). Interchange rows KK and KP */
  1485. /* in first KK columns of W. */
  1486. if (k > 1) {
  1487. i__1 = k - 1;
  1488. zswap_(&i__1, &a[kk + a_dim1], lda, &a[kp + a_dim1], lda);
  1489. }
  1490. zswap_(&kk, &w[kk + w_dim1], ldw, &w[kp + w_dim1], ldw);
  1491. }
  1492. if (kstep == 1) {
  1493. /* 1-by-1 pivot block D(k): column k of W now holds */
  1494. /* W(k) = L(k)*D(k), */
  1495. /* where L(k) is the k-th column of L */
  1496. /* (1) Store subdiag. elements of column L(k) */
  1497. /* and 1-by-1 block D(k) in column k of A. */
  1498. /* (NOTE: Diagonal element L(k,k) is a UNIT element */
  1499. /* and not stored) */
  1500. /* A(k,k) := D(k,k) = W(k,k) */
  1501. /* A(k+1:N,k) := L(k+1:N,k) = W(k+1:N,k)/D(k,k) */
  1502. /* (NOTE: No need to use for Hermitian matrix */
  1503. /* A( K, K ) = REAL( W( K, K) ) to separately copy diagonal */
  1504. /* element D(k,k) from W (potentially saves only one load)) */
  1505. i__1 = *n - k + 1;
  1506. zcopy_(&i__1, &w[k + k * w_dim1], &c__1, &a[k + k * a_dim1], &
  1507. c__1);
  1508. if (k < *n) {
  1509. /* (NOTE: No need to check if A(k,k) is NOT ZERO, */
  1510. /* since that was ensured earlier in pivot search: */
  1511. /* case A(k,k) = 0 falls into 2x2 pivot case(3)) */
  1512. /* Handle division by a small number */
  1513. i__1 = k + k * a_dim1;
  1514. t = a[i__1].r;
  1515. if (abs(t) >= sfmin) {
  1516. r1 = 1. / t;
  1517. i__1 = *n - k;
  1518. zdscal_(&i__1, &r1, &a[k + 1 + k * a_dim1], &c__1);
  1519. } else {
  1520. i__1 = *n;
  1521. for (ii = k + 1; ii <= i__1; ++ii) {
  1522. i__2 = ii + k * a_dim1;
  1523. i__3 = ii + k * a_dim1;
  1524. z__1.r = a[i__3].r / t, z__1.i = a[i__3].i / t;
  1525. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1526. /* L74: */
  1527. }
  1528. }
  1529. /* (2) Conjugate column W(k) */
  1530. i__1 = *n - k;
  1531. zlacgv_(&i__1, &w[k + 1 + k * w_dim1], &c__1);
  1532. /* Store the subdiagonal element of D in array E */
  1533. i__1 = k;
  1534. e[i__1].r = 0., e[i__1].i = 0.;
  1535. }
  1536. } else {
  1537. /* 2-by-2 pivot block D(k): columns k and k+1 of W now hold */
  1538. /* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */
  1539. /* where L(k) and L(k+1) are the k-th and (k+1)-th columns */
  1540. /* of L */
  1541. /* (1) Store L(k+2:N,k) and L(k+2:N,k+1) and 2-by-2 */
  1542. /* block D(k:k+1,k:k+1) in columns k and k+1 of A. */
  1543. /* NOTE: 2-by-2 diagonal block L(k:k+1,k:k+1) is a UNIT */
  1544. /* block and not stored. */
  1545. /* A(k:k+1,k:k+1) := D(k:k+1,k:k+1) = W(k:k+1,k:k+1) */
  1546. /* A(k+2:N,k:k+1) := L(k+2:N,k:k+1) = */
  1547. /* = W(k+2:N,k:k+1) * ( D(k:k+1,k:k+1)**(-1) ) */
  1548. if (k < *n - 1) {
  1549. /* Factor out the columns of the inverse of 2-by-2 pivot */
  1550. /* block D, so that each column contains 1, to reduce the */
  1551. /* number of FLOPS when we multiply panel */
  1552. /* ( W(kw-1) W(kw) ) by this inverse, i.e. by D**(-1). */
  1553. /* D**(-1) = ( d11 cj(d21) )**(-1) = */
  1554. /* ( d21 d22 ) */
  1555. /* = 1/(d11*d22-|d21|**2) * ( ( d22) (-cj(d21) ) ) = */
  1556. /* ( (-d21) ( d11 ) ) */
  1557. /* = 1/(|d21|**2) * 1/((d11/cj(d21))*(d22/d21)-1) * */
  1558. /* * ( d21*( d22/d21 ) conj(d21)*( - 1 ) ) = */
  1559. /* ( ( -1 ) ( d11/conj(d21) ) ) */
  1560. /* = 1/(|d21|**2) * 1/(D22*D11-1) * */
  1561. /* * ( d21*( D11 ) conj(d21)*( -1 ) ) = */
  1562. /* ( ( -1 ) ( D22 ) ) */
  1563. /* = (1/|d21|**2) * T * ( d21*( D11 ) conj(d21)*( -1 ) ) = */
  1564. /* ( ( -1 ) ( D22 ) ) */
  1565. /* = ( (T/conj(d21))*( D11 ) (T/d21)*( -1 ) ) = */
  1566. /* ( ( -1 ) ( D22 ) ) */
  1567. /* Handle division by a small number. (NOTE: order of */
  1568. /* operations is important) */
  1569. /* = ( T*(( D11 )/conj(D21)) T*(( -1 )/D21 ) ) */
  1570. /* ( (( -1 ) ) (( D22 ) ) ), */
  1571. /* where D11 = d22/d21, */
  1572. /* D22 = d11/conj(d21), */
  1573. /* D21 = d21, */
  1574. /* T = 1/(D22*D11-1). */
  1575. /* (NOTE: No need to check for division by ZERO, */
  1576. /* since that was ensured earlier in pivot search: */
  1577. /* (a) d21 != 0 in 2x2 pivot case(4), */
  1578. /* since |d21| should be larger than |d11| and |d22|; */
  1579. /* (b) (D22*D11 - 1) != 0, since from (a), */
  1580. /* both |D11| < 1, |D22| < 1, hence |D22*D11| << 1.) */
  1581. i__1 = k + 1 + k * w_dim1;
  1582. d21.r = w[i__1].r, d21.i = w[i__1].i;
  1583. z_div(&z__1, &w[k + 1 + (k + 1) * w_dim1], &d21);
  1584. d11.r = z__1.r, d11.i = z__1.i;
  1585. d_cnjg(&z__2, &d21);
  1586. z_div(&z__1, &w[k + k * w_dim1], &z__2);
  1587. d22.r = z__1.r, d22.i = z__1.i;
  1588. z__1.r = d11.r * d22.r - d11.i * d22.i, z__1.i = d11.r *
  1589. d22.i + d11.i * d22.r;
  1590. t = 1. / (z__1.r - 1.);
  1591. /* Update elements in columns A(k) and A(k+1) as */
  1592. /* dot products of rows of ( W(k) W(k+1) ) and columns */
  1593. /* of D**(-1) */
  1594. i__1 = *n;
  1595. for (j = k + 2; j <= i__1; ++j) {
  1596. i__2 = j + k * a_dim1;
  1597. i__3 = j + k * w_dim1;
  1598. z__4.r = d11.r * w[i__3].r - d11.i * w[i__3].i,
  1599. z__4.i = d11.r * w[i__3].i + d11.i * w[i__3]
  1600. .r;
  1601. i__4 = j + (k + 1) * w_dim1;
  1602. z__3.r = z__4.r - w[i__4].r, z__3.i = z__4.i - w[i__4]
  1603. .i;
  1604. d_cnjg(&z__5, &d21);
  1605. z_div(&z__2, &z__3, &z__5);
  1606. z__1.r = t * z__2.r, z__1.i = t * z__2.i;
  1607. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1608. i__2 = j + (k + 1) * a_dim1;
  1609. i__3 = j + (k + 1) * w_dim1;
  1610. z__4.r = d22.r * w[i__3].r - d22.i * w[i__3].i,
  1611. z__4.i = d22.r * w[i__3].i + d22.i * w[i__3]
  1612. .r;
  1613. i__4 = j + k * w_dim1;
  1614. z__3.r = z__4.r - w[i__4].r, z__3.i = z__4.i - w[i__4]
  1615. .i;
  1616. z_div(&z__2, &z__3, &d21);
  1617. z__1.r = t * z__2.r, z__1.i = t * z__2.i;
  1618. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1619. /* L80: */
  1620. }
  1621. }
  1622. /* Copy diagonal elements of D(K) to A, */
  1623. /* copy subdiagonal element of D(K) to E(K) and */
  1624. /* ZERO out subdiagonal entry of A */
  1625. i__1 = k + k * a_dim1;
  1626. i__2 = k + k * w_dim1;
  1627. a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
  1628. i__1 = k + 1 + k * a_dim1;
  1629. a[i__1].r = 0., a[i__1].i = 0.;
  1630. i__1 = k + 1 + (k + 1) * a_dim1;
  1631. i__2 = k + 1 + (k + 1) * w_dim1;
  1632. a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
  1633. i__1 = k;
  1634. i__2 = k + 1 + k * w_dim1;
  1635. e[i__1].r = w[i__2].r, e[i__1].i = w[i__2].i;
  1636. i__1 = k + 1;
  1637. e[i__1].r = 0., e[i__1].i = 0.;
  1638. /* (2) Conjugate columns W(k) and W(k+1) */
  1639. i__1 = *n - k;
  1640. zlacgv_(&i__1, &w[k + 1 + k * w_dim1], &c__1);
  1641. i__1 = *n - k - 1;
  1642. zlacgv_(&i__1, &w[k + 2 + (k + 1) * w_dim1], &c__1);
  1643. }
  1644. /* End column K is nonsingular */
  1645. }
  1646. /* Store details of the interchanges in IPIV */
  1647. if (kstep == 1) {
  1648. ipiv[k] = kp;
  1649. } else {
  1650. ipiv[k] = -p;
  1651. ipiv[k + 1] = -kp;
  1652. }
  1653. /* Increase K and return to the start of the main loop */
  1654. k += kstep;
  1655. goto L70;
  1656. L90:
  1657. /* Update the lower triangle of A22 (= A(k:n,k:n)) as */
  1658. /* A22 := A22 - L21*D*L21**H = A22 - L21*W**H */
  1659. /* computing blocks of NB columns at a time (note that conjg(W) is */
  1660. /* actually stored) */
  1661. i__1 = *n;
  1662. i__2 = *nb;
  1663. for (j = k; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
  1664. /* Computing MIN */
  1665. i__3 = *nb, i__4 = *n - j + 1;
  1666. jb = f2cmin(i__3,i__4);
  1667. /* Update the lower triangle of the diagonal block */
  1668. i__3 = j + jb - 1;
  1669. for (jj = j; jj <= i__3; ++jj) {
  1670. i__4 = jj + jj * a_dim1;
  1671. i__5 = jj + jj * a_dim1;
  1672. d__1 = a[i__5].r;
  1673. a[i__4].r = d__1, a[i__4].i = 0.;
  1674. i__4 = j + jb - jj;
  1675. i__5 = k - 1;
  1676. z__1.r = -1., z__1.i = 0.;
  1677. zgemv_("No transpose", &i__4, &i__5, &z__1, &a[jj + a_dim1],
  1678. lda, &w[jj + w_dim1], ldw, &c_b1, &a[jj + jj * a_dim1]
  1679. , &c__1);
  1680. i__4 = jj + jj * a_dim1;
  1681. i__5 = jj + jj * a_dim1;
  1682. d__1 = a[i__5].r;
  1683. a[i__4].r = d__1, a[i__4].i = 0.;
  1684. /* L100: */
  1685. }
  1686. /* Update the rectangular subdiagonal block */
  1687. if (j + jb <= *n) {
  1688. i__3 = *n - j - jb + 1;
  1689. i__4 = k - 1;
  1690. z__1.r = -1., z__1.i = 0.;
  1691. zgemm_("No transpose", "Transpose", &i__3, &jb, &i__4, &z__1,
  1692. &a[j + jb + a_dim1], lda, &w[j + w_dim1], ldw, &c_b1,
  1693. &a[j + jb + j * a_dim1], lda);
  1694. }
  1695. /* L110: */
  1696. }
  1697. /* Set KB to the number of columns factorized */
  1698. *kb = k - 1;
  1699. }
  1700. return;
  1701. /* End of ZLAHEF_RK */
  1702. } /* zlahef_rk__ */